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machine learning algorithm. This study

revealed that federated learning can

enable collaborative machine learning

training on datasets siloed by policy

boundaries and cloud service providers.
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THE BIGGER PICTURE The wide-scale application of artificial intelligence and computationally intensive
analytical approaches in the biomedical and clinical domain is largely restricted by access to sufficient
training data. This data scarcity exists due to the isolated nature of biomedical and clinical institutions,
mandated by patient privacy policies in the health system or government legislation. Federated learning
(FL), a machine learning approach that facilitates collaborative model training, is a promising strategy to
address these restrictions. Therefore, understanding the limitations of cooperatively trained FL models
and their performance differences from similar centrally trained models is crucial to valuing their implemen-
tation in the broader biomedical research community.
SUMMARY
While machine learning (ML) research has recently grown more in popularity, its application in the omics
domain is constrained by access to sufficiently large, high-quality datasets needed to train ML models.
Federated learning (FL) represents an opportunity to enable collaborative curation of such datasets among
participating institutions. We compare the simulated performance of several models trained using FL against
classically trained ML models on the task of multi-omics Parkinson’s disease prediction. We find that FL
model performance tracks centrally trained ML models, where the most performant FL model achieves an
AUC-PR of 0.876 ± 0.009, 0.014 ± 0.003 less than its centrally trained variation. We also determine that the
dispersion of samples within a federation plays a meaningful role in model performance. Our study imple-
ments several open-source FL frameworks and aims to highlight some of the challenges and opportunities
when applying these collaborative methods in multi-omics studies.
INTRODUCTION

In recent years, machine learning (ML) algorithms have gained

popularity as a possible vehicle for solving many long-standing

research questions in the clinical and biomedical setting.

Concretely, the adoption of sophisticated ML models can aid

in tasks such as biomarker detection, disease subtyping,1 dis-

ease identification,2,3,4 and the development of novel medical in-

terventions. The nascence of powerful predictive methods such

as ML has enabled investigations into advanced analytics of

granular patient features, such as genomics and transcriptom-

ics,5–7 to achieve the ultimate goal of precision medicine.
This is an open access article und
AdoptingMLmethods is constrained by access to high-quality

datasets. In biomedical studies, curating such quality datasets is

particularly difficult due to the sample collection and processing

costs and the barriers associated with recruiting patients who

meet a study’s inclusion/exclusion criteria. The challenge of

this task is exacerbated by the fact that institutions that typically

collect biomedical samples cannot easily share human speci-

mens’ data due to data privacy regulations, such as the Health

Insurance Portability and Accountability Act (HIPAA), the Euro-

pean Union General Data Protection Regulation (EU-GDPR), In-

dia’s Personal Data Protection Act (PDPA), and Canada’s Per-

sonal Information Protection and Electronic Documents Act
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Figure 1. Experiment workflow diagram and data summary

The harmonized and joint-called PPMI and PDBP cohorts originate from the AMP-PD initiative. The PPMI cohort is split into K folds, where one fold is left as a

holdout (internal) test set and the remaining are used for model fitting. The training folds are split using an 80:20 ratio to form the training validation split. The

training split is distributed among n clients using one of the split strategies to simulate the cross-silo collaborative training setting. FL methods consist of a local

learner and an aggregation method. Similarly, several central algorithms are used to fit the training data. The resultant global FL models and the ML models

resulting from central training are tested on the PPMI holdout fold (internal test) and the whole PDBP test set (external test).

ll
OPEN ACCESS Article
(IPEDA), mandated bymedical systems or at a national and inter-

national level.8

Federated learning (FL) is an optimization method for perform-

ing ML model training among a group of clients, allowing each

client to maintain governance of their local data. Initially devel-

oped for learning user behavior patterns on personal mobile de-

vices without breaching individual privacy,9 FL has found valu-

able applications in numerous domains, including finance,10

medicine,11,12 and the pharmaceutical industry.13 In biomedical

research, FL represents an opportunity to enable cross-silo an-

alytics and more productive collaboration.14–16

This work evaluates FL methods’ practical availability and util-

ity to enable large-scale, multi-institutional and private analytics

of multiple-modality biomedical samples. Specifically, we aim to

identify the frameworks biomedical researchers can use to

perform FL in their work, the expected performance changes,

and the implementation challenges they may face. We also

discuss the opportunities and limitations of applying FL in

multi-omics, where samples capture a patient’s genomic and

transcriptomic features and clinical and demographic informa-

tion through the case study of Parkinson’s disease prediction.

We use the multi-modal Parkinson’s disease prediction as a

case study for testing FL on omics data. Timely and accurate

diagnosis of neurodegenerative diseases such as Parkinson’s

is crucial in exploring the efficacy of novel therapies to treat

and manage the disease. Since the onset of these diseases typi-

cally begins many years before any visible symptoms, early
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detection is difficult to achieve at a clinical level alone. Usually

it requires information inherent to the patient’s biology. Makari-

ous et al.6 have already determined that leveraging genomic

and transcriptomic information as part of the diagnosis process

allows for higher model performance. This study demonstrates

the feasibility and practicality of deploying FL for Parkinson’s dis-

ease prediction.

RESULTS

FL models trained using publicly available and
accessible framework results follow central model
performance
We aim to evaluate the performance differences between clas-

sical ML algorithms frequently used in the biomedical setting

against FL algorithms suitable for cross-silo modeling. An over-

view of our approach (Figure 1) shows the experimental design

for evaluating several FL and central ML methods in the task of

Parkinson’s disease prediction based on genomic, transcrip-

tomic, and clinico-demographic features (Table S1). The data-

sets used in experiments originate fromstudiesproviding clinical,

demographic, and biological information of Parkinson’s disease

patients, the Parkinson’s Progression Marker Initiative (PPMI)

and the Parkinson’s Disease Biomarkers Program (PDBP). The

PPMI dataset is a longitudinal, observational study where pa-

tients contribute clinical, demographic, and imaging data as

well as biological samples for whole-genome sequencing and



Figure 2. Federated architecture and training

summary

The FL architecture used in the study also illustrates

one round of FL training for the case of n = 3 clients.

The aggregation server aggregates trained local

learner parameters from clients and computing a

global model. Client sites contain their own siloed

dataset, each with different samples. The trained

client parameters are represented by the blue, or-

ange, and green weights; the black weights repre-

sent the aggregated global model. Client model

aggregation implemented by the FL strategy is de-

noted by f. Once global weights are computed, a

copy is sent to each client; the global model is used

to initialize the local learner model weights in sub-

sequent FL training rounds.
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whole-blood RNA sequencing. PPMI specifically includes newly

diagnosed and drug-naive patients, collected at clinical sites

globally over a span of 5–13 years. The PDBP dataset provides

clinical, genetic, imaging, and biomarker data associated with

Parkinson’s disease, Lewy body dementia, and other parkinson-

isms. Patients in PDBP are not necessarily newly diagnosed or

drug naive. The PPMI dataset is used for model training, valida-

tion, and testing. The PDBPdataset is used strictly as an external

test set. In our experiments, the PPMI dataset is split into K folds,

oneofwhich is usedasaholdout test set,with the remaining folds

being used formodel training and validation. To establish a base-

line performance of classically trained central algorithms repre-

sentative of methods used in the current biomedical research

paradigm, several central ML algorithms are fit to the training

set (Table S2) and tested on the holdout PPMI fold, as well as

the whole PDBP dataset. To simulate the cross-silo federated

setting, the training set is split into n disjoint subsets, referred

to as client datasets. Where each baseline ML algorithm is fit to

the full centralized training dataset, the FLmodel is fit to ndisjoint,

siloed client datasets, the union of which equates to the entire

trainingdataset. An illustration of the FL trainingprocess is shown

in Figure 2. The fitted FL models are finally evaluated against the

PPMI test fold and the PDBP dataset.

In the optimistic FL setting where we compare a federation of

n = 2 client sites, which have been assigned samples through

uniform stratified random samplingwithout replacement, against

the central baseline algorithms (Figure 3), it can be seen that for

all the included FL methods, the absolute difference in perfor-

mance is relatively small. For the internal test set, the central lo-

gistic regression (LR) classifier17 has an area under the preci-

sion-recall curve (AUC-PR) of 0.915 ± 0.039 (standard

deviation across K = 6 folds). Among the classifiers trained using

FL, which implement the same local learner, FedAvg18 LR,

FedProx19 m = 0.5 LR, and FedProx m = 2 LR, have an AUC-PR

of 0.874 ± 0.042, 0.887 ± 0.041, and 0.906 ± 0.04, respectively.

In the external test set, a similar relationship between central LR

and federated LR is exhibited, where classical LR has an AUC-

PR of 0.842 ± 0.009 and FedAvg, FedProx LR m = 0.5 LR, and
FedProx m = 2 LR have an AUC-PR of

0.826 ± 0.011, 0.823 ± 0.015, and

0.835 ± 0.007, respectively. This general

reduction in performance between the
centrally trained classifier and the classifier trained collabora-

tively through FL is a trend observed in nearly all of the FL algo-

rithms across both test sets. Similarly, the central MLP classi-

fier20 has an AUC-PR of 0.892 ± 0.032 and 0.826 ± 0.007,

respectively, while the best-performing FL variation, FedProx

MLP m = 2, has an AUC-PR of 0.868 ± 0.06 and 0.785 ± 0.015

for the internal and external test set, respectively. A similar trend

can be observed for FedAvg XGBRF,21 where the performance

reduction is proportional to that observed in other learners.

The only exception to this pattern is in the case of the SGD clas-

sifier,22,23 which in the PDBP exhibits a marginal improvement of

0.002 AUC-PR. The resulting performance details, including

several additional centrally trained ML algorithms, are presented

in Tables 1 and 2. The statistical significance of pairwise

observed differences in performance is presented in Table S3.

The results of this side-by-side comparison of FL methods in

an idealistic setting with minimal heterogeneity among client da-

tasets show a relatively small difference in performance

compared to the central algorithms.

Sample dispersion among client sites negatively
impacts global model performance
By splitting the training samples among an increasing number of

clients, we aim to understand the implications of federation con-

figurations that have more dispersed samples (Figure 4). In both

the PPMI and PDBP datasets, there is a similar relative change in

AUC-PR performance when increasing the number of client

sites; the absolute performance scores and variance are consid-

erably higher for the PPMI test set than the PDBP test set. The

performance of PPMI FedAvg XGBRF starts at 0.924 ± 0.015

AUC-PR in a federation of two client sites, and progressively

drops to 0.861 ± 0.043 AUC-PR at 18 clients. For the PDBP per-

formance, FedAvg XGBRF similarly reduces from 0.876 ± 0.009

to 0.752 ± 0.054 AUC-PR, at aminimum. Such a reduction in per-

formance is also observed in the FedAvg SGD classifier, which

has an AUC-PR of 0.92 ± 0.025 for two clients and an AUC-PR

of 0.886 ± 0.055 for 18 clients in PPMI. In PDBP the same clas-

sifier starts at 0.847 ± 0.008 for two client sites, and ends at
Patterns 5, 100945, March 8, 2024 3



Figure 3. Federated learning models trained

using publicly available and accessible

framework results follow central model per-

formance

Area under the precision-recall curve (AUC-PR)

comparing central algorithms against federated al-

gorithms. We pair FL algorithms with central algo-

rithms by the local learning algorithm applied at

client sites. Federated algorithms receive the

training dataset split across 20 n = 2 clients, using

label stratified random sampling. Presented data

are mean score and standard deviation resulting

from cross-validation.
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0.798 ± 0.014 AUC-PR for 18 client sites. The trend of perfor-

mance decline is observed for the LR classifiers as well for

both the PPMI and PDBP test sets. The FedAvg MLP, as well

as both FedProx MLP classifiers, do not exhibit such a reduction

performance. In the PPMI test set, FedAvg MLP performance at

n = 2 client sites is 0.872 ± 0.072 AUC-PR, and at n = 18 client

sites 0.876 ± 0.06. Similarly, for PDBP performance FedAvg

MLP performance is 0.78 ± 0.012 for two client sites and

0.781 ± 0.009 for n = 18 client sites. A nearly identical trend is

observed in FedProx m = 0.5 and m = 2 across both test sets.

Detailed results are given in supplemental information and Ta-

bles 3 and 4.

Data heterogeneity at client sites does not significantly
influence model performance
To understand the implications of data heterogeneity among

client sites, we examine the change in AUC-PR in a federation

of two clients with respect to the split method (Figure 5). In our

experiments, we find that the performance changes introduced

by dataset heterogeneity vary. Some FL models, such as

FedAvg LR, FedProx m = 0.5, FedAvg MLP, FedProx m = 0.5

MLP, and FedProx m = 2 MLP exhibit performance improve-

ments as both label heterogeneity and dataset size heterogene-

ity are introduced. The greatest performance improvement in

PDBP is 0.018 AUC-PR by FedProx m = 2 MLP, and 0.029 by

FedAvg LR in PPMI. Conversely, we find that FedProx m = 0.5

LR, FedProx m = 2 LR, FedAvg SGD, and FedAvg XGBRF exhibit

performance degradation on account of dataset heterogeneity,

where the greatest reduction in performance is 0.014 AUC-PR

by XGBRF in PDBP, and 0.031 AUC-PR by FedProx m = 2 LR

in PPMI. In all such cases, the performance changes induced

by dataset heterogeneity are marginal relative to other parame-

ters such as algorithm choice or quantity of participating clients.

The implications of performance heterogeneity as the number of

clients increases are shown in Figures S1 and S2.

FL training time is not dramatically affected by choice in
federated aggregation strategy
To shed light on the computational costs associated with using

different FL aggregation strategies, we measure the model

training time for FL algorithms in which the federation consists

of n = 2 client sites. For the FedAvg aggregation strategy,

FedAvg LR had the lowest mean runtime of 7.909e+00 ± 0.550

s. Similarly, for the algorithms implementing FedProx aggrega-

tion, FedProx m = 0.5 LRClassifier had the lowest overall runtime

of 8.747e+00 ± 0.158 s. FedProx m = 2 LRClassifier had the sec-
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ond lowest runtime for FedProx variants with a runtime of

8.905e+00 ± 0.130 s. For the MLP classifier, FedAvg, FedProx

m = 0.5, and FedProx m = 2 had a progressively increasing run-

times 8.755e+00 ± 0.141 s, 9.039e+00 ± 0.266 s, 9.260e+00 ±

0.163 s, respectively. FedAvg XGBRF and FedAvg SGD had a

considerably higher runtime of 1.061e+01 ± 0.014 and

1.513e+01 ± 1.497 s, respectively. A visualization of the runtimes

for FL algorithms is presented in Figure 6.

In contrast to the FLalgorithms, central algorithm training time is

at least an order of magnitude lower. The fastest model to train,

SGDclassifier, fits themodel in6.771e�03±0.001s,and theslow-

estmodel,MLPclassifier,fits itsmodel in1.609e�01±0.009.Cen-

tral LR classifier and XGBRF run in 1.857e�02 ± 0.008 and

1.633e�01 ± 0.003 s, respectively. The full list of runtimes

including central and federated algorithms is presented in Table 5.

DISCUSSION

In conjunction with increased access to genomic and transcrip-

tomic data, the proliferation of high-qualityMLopen-source pack-

ages has helped advance numerous long-standing challenges in

biomedical research, such as disease subtyping, biomarker iden-

tification, and early disease diagnosis. The common bottleneck

limiting such advances has thus shifted from the ability to apply

MLmethods to the availability of high-quality well-designed data-

sets. FL has been cited as a promising means of alleviating the

data scarcity problem through data-private collaborative model

training.24–26 Previous works focus on applying FL to domains

adjacent to multi-omics disease diagnosis, namely focusing on

imaging data,14,27 longitudinal health records,15 and named entity

recognition.28 Similar works such as Salmeron et al.29 approach

benchmarking FL models on biomedical datasets but focus on

comparing different FL aggregation strategies rather than evalu-

ating FL against a central baseline, as is done in our study. By ap-

proaching FL for multi-omics disease diagnosis from a perfor-

mance benchmarking perspective, focusing on algorithms that

are broadly accessible in the open-source community, we hope

to shed light on what kind of practical performance can be

achieved in a real-world setting where deep AI and software sys-

tems expertise may be limited. We additionally aim to understand

which fundamental pitfalls researchers must be aware of before

applying such methods in their multi-omics tasks.

When comparing centrally trained models against collabora-

tively trained models that implement the same local learner algo-

rithm, our results indicate the FL trained model performance

tends to be consistently less than that of the central method



Table 1. Performance of several models trained using classical machine learning methods and federated learning methods, where the number of participating clients in the

federation is n = 2, tested on the PPMI dataset

Algorithm name ROC-AUC AUC-PR

Balanced

accuracy Precision Recall F 0.5 F 1 F 2 Log loss

Matthews

correlation

coefficient

AdaBoost classifier 0.865 ± 0.033 0.939 ± 0.01 0.736 ± 0.069 0.844 ± 0.043 0.89 ± 0.047 0.897 ± 0.017 0.885 ± 0.027 0.942 ± 0.013 0.632 ± 0.007 0.499 ± 0.122

Bagging classifier 0.82 ± 0.05 0.916 ± 0.025 0.69 ± 0.052 0.813 ± 0.027 0.897 ± 0.061 0.865 ± 0.021 0.862 ± 0.024 0.933 ± 0.01 1.001 ± 0.382 0.428 ± 0.123

GradientBoosting classifier 0.879 ± 0.046 0.943 ± 0.026 0.723 ± 0.072 0.833 ± 0.042 0.911 ± 0.021 0.916 ± 0.03* 0.894 ± 0.022 0.942 ± 0.015* 0.444 ± 0.099 0.486 ± 0.119

KNeighbors classifier 0.61 ± 0.099 0.806 ± 0.065 0.533 ± 0.029 0.729 ± 0.014 0.937 ± 0.046 0.782 ± 0.023 0.837 ± 0.007 0.927 ± 0.004 2.836 ± 0.617 0.111 ± 0.104

LinearDiscriminantAnalysis

classifier

0.763 ± 0.045 0.883 ± 0.031 0.681 ± 0.053 0.826 ± 0.04 0.77 ± 0.05 0.7 ± 0.344 0.714 ± 0.35 0.776 ± 0.38 1.608 ± 0.488 0.347 ± 0.095

LogisticRegression classifier 0.831 ± 0.068 0.915 ± 0.039 0.734 ± 0.072 0.841 ± 0.043 0.894 ± 0.028 0.872 ± 0.047 0.883 ± 0.033 0.939 ± 0.011 0.648 ± 0.203 0.493 ± 0.134

MLP classifier 0.739 ± 0.078 0.892 ± 0.032 0.703 ± 0.059 0.833 ± 0.038 0.815 ± 0.054 0.843 ± 0.038 0.858 ± 0.034 0.932 ± 0.013 6.616 ± 1.844 0.402 ± 0.119

QuadraticDiscriminantAnalysis

classifier

0.504 ± 0.057 0.774 ± 0.029 0.504 ± 0.057 0.725 ± 0.055 0.385 ± 0.081 0.757 ± 0.008 0.833 ± 0.006 0.926 ± 0.003 19.674 ± 1.492 0.009 ± 0.105

RandomForest 0.816 ± 0.076 0.917 ± 0.027 0.552 ± 0.034 0.736 ± 0.016 0.993 ± 0.017* 0.857 ± 0.043 0.874 ± 0.032 0.942 ± 0.014 0.508 ± 0.029 0.249 ± 0.121

SGD classifier 0.755 ± 0.065 0.907 ± 0.025 0.735 ± 0.062 0.846 ± 0.032 0.857 ± 0.068 0.857 ± 0.037 0.876 ± 0.036 0.936 ± 0.015 7.525 ± 2.282 0.481 ± 0.143

SVC classifier 0.838 ± 0.069 0.924 ± 0.032 0.711 ± 0.071 0.827 ± 0.041 0.883 ± 0.042 0.872 ± 0.042 0.886 ± 0.024 0.941 ± 0.008 0.44 ± 0.082* 0.447 ± 0.145

XGBoost classifier 0.89 ± 0.046* 0.953 ± 0.018* 0.765 ± 0.097 0.86 ± 0.062 0.911 ± 0.03 0.915 ± 0.03 0.900 ± 0.033* 0.942 ± 0.014 0.461 ± 0.135 0.557 ± 0.167

XGBoost random forest

classifier

0.857 ± 0.064 0.936 ± 0.029 0.773 ± 0.057* 0.868 ± 0.04* 0.885 ± 0.047 0.907 ± 0.039 0.891 ± 0.041 0.936 ± 0.011 1.79 ± 0.853 0.558 ± 0.105*

FedAvg LR 0.69 ± 0.16 0.874 ± 0.042 0.617 ± 0.109 0.772 ± 0.054 0.955 ± 0.037* 0.818 ± 0.054 0.863 ± 0.026 0.935 ± 0.008 0.655 ± 0.14 0.278 ± 0.25

FedAvg MLP 0.76 ± 0.102 0.872 ± 0.072 0.671 ± 0.087 0.817 ± 0.051 0.768 ± 0.089 0.708 ± 0.35 0.728 ± 0.358 0.779 ± 0.382 0.767 ± 0.308 0.334 ± 0.179

FedAvg SGD 0.828 ± 0.048 0.92 ± 0.025 0.757 ± 0.048* 0.904 ± 0.049* 0.707 ± 0.033 0.871 ± 0.032 0.872 ± 0.018 0.939 ± 0.008 0.545 ± 0.032* 0.47 ± 0.084

FedAvg XGBRF 0.829 ± 0.023* 0.924 ± 0.015* 0.739 ± 0.058 0.848 ± 0.043 0.883 ± 0.036 0.886 ± 0.02* 0.875 ± 0.012 0.929 ± 0.005 0.691 ± 0.0 0.497 ± 0.089*

FedProx m = 0.5 LR 0.755 ± 0.142 0.887 ± 0.041 0.653 ± 0.088 0.791 ± 0.042 0.941 ± 0.031 0.704 ± 0.349 0.729 ± 0.358 0.784 ± 0.384 0.609 ± 0.155 0.362 ± 0.198

FedProx m = 0.5 MLP 0.757 ± 0.096 0.872 ± 0.061 0.695 ± 0.088 0.829 ± 0.048 0.808 ± 0.075 0.843 ± 0.042 0.868 ± 0.028 0.937 ± 0.004 0.976 ± 0.314 0.387 ± 0.182

FedProx m = 2 LR 0.812 ± 0.079 0.906 ± 0.04 0.658 ± 0.028 0.79 ± 0.014 0.937 ± 0.025 0.866 ± 0.045 0.879 ± 0.025* 0.941 ± 0.006* 0.582 ± 0.137 0.398 ± 0.069

FedProx m = 2 MLP 0.765 ± 0.079 0.868 ± 0.06 0.694 ± 0.069 0.83 ± 0.042 0.798 ± 0.045 0.706 ± 0.348 0.724 ± 0.355 0.781 ± 0.382 0.9 ± 0.368 0.379 ± 0.133

Data reported are mean and standard deviation across K = 6-fold cross-validation. Best performing algorithms for each metric are indicated by an asterisk.
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Table 2. Performance of several models trained using classical machine learning methods and federated learning methods, where the number of participating clients in the

federation is n = 2, tested on the PDBP dataset

Algorithm name ROC-AUC AUC-PR

Balanced

accuracy Precision Recall F 0.5 F 1 F 2 Log loss

Matthews

correlation

coefficient

AdaBoost classifier 0.834 ± 0.021 0.891 ± 0.015 0.697 ± 0.026 0.757 ± 0.023 0.917 ± 0.033 0.835 ± 0.016 0.834 ± 0.009 0.905 ± 0.004 0.639 ± 0.005 0.456 ± 0.029

Bagging 0.812 ± 0.01 0.871 ± 0.01 0.696 ± 0.019 0.753 ± 0.015 0.932 ± 0.015 0.828 ± 0.007 0.84 ± 0.004 0.903 ± 0.003 1.291 ± 0.226 0.463 ± 0.027

GradientBoosting classifier 0.856 ± 0.013 0.9 ± 0.016 0.716 ± 0.018 0.766 ± 0.014 0.938 ± 0.013 0.856 ± 0.007 0.857 ± 0.003* 0.908 ± 0.003* 0.572 ± 0.042* 0.502 ± 0.024

KNeighbors classifier 0.586 ± 0.024 0.735 ± 0.019 0.551 ± 0.019 0.664 ± 0.011 0.946 ± 0.024 0.707 ± 0.008 0.783 ± 0.001 0.899 ± 0.0 3.322 ± 0.641 0.169 ± 0.042

LinearDiscriminantAnalysis

classifier

0.702 ± 0.012 0.794 ± 0.008 0.64 ± 0.013 0.734 ± 0.01 0.776 ± 0.01 0.622 ± 0.305 0.661 ± 0.324 0.751 ± 0.368 2.104 ± 0.19 0.288 ± 0.024

LogisticRegression classifier 0.771 ± 0.011 0.842 ± 0.009 0.657 ± 0.008 0.73 ± 0.005 0.901 ± 0.01 0.791 ± 0.004 0.81 ± 0.005 0.901 ± 0.001 0.996 ± 0.039 0.368 ± 0.02

MLP classifier 0.671 ± 0.013 0.826 ± 0.007 0.619 ± 0.012 0.711 ± 0.008 0.839 ± 0.01 0.749 ± 0.009 0.789 ± 0.007 0.899 ± 0.001 8.313 ± 0.708 0.265 ± 0.026

QuadraticDiscriminantAnalysis

classifier

0.525 ± 0.022 0.721 ± 0.022 0.525 ± 0.022 0.671 ± 0.024 0.366 ± 0.097 0.688 ± 0.0 0.779 ± 0.0 0.898 ± 0.0 18.716 ± 1.33 0.05 ± 0.042

RandomForest 0.736 ± 0.006 0.825 ± 0.005 0.524 ± 0.005 0.649 ± 0.003 0.985 ± 0.005* 0.764 ± 0.007 0.792 ± 0.005 0.899 ± 0.0 0.596 ± 0.004 0.132 ± 0.025

SGD classifier 0.662 ± 0.017 0.845 ± 0.007 0.65 ± 0.016 0.728 ± 0.011 0.878 ± 0.024 0.758 ± 0.01 0.803 ± 0.007 0.898 ± 0.0 10.11 ± 0.525 0.343 ± 0.034

SVC classifier 0.701 ± 0.007 0.808 ± 0.004 0.593 ± 0.011 0.693 ± 0.006 0.844 ± 0.02 0.742 ± 0.004 0.793 ± 0.002 0.901 ± 0.001 0.65 ± 0.019 0.214 ± 0.029

XGBoost classifier 0.862 ± 0.008* 0.905 ± 0.007* 0.719 ± 0.021 0.77 ± 0.016 0.932 ± 0.013 0.864 ± 0.006* 0.857 ± 0.003* 0.906 ± 0.003 0.691 ± 0.031 0.504 ± 0.03

XGBoost Random Forest

classifier

0.829 ± 0.007 0.89 ± 0.006 0.732 ± 0.02* 0.781 ± 0.016* 0.918 ± 0.01 0.849 ± 0.003 0.855 ± 0.002 0.905 ± 0.003 2.715 ± 0.254 0.515 ± 0.031*

FedAvg LR 0.665 ± 0.128 0.826 ± 0.011 0.565 ± 0.052 0.673 ± 0.028 0.96 ± 0.032* 0.745 ± 0.045 0.794 ± 0.012 0.899 ± 0.002 0.829 ± 0.108 0.187 ± 0.147

FedAvg MLP 0.69 ± 0.018 0.78 ± 0.012 0.629 ± 0.01 0.719 ± 0.007 0.828 ± 0.022 0.744 ± 0.008 0.791 ± 0.007 0.899 ± 0.001 1.038 ± 0.239 0.282 ± 0.024

FedAvg SGD 0.775 ± 0.011 0.847 ± 0.008 0.689 ± 0.011 0.77 ± 0.008* 0.8 ± 0.01 0.794 ± 0.005 0.809 ± 0.004 0.902 ± 0.002 0.559 ± 0.013* 0.385 ± 0.023

FedAvg XGBRF 0.794 ± 0.007* 0.876 ± 0.009* 0.695 ± 0.023* 0.754 ± 0.017 0.919 ± 0.012 0.825 ± 0.007* 0.838 ± 0.008* 0.902 ± 0.003* 0.691 ± 0.0 0.451 ± 0.035*

FedProx m = 0.5 LR 0.704 ± 0.101 0.823 ± 0.015 0.584 ± 0.042 0.683 ± 0.022 0.943 ± 0.03 0.762 ± 0.038 0.795 ± 0.009 0.9 ± 0.002 0.866 ± 0.092 0.232 ± 0.115

FedProx m = 0.5 MLP 0.7 ± 0.008 0.791 ± 0.006 0.63 ± 0.011 0.719 ± 0.007 0.833 ± 0.016 0.748 ± 0.007 0.794 ± 0.004 0.899 ± 0.001 1.312 ± 0.124 0.284 ± 0.023

FedProx m = 2 LR 0.761 ± 0.008 0.835 ± 0.007 0.601 ± 0.005 0.691 ± 0.003 0.947 ± 0.013 0.787 ± 0.008 0.804 ± 0.003 0.9 ± 0.001 0.875 ± 0.014 0.293 ± 0.01

FedProx m = 2 MLP 0.695 ± 0.022 0.785 ± 0.015 0.631 ± 0.02 0.722 ± 0.013 0.818 ± 0.02 0.747 ± 0.014 0.791 ± 0.005 0.899 ± 0.001 1.231 ± 0.285 0.282 ± 0.044

Data reported are mean and standard deviation across K = 6-fold cross-validation. Best performing algorithms for each metric are indicated by an asterisk.
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Figure 4. Sample dispersion among client

sites negatively impacts global model perfor-

mance

For a fixed training dataset, the AUC-PR of federated

algorithms as the quantity of client sites increases.

Training data are split uniformly among eachmember

of the federation using stratified random sampling.

The PDBP and PPMI datasets are used for external

and internal validation, respectively. Presented data

aremean score and standard deviation resulting from

cross-validation.
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while approximately following the performance of the central ML

method. The general reduction in AUC-PR testing score be-

tween the FL and central method is noteworthy, but not a sub-

stantial deterioration. It can also be observed that for the studied

aggregation strategies, FL model performance follows central

model performance. In cases where the central model is per-

formant, the FL trained model will be as well. In the case of the

strongest central classifier in the central setting, XGBRF, the

FL method implementing the same algorithm as a local learner,

FedAvg XGBRF, also had the highest performance among

models trained using FL. Additionally, we see that inmany cases,

FedAvg XGBRF outperforms central ML classifiers such as LR,

SGD, and MLP at the same task by a significant margin. This

empirical result indicates that in cases where institutions must

decide between applying FL methods to their setting or central-

izing data by complying with potentially stringent regulations, FL

can be considered an effective option. In addition, because the

implementation of such methods is available through open-

source, strongly documented frameworks, the resource invest-

ment to achieve scientifically meaningful results may not be sig-

nificant. We also note that because an FL model’s performance

tracks, and seldom exceeds, its central model performance, it

can be crudely used to approximate the central model lower

bound. Such an estimate of central performance, even if inexact,

may be valuable for institutional stakeholders when deciding

whether financial and administrative resources should be allo-

cated to centralize several siloed datasets. We also note that

the overall reduction in performance betweenmodels trained us-

ing FL methods and models trained using central methods can

be attributed to the federated aggregation process, which, in

our case, is implemented as the unweighted average of the local

learner model weights. Such a naive averaging process detracts

from the parameter optimization implemented by local learners

but is a necessary cost to enable sample-private federated

training. Furthermore, we note that several novel methods that

implement more sophisticated weight aggregation strategies

have been developed in academic settings but are not always

available as generally applicable open-source packages. Over-

all, this test indicates that FL may be used to enable productive

collaboration among institutions existing on opposite sides of

geographic and policy boundaries, such as EU-GDPR, as well

as across cloud providers and bare-metal servers.

In the second arm of our study, we aim to understand the

model performance cost of conducting collaborative training

among a federation with increasing sample dispersion. Such a

situation may arise, when institutional stakeholders must comply
with several layers of regulatory requirements, where centralizing

some sites is easier than others. A concrete example of such a

regulation is in the case of EU-GDPR, where transport of patient

samples beyond the boundaries of the EU requires compliance

with GDPR, and each country’s respective legislation mandates

the transport of samples between countries within the EU. In this

series of experiments, we assume that the globally available set

of samples is constant but the quantity of federation members

containing the samples varies. Our experiments show that

some methods, such as the LR classifiers, FedAvg SGD and

FedAvg XGBRF, tend to exhibit performance degradation

when there are more silos with fewer samples per silo. We also

observe that methods implementing MLP as a local learner

tend not to exhibit performance degradation with respect to

sample concentration at silos. Such methods do not necessarily

achieve the best performance for any federation configurations;

however, in the most extreme federation configuration of 18 cli-

ents they are still outperformed by methods such as FedAvg

SGD and FedAvg LR. Methods whose performance is not

strongly affected by silo size may represent practical starting

points for the application of FL in an exploratory task. Ultimately,

because FL models appear to have an optimal operating point

modulated by the federation configuration, the final choice in

FL methods used to reach peak performance should be deter-

mined by an exhaustive search. This finding suggests that a

practical future format for applying FL in the biomedical setting

may be through the auto-ML paradigm, frameworks of which

such as H2O30 and Auto Sklearn31 are currently implemented

in the classical ML setting.

We additionally find in our studies that the implementation of

heterogeneous client sites, with respect to dataset size and label

counts, does not necessarily result in performance reductions

for all algorithms. Some models such as FedAvg LR, models im-

plementing MLP as a local learner tend to increase performance,

while models such FedAvg XGBRF and FedAvg SGD exhibit per-

formance degradation when the number of client sites is two

(Figure S1). We further find that when the number of clients is

four, such heterogeneity has varying effects on performance,

different from the configuration with two client sites. Overall, per-

formance changes with respect to client dataset heterogeneity

are marginal relative to changes introduced by factors such

number of clients per federation or algorithm selection.

When comparing training time among FL algorithms, we found

amild progression in training time between FedAvg LRClassifier,

FedProx m = 0.5 LRClassifier, and FedProx m = 2 LR classifiers,

respectively. The same trend can be observed for the FL
Patterns 5, 100945, March 8, 2024 7



Table 3. AUC-PR score of models trained using federated learning as the quantity of client sites increased, tested on the PPMI dataset

Number of clients

2 4 6 8 10 12 14 16 18

Algorithm name FedAvg LR 0.874 ± 0.042 0.876 ± 0.041 0.872 ± 0.053 0.858 ± 0.046 0.861 ± 0.048 0.859 ± 0.051 0.855 ± 0.044 0.851 ± 0.045 0.855 ± 0.05

FedAvg MLP 0.872 ± 0.072 0.876 ± 0.069 0.871 ± 0.074 0.877 ± 0.057 0.888 ± 0.061 0.879 ± 0.061 0.88 ± 0.059 0.867 ± 0.075 0.876 ± 0.06

FedAvg SGD 0.92 ± 0.025 0.898 ± 0.044 0.898 ± 0.049 0.891 ± 0.057 0.895 ± 0.056* 0.893 ± 0.057 0.893 ± 0.051* 0.88 ± 0.06* 0.886 ± 0.055*

FedAvg XGBRF 0.924 ± 0.015* 0.902 ± 0.051* 0.929 ± 0.02* 0.907 ± 0.02* 0.882 ± 0.036 0.901 ± 0.028* 0.878 ± 0.048 0.845 ± 0.05 0.861 ± 0.043

FedProx m = 0 LR 0.887 ± 0.041 0.885 ± 0.04 0.869 ± 0.048 0.866 ± 0.04 0.855 ± 0.048 0.854 ± 0.045 0.856 ± 0.054 0.853 ± 0.046 0.849 ± 0.047

FedProx m = 0 MLP 0.872 ± 0.061 0.876 ± 0.063 0.874 ± 0.058 0.884 ± 0.052 0.882 ± 0.061 0.888 ± 0.067 0.882 ± 0.061 0.874 ± 0.067 0.87 ± 0.071

FedProx m = 2 LR 0.906 ± 0.04 0.879 ± 0.042 0.891 ± 0.067 0.871 ± 0.05 0.857 ± 0.046 0.856 ± 0.047 0.856 ± 0.054 0.851 ± 0.05 0.858 ± 0.049

FedProx m = 2 MLP 0.868 ± 0.06 0.866 ± 0.072 0.876 ± 0.072 0.881 ± 0.066 0.881 ± 0.066 0.882 ± 0.059 0.884 ± 0.053 0.874 ± 0.064 0.877 ± 0.056

Data reported are mean and standard deviation across K = 6-fold cross-validation. Best performing algorithms for each metric are indicated by an asterisk.

Table 4. AUC-PR score of models trained using federated learning as the quantity of client sites increased, tested on the PDBP dataset

Number of clients

2 4 6 8 10 12 14 16 18

Algorithm name FedAvg LR 0.826 ± 0.011 0.811 ± 0.011 0.805 ± 0.01 0.8 ± 0.016 0.797 ± 0.017 0.799 ± 0.016 0.804 ± 0.018 0.799 ± 0.022 0.794 ± 0.021

FedAvg MLP 0.78 ± 0.012 0.801 ± 0.014 0.79 ± 0.013 0.791 ± 0.015 0.803 ± 0.008 0.782 ± 0.017 0.793 ± 0.006 0.778 ± 0.005 0.781 ± 0.009

FedAvg SGD 0.847 ± 0.008 0.823 ± 0.009 0.821 ± 0.009 0.822 ± 0.009 0.806 ± 0.016 0.81 ± 0.006 0.804 ± 0.013 0.805 ± 0.009* 0.798 ± 0.014

FedAvg XGBRF 0.876 ± 0.009* 0.858 ± 0.016* 0.856 ± 0.019* 0.834 ± 0.02* 0.824 ± 0.018* 0.821 ± 0.018* 0.807 ± 0.034* 0.775 ± 0.051 0.752 ± 0.054

FedProx m = 0 LR 0.823 ± 0.015 0.825 ± 0.005 0.807 ± 0.012 0.801 ± 0.016 0.797 ± 0.018 0.803 ± 0.018 0.793 ± 0.021 0.802 ± 0.019 0.8 ± 0.022*

FedProx m = 0 MLP 0.791 ± 0.006 0.803 ± 0.012 0.795 ± 0.014 0.789 ± 0.011 0.796 ± 0.011 0.794 ± 0.009 0.787 ± 0.007 0.79 ± 0.008 0.778 ± 0.011

FedProx m = 2 LR 0.835 ± 0.007 0.812 ± 0.007 0.809 ± 0.006 0.8 ± 0.013 0.796 ± 0.018 0.796 ± 0.018 0.793 ± 0.02 0.802 ± 0.019 0.789 ± 0.023

FedProx m = 2 MLP 0.785 ± 0.015 0.8 ± 0.012 0.788 ± 0.01 0.792 ± 0.01 0.797 ± 0.007 0.791 ± 0.01 0.793 ± 0.008 0.784 ± 0.009 0.791 ± 0.011

Data reported are mean and standard deviation across K = 6-fold cross-validation. Best performing algorithms for each metric are indicated by an asterisk.
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Figure 5. Data heterogeneity at client sites

does not deeply influence model perfor-

mance

The AUC-PR for a federation of two clients for several

split methods. Uniform stratified sampling represents

the most homogeneous data-distribution method,

while uniform random and linear random represent

increasingly heterogeneous client distributions. Pre-

sented data are mean score and standard deviation

resulting from cross-validation.
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algorithms using MLP as a local learner. The progressive in-

crease in runtime may be attributed to the relative difference in

complexity between the FedAvg and FedProx optimization

mechanism. The objective of FedProx weight aggregation func-

tion includes a regularization term, m, designed to handle hetero-

geneity among clients.19 The FedAvg optimization objective

does not include this mechanism, making it conceptually

simpler. In the context of this study, the performance differences

incurred by choice in aggregation method are minor relative to

parameters such as choice in local learner, number of federated

aggregation rounds, and dataset size.

When comparing the training time of central and federated

models, we find that the central model training time is at least

an order of magnitude lower than the federated training time.

This result is not surprising, given that federated models imple-

ment global weight aggregation and updating steps in model

training. Given that our study performs federated optimization

in simulation, production deployments of FL methods can be ex-

pected to have slower overall runtimes due to network latency

and operating system throughput capabilities.

Thealgorithmsused inevaluatingcollaboratively trainedmodels

using FL against centralized applications of their local learner

methods are detailed in Table S2. In our study, we omitted using

closed-source FL methods available through platform interfaces,

since these methods allow data governance capabilities to

external parties or vendor security evaluations, which in some

cases instantiate barriers to productive research. While numerous

publications explore methodological improvements that push for-

ward state-of-the-art FL model performance in an experimental

setting, we encountered challenges in applying such methods in

our case, as many of these academic studies do not result in

broadly applicable packages. In our research, we found a set of

open-source projects that implement FL methods and provide

out-of-the-box solutions or well-designed examples that could

be interpolated to themulti-omics classification task to be limited.

Ultimately, the FL interfaces made available by NVFlare32 and

Flower33wereselectedtoconductexperiments,with local learners

implemented using Sklearn22 and DMLC21 packages. Several

open-source projects, such as Owkin,34 Tensorflow Federated,35

and OpenFL,36 provide full interfaces for implementing deep-

learning models in TensorFlow35 and PyTorch,37 but such deep

methods are less suitable for tabular tasks on datasets with only

a handful of samples, as is the case for the multi-omics datasets

used in this study. Additionally, we found that while several pack-

ages provided abstract interfaces for implementing any arbitrary

set of local learners and aggregation strategies, without detailed
examples with a straightforward path to adaptation to a particular

research task, the practical application of suchmethods becomes

challenging and less approachable for groups which may be

resource constrained.

The extent to which federation site configurations could be

studied was largely limited by the number of case patients within

the dataset. Concretely, the implications of heterogeneity in site

data could only be observed to the extent that each silo would

maintain enough samples from case and control cohorts to allow

the local learner to successfully train. Datasets at silos needed to

have at least one sample from both the case and control groups.

Similarly, although the PPMI dataset was collected across

several geographically distributed institutions, point-of-origin in-

formation is not available for each sample, preventing the evalu-

ation of performance on naturally occurring silos. In our study, all

experiments assume that the collective dataset available among

all client sites has a constant size. An additional limitation of our

work is in observing the effect of adding federation members,

which contribute novel samples to the federation.

While FL methods enable data owners to maintain governance

of their local datasets, on its own FL does not provide end-to-

end privacy guarantees. Our study examines the utility of FL

methods in themulti-omics case study tounderstand the availabil-

ity and characteristics of FL and does not include a concrete eval-

uationofprivacyor securitymethods. Thus,weassume that theFL

aggregation server is neither dishonest, curious, nor malicious in

any way and fulfills its functions as an intermediary between client

sites benevolently. Privacy-preserving methods orthogonal to FL

such as differential privacy (DP) enable the application of FL with

formal guarantees of sample privacy.38 Such approaches were

not included in the scope of this evaluation but represent a factor

which shouldbeconsideredwhenapplyingFLmethods in settings

where verifiable sample-privacy guarantees are critical. In our

experimentation, we do not focus on the implications of the feder-

ation that has heterogeneous compute capabilities, since applying

ML model fitting on datasets with few samples can be done

without much difficulty.

The datasets utilized in our analysis, including PPMI and PDBP,

are sourced from the Accelerating Medicines Partnership Parkin-

son’s Disease (AMP-PD) initiative. This initiative plays a pivotal

role in unifying transcriptomic and genomic samples, ensuring

consistency and accuracy through central harmonization and

joint-calling processes. Furthermore, the construction of ML fea-

tures for our analysis is also centralized, leveraging these cohesive

datasets. Recognizing the potential for broader application, our

future focus includes exploring federated analysis tasks.39–41
Patterns 5, 100945, March 8, 2024 9



Figure 6. The mean runtime to train FL models using FedAvg and

FedProx strategies

The mean total runtime in seconds to train FL models. FL models are trained on

thePPMI training folds for fivecommunication rounds.Algorithmsaregroupedby

aggregation strategy. Results presented as mean and standard deviation over

K = 6 folds.

Table 5. Total runtime in seconds to train central and federated

models, averaged over K folds

Algorithm name Runtime (s)

Central Logistic regression 1.857e�02 ± 0.008

SGD classifier 6.771e�03 ± 0.001*

MLP classifier 1.609e�01 ± 0.009

XGBRF classifier 1.633e�01 ± 0.003

FedAvg FedAvg SGD classifier 1.513e+01 ± 1.497

FedAvg XGBRF classifier 1.061e+01 ± 0.014

FedAvg LR classifier 7.909e+00 ± 0.550*

FedAvg MLP classifier 8.755e+00 ± 0.141

FedProx FedProx m = 0.5 LR classifier 8.747e+00 ± 0.158*

FedProx m = 0.5 MLP classifier 9.039e+00 ± 0.266

FedProx m = 2 LR classifier 8.905e+00 ± 0.130

FedProx m = 2 MLP classifier 9.260e+00 ± 0.163

Algorithms are grouped by aggregation strategy (central, FedAvg,

FedProx). The lowest training time for each group is bolded. Best per-

forming algorithms for each metric are indicated by an asterisk.
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This involves enhancing cross-silo harmonization, joint-calling,

and feature construction across diverse datasets. To facilitate

this, the development of specialized FL libraries, specifically

tailored for genomics and transcriptomics, is crucial. Such ad-

vancements will not only democratize access to FL methods for

the wider biomedical community but also significantly broaden

the scope for applying ML techniques in various biomedical

contexts.

Overall,webelieve that thisworksheds lighton the feasibility and

noteworthy characteristics of applying FL for omics analysis.

Through our experiments, we find that collaboratively trained FL

models can achieve high classification accuracy in multi-omics

Parkinson’s disease diagnosis and can remain relatively perform-

ant despite heterogeneity among client sites. We also find in our

evaluation that although FL is a relatively novel research space in

bioinformatics, there is sufficient access to open-source methods

which biomedical researchers may leverage to enable productive

collaborations.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by the lead contact, Faraz Faghri (faraz@

datatecnica.com).

Materials availability

This study did not generate new unique materials.

Data and code availability

Data: the data used in this study was access-controlled from the PPMI (http://

www.ppmi-info.org/) and the PDBP (https://pdbp.ninds.nih.gov/).

Code: to facilitate replication and expansion of our work, we have made the

notebook publicly available in an open repository.42 It includes all code, fig-

ures, models, and supplements for this study. The code is part of the supple-

mental information; it includes the rendered Jupyter notebook with full step-

by-step data preprocessing, statistical, and ML analysis.

Any additional information required to reanalyze the data reported in this pa-

per is available from the lead contact upon request. All authors and the public
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can access all data and statistical programming code used in this project for

the analyses and results generation.

Datasets

Thedatasetused in thisstudyas thebasis for trainingandas the internal test set is

the PPMI dataset, which represents a longitudinal observational studywhere pa-

tients contribute clinical, demographic, imaging data, and biological samples for

whole-genome sequencing and whole-blood RNA sequencing. Samples are

collected at 33 clinical sites globally and across a time span of anywhere from

5 to13years.Thispreprocesseddatasetconsistsof171samplesofcasepatients

diagnosed with Parkinson’s disease and 427 healthy control patients. The PPMI

cohort contains newly diagnosed and drug-naive patient samples. The cohort

contains 209 (36%) female samples and 388 (67%) male samples (Table S4).

The dataset used in this study for external, out-of-distribution validation is

the PDBP, a longitudinal, observational study where patients contribute clin-

ical, demographic, and imaging data and biological samples for whole-

genome and whole-blood RNA sequencing. The preprocessed dataset

consists of 712 healthy control patients and 404 case patients diagnosed

with Parkinson’s disease. Each sample comprises 713 features, including ge-

netic, transcriptomic, and clinico-demographic information collected at the

baseline. The PDBP cohort consists of 480 (43%) female samples and 636

(57%) male samples (Table S5).

Both PPMI and PDBP data used in this study were acquired through the

AMP-PD initiative,43 an effort to provide harmonized datasets that include

common clinical and genomic data. Through this initiative, the PPMI and

PDBP datasets are centrally joint-called and harmonized to allow standardiza-

tion across cohorts.

Transcriptomic data from whole-blood RNA sequencing was generated by

the Translational Genomics Research Institute team using standard protocols

for the Illumina NovaSeq technology and processed through variance-stabili-

zation and limma pipelines44 for experimental covariates. Gene expression

counts for protein-coding genes were extracted, then differential expression

p values were calculated between cases and controls using LR adjusted for

additional covariates of sex, plate, age, ten principal components, and per-

centage usable bases. A comprehensive description of the RNA-sequencing

method is presented in Hutchins et al.45 for PPMI and Gwinn et al.46 for PDBP.

For genetic data, sequencing data were generated using Illumina’s standard

short-read technology, and the functional equivalence pipeline during align-

ment was the Broad Institute’s implementation.47 Applied quality control mea-

sures included criteria such as gender concordance and call rate, with a focus

on SNPsmeeting the GATK gold-standards pipeline and additional filters such

as non-palindromic alleles andmissingness by case-control status thresholds.

Polygenic risk scores (PRSs) were constructed using effect sizes from a large

European genome-wide meta-analysis, supplementing the genetic data from

mailto:faraz@datatecnica.com
mailto:faraz@datatecnica.com
http://www.ppmi-info.org/
http://www.ppmi-info.org/
https://pdbp.ninds.nih.gov/
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whole-genome sequences. The process from sample preparation to variant

calling is comprehensively described in Iwaki et al.43

Quality control for genetic samples based on genetic data output by the

pipeline included the following inclusion criteria: concordance between ge-

netic and clinically ascertained genders, call rate >95% at both the sample

and variant levels, heterozygosity rate <15%, free mix estimated contamina-

tion rate <3%, transition/transversion ratio >2, unrelated to any other sample

at a level of the first cousin or closer (identity by descent <12.5%), and genet-

ically ascertained European ancestry. For inclusion of whole-genome DNA-

sequencing data, the variants must have passed basic quality control as

part of the initial sequencing effort (PASS flag from the joint genotyping pipe-

line) as well as meeting the following criteria: non-palindromic alleles, missing-

ness by case-control status p > 1e�4, missingness by haplotype p > 1e�4,

Hardy-Weinberg p value >1e�4, minor allele frequency in cases >5% (in the

latest Parkinson’s disease meta-genome-wide association study (meta-

GWAS) by Nalls et al.48). As an a priori genetic feature to be included in our

modeling efforts, we also used the basic polygenic risk score from the latest

Parkinson’s disease meta-GWAS (genome-wide significant loci only) that did

not include our testing or training samples as weights.48

Compared to the PPMI dataset, PDBP includes an additional 40 genetic fea-

tures, which are excluded from this study, allowing PPMI and PDBP to have

the same feature set. Additionally, the PPMI samples are collected before

any medical intervention, whereas the PDBP samples are, in some cases,

collected after patient treatment has commenced. Since the PDBP dataset

may include artifacts that result from disease treatment, the PDBP dataset is

used exclusively for evaluation to avoid the possibility of label leakage. A short-

ened version of the final feature set is provided in Table S1. A comprehensive

feature list is available in the external code repository.42

Each sample consists of 673 features, including genetic, transcriptomic, and

clinico-demographic information collected at the baseline. Of the 673 features,

72 originate from genome-sequencing data and PRS, 596 are transcriptomic,

and 5 are clinico-demographic. The clinico-demographic features include age,

family history, inferred Ashkenazi Jewish status, sex, and University of Penn-

sylvania Smell Identification (UPSIT) score.

Data preprocessing

The construction of features from genomic, transcriptomic, and clinico-demo-

graphic data is handled for each cohort independently, and in a centralized

manner, for the entirety of the cohort. As part of the initial data preprocessing,

principal components summarizing genetic variation in DNA- and RNA-

sequencing data modalities are generated separately. For the DNA sequencing,

ten principal components were calculated based on a random set of 10,000 var-

iants sampled after linkage disequilibrium (LD) pruning that kept only variants

with r2 < 0.1 with any other variants in ±1 MB. As a note, these variants were

not p valuefiltered based on recent GWAS, but they do exclude regions contain-

ing large tracts of LD.49 Our genetic data pruning removed SNPs in long tracts of

high LD such as in the HLA region (we excluded any SNPswithin r2 > 0.1 within a

sliding window of 1 MB) while retaining known genetic risk SNPs within the re-

gion. For RNA-sequencing data, all protein-coding genes’ read counts per sam-

plewere used to generate a second set of ten principal components. All potential

features representing genetic variants (in the form of minor allele dosages) from

sequencingwere thenadjusted for theDNA-sequence-derivedprincipal compo-

nents using linear regression, extracting the residual variation. This adjustment

removes the effects of quantifiable European population substructure from the

genetic features prior to training; this is similar in theory to adjusting analyses

for the same principal components in the common variant regression paradigm

employed by GWASmodels. The same was done for RNA-sequencing data us-

ing RNA-sequencing-derived principal components. This way, we statistically

account for latent population substructure and experimental covariates at the

feature level to increase generalizability across heterogeneous datasets. In its

simplest terms, all transcriptomic data were corrected for possible confounders,

and the same is done for genotype dosages. After adjustment, all continuous

features were then Z-transformed to have a mean of 0 and a standard deviation

of 1 to keep all features on the same numeric scale when possible. Once feature

adjustment and normalizationwere complete, internal feature selection was car-

ried out in the PPMI training dataset using decision trees (extraTrees classifier) to

identify features contributing information content to themodelwhile reducing the

potential for overfitting prior to model generation.22,50 Overfitting here is defined
as the overperformance of a model in the training phase with minimal generaliz-

ability in the validation dataset due to the inclusion of potentially correlated or un-

important features. The implementation of decision trees for feature selection

helps remove redundant and low-impact features, helping us to generate the

most parsimonious feature set for modeling. Feature selection was run on com-

bined data modalities to remove potentially redundant feature contributions that

could artificially inflatemodel accuracy. Export estimates for featuresmost likely

to contribute to the final model in order of importance were generated by the ex-

traTrees classifier for each of the combinedmodels and are available on the on-

line repository. By removing redundant features, the potential for overfitting is

limitedwhile alsomaking themodels more conservative. Additionally, if a variant

provided redundant model information, such as being in strong linkage with a

PRS variant, it would be removed from the potential feature list.

Feature selectionwas performedusing the extremely randomized trees classi-

fier algorithm, extraTrees,50 on combined data modalities to remove redundant

feature contributions that couldoverfit themodel tooptimize the informationcon-

tent from the features and limit artificial inflation in predictive accuracy thatmight

be introduced by including such a large number of features before filtering. In

many cases, including more data might not be better for performance. With

this in mind, we attempted to build the most parsimoniousmodel possible using

systematic feature selection criteria.51 Among the top 5% of features ranked in

the Shapley analysis, the mean correlation between features was r2 < 5%, with

a maximum of 36%. By removing redundant features using correlation-based

pruning and an extraTrees classifier as a data-munging step, the potential for

overfitting is limited while also making the models more conservative.

Clinical and demographic data ascertained as part of this project included

age at diagnosis for cases and age at baseline visit for controls. Family history

(self-reporting if a first or second-degree relative has a diagnosis of Parkinson’s

disease) was also a known clinico-demographic feature of interest. Ashkenazi

Jewish status was inferred using principal component analysis comparing

those samples to a genetic reference series, referencing the genotyping array

data fromGSE23636 at theGene ExpressionOmnibus as previously described

elsewhere.43,52 Sex was clinically ascertained but also confirmed using X chro-

mosome heterozygosity rates. The UPSIT was used in modeling.53 A compre-

hensive description of data and preprocessing is described inMakarious et al.6

Quantification and statistical analysis

WeconductedK-fold cross-validationon thePPMIdataset,whereK=6,allowing

each fold to contain approximately 100 samples. For each cross-validation fold,

1/Kof thePPMIsamplesarewithheldasaholdout test set. The remaining training

split ofK� 1/K samples are further split using uniform stratified randomsampling

at an 80:20 ratio into training and validation subsets. The evaluation setwas used

for cross-validated hyperparameter tuning in the central and federated models.

The PPMI dataset was selected as the training and internal test set due to the

fact that patient samples recorded in the PPMI protocol are newly diagnosed

and drug naive. Additionally, by training on the PPMI dataset, themodel is devel-

oped on patients earlier on in their disease course. This intentional choice was

made in the hope that the model would identify other individuals early on in their

disease course and prioritize them for follow-up. The PDBP cohort samples are

collectedwithin5 years after diagnosis, and thesepatientsmaybeactively taking

medications. While the PDBP cohort is larger, because samples are collected

several years after diagnosis and because patients may be actively taking medi-

cation, there isapossibility of label leakage,ultimatelymotivating theusageof the

PPMI dataset for training. Due to the similar nature of the PPMI and PDBP data-

sets, after processing, the PDBP dataset can be used as an external test set,

approximating out-of-distribution model performance.

To conduct federated model training, the fully preprocessed PPMI dataset is

split into disjoint client subsets, using one of the split strategies, and assigned to

a local learner. To train a global model using the data among all federation par-

ticipants, an iterative optimization process is run for a predefined set of rounds

(Figure 2). During this process, federation members fit local learner models to

their locally available datasets. The parameters resulting from local model fitting

are then sent to the central aggregation server. Once all model parameters are

received, the aggregation server applies a FL strategy to the set of model

weights, resulting in aggregatedmodel weights, referred to as the global model.

The global model is then sent back to the client sites and used as the starting

point for local learner optimization in subsequent iterations. The best-performing

global model on the evaluation set is used for final testing.
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Wesimulate two typesofheterogeneity inour experimentsbydistributing sam-

ples from the trainingdataset using different split methods. Split-method uniform

stratified sampling implements label and site-size homogeneity. Split-method

uniform random sampling implements label heterogeneity but site-size homoge-

neity. Split-method linear random sampling implements label- and site-size het-

erogeneity (Figure 3).

Local clientdatasetswere formedbyapplyingsuchsampling techniques to the

centralized training dataset. Uniform stratified sampling was used to form the K

folds and during experiments that study homogeneous federations. Uniform

stratified sampling entails sampling the source dataset such that there is a nearly

evendistribution of samplesamongeachof the n clients, and the ratio of cases to

controls across each client subset is equivalent (where surplus samples are as-

signed tooneof theclientsitesat random).Thismethodwas implementedbypar-

titioning thesourcedataset byphenotypeand then,without replacement,assign-

ing 1/N samples of eachphenotype partition to each client using uniform random

sampling, with the last client receiving any extra samples. In practice, this addi-

tional data was fewer than ten of the samples. Uniform random sampling entails

assigning 1/N using uniform random sampling. Linear random sampling entails

assigning ci samples to a client site, where the following is true:

XN

i = 1

i � ci = C:

In the above formula, C is the number of samples to distribute, in practice the

size of the PPMI training set, and i is the index of the client site. Aswith previous

methods, the final client receives any surplus samples left over. The effect of

this linear random sampling strategy is that each of the n clients contains an

increasing number of samples relative to the previous clients, and each client

site contains a random distribution of cases versus controls.

To measure algorithm runtime, for central algorithms we measured the quan-

tity of seconds frommodel initialization to model training completion. For feder-

ated algorithms, we measured the quantity of seconds from model initialization

to the end of the FL training simulation. For FL models, model optimization was

conducted for a federation of n = 2 federation clients for five aggregation rounds.

In our simulation configurations, federation rounds operate synchronously

and without failure. Hyperparameters that were used to compute the final re-

sults are reported in the supplemental information, including the random seed

used for the presented results.

The federated ML methods implemented in the study utilize the federated

aggregationmethods FedAvg,18 FedProx,19 and the local learner classification

methods LR,17 Multi-Layer Perceptron,20 Stochastic Gradient Descent,23 and

XGBoost21 available through Sklearn22 and DMLC.21,22 The aggregation

methods are implemented using NVFlare32 and Flower,33 while local learner

methods are implemented using Sklearn and DMLC APIs. Configuration de-

tails are available in the supplemental information. Simulation frameworks

used to implementmodel experiments are made available through the NVFlare

and Flower packages. A single client site exhibits a minor computational cost

of a single GB CPU and a single logical processor, which must be available

throughout the life of the simulation. The simulations for both NVFlare and

Flower required 18 GB of RAM and 18 logical cores. A simulation to train a sin-

gle FL model takes less than 1 min to complete. Running the full suite of sim-

ulations to reproduce the paper figures takes 6–8 h. All experiments were con-

ducted on Redhat Enterprise Linux Distribution.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2024.100945.
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