Skip to main content
. 2024 Mar 1;5(3):100945. doi: 10.1016/j.patter.2024.100945

Table 1.

Performance of several models trained using classical machine learning methods and federated learning methods, where the number of participating clients in the federation is n = 2, tested on the PPMI dataset

Algorithm name ROC-AUC AUC-PR Balanced accuracy Precision Recall F 0.5 F 1 F 2 Log loss Matthews correlation coefficient
AdaBoost classifier 0.865 ± 0.033 0.939 ± 0.01 0.736 ± 0.069 0.844 ± 0.043 0.89 ± 0.047 0.897 ± 0.017 0.885 ± 0.027 0.942 ± 0.013 0.632 ± 0.007 0.499 ± 0.122
Bagging classifier 0.82 ± 0.05 0.916 ± 0.025 0.69 ± 0.052 0.813 ± 0.027 0.897 ± 0.061 0.865 ± 0.021 0.862 ± 0.024 0.933 ± 0.01 1.001 ± 0.382 0.428 ± 0.123
GradientBoosting classifier 0.879 ± 0.046 0.943 ± 0.026 0.723 ± 0.072 0.833 ± 0.042 0.911 ± 0.021 0.916 ± 0.03∗ 0.894 ± 0.022 0.942 ± 0.015∗ 0.444 ± 0.099 0.486 ± 0.119
KNeighbors classifier 0.61 ± 0.099 0.806 ± 0.065 0.533 ± 0.029 0.729 ± 0.014 0.937 ± 0.046 0.782 ± 0.023 0.837 ± 0.007 0.927 ± 0.004 2.836 ± 0.617 0.111 ± 0.104
LinearDiscriminantAnalysis classifier 0.763 ± 0.045 0.883 ± 0.031 0.681 ± 0.053 0.826 ± 0.04 0.77 ± 0.05 0.7 ± 0.344 0.714 ± 0.35 0.776 ± 0.38 1.608 ± 0.488 0.347 ± 0.095
LogisticRegression classifier 0.831 ± 0.068 0.915 ± 0.039 0.734 ± 0.072 0.841 ± 0.043 0.894 ± 0.028 0.872 ± 0.047 0.883 ± 0.033 0.939 ± 0.011 0.648 ± 0.203 0.493 ± 0.134
MLP classifier 0.739 ± 0.078 0.892 ± 0.032 0.703 ± 0.059 0.833 ± 0.038 0.815 ± 0.054 0.843 ± 0.038 0.858 ± 0.034 0.932 ± 0.013 6.616 ± 1.844 0.402 ± 0.119
QuadraticDiscriminantAnalysis classifier 0.504 ± 0.057 0.774 ± 0.029 0.504 ± 0.057 0.725 ± 0.055 0.385 ± 0.081 0.757 ± 0.008 0.833 ± 0.006 0.926 ± 0.003 19.674 ± 1.492 0.009 ± 0.105
RandomForest 0.816 ± 0.076 0.917 ± 0.027 0.552 ± 0.034 0.736 ± 0.016 0.993 ± 0.017∗ 0.857 ± 0.043 0.874 ± 0.032 0.942 ± 0.014 0.508 ± 0.029 0.249 ± 0.121
SGD classifier 0.755 ± 0.065 0.907 ± 0.025 0.735 ± 0.062 0.846 ± 0.032 0.857 ± 0.068 0.857 ± 0.037 0.876 ± 0.036 0.936 ± 0.015 7.525 ± 2.282 0.481 ± 0.143
SVC classifier 0.838 ± 0.069 0.924 ± 0.032 0.711 ± 0.071 0.827 ± 0.041 0.883 ± 0.042 0.872 ± 0.042 0.886 ± 0.024 0.941 ± 0.008 0.44 ± 0.082∗ 0.447 ± 0.145
XGBoost classifier 0.89 ± 0.046∗ 0.953 ± 0.018∗ 0.765 ± 0.097 0.86 ± 0.062 0.911 ± 0.03 0.915 ± 0.03 0.900 ± 0.033∗ 0.942 ± 0.014 0.461 ± 0.135 0.557 ± 0.167
XGBoost random forest classifier 0.857 ± 0.064 0.936 ± 0.029 0.773 ± 0.057∗ 0.868 ± 0.04∗ 0.885 ± 0.047 0.907 ± 0.039 0.891 ± 0.041 0.936 ± 0.011 1.79 ± 0.853 0.558 ± 0.105∗
FedAvg LR 0.69 ± 0.16 0.874 ± 0.042 0.617 ± 0.109 0.772 ± 0.054 0.955 ± 0.037∗ 0.818 ± 0.054 0.863 ± 0.026 0.935 ± 0.008 0.655 ± 0.14 0.278 ± 0.25
FedAvg MLP 0.76 ± 0.102 0.872 ± 0.072 0.671 ± 0.087 0.817 ± 0.051 0.768 ± 0.089 0.708 ± 0.35 0.728 ± 0.358 0.779 ± 0.382 0.767 ± 0.308 0.334 ± 0.179
FedAvg SGD 0.828 ± 0.048 0.92 ± 0.025 0.757 ± 0.048∗ 0.904 ± 0.049∗ 0.707 ± 0.033 0.871 ± 0.032 0.872 ± 0.018 0.939 ± 0.008 0.545 ± 0.032∗ 0.47 ± 0.084
FedAvg XGBRF 0.829 ± 0.023∗ 0.924 ± 0.015∗ 0.739 ± 0.058 0.848 ± 0.043 0.883 ± 0.036 0.886 ± 0.02∗ 0.875 ± 0.012 0.929 ± 0.005 0.691 ± 0.0 0.497 ± 0.089∗
FedProx μ = 0.5 LR 0.755 ± 0.142 0.887 ± 0.041 0.653 ± 0.088 0.791 ± 0.042 0.941 ± 0.031 0.704 ± 0.349 0.729 ± 0.358 0.784 ± 0.384 0.609 ± 0.155 0.362 ± 0.198
FedProx μ = 0.5 MLP 0.757 ± 0.096 0.872 ± 0.061 0.695 ± 0.088 0.829 ± 0.048 0.808 ± 0.075 0.843 ± 0.042 0.868 ± 0.028 0.937 ± 0.004 0.976 ± 0.314 0.387 ± 0.182
FedProx μ = 2 LR 0.812 ± 0.079 0.906 ± 0.04 0.658 ± 0.028 0.79 ± 0.014 0.937 ± 0.025 0.866 ± 0.045 0.879 ± 0.025∗ 0.941 ± 0.006∗ 0.582 ± 0.137 0.398 ± 0.069
FedProx μ = 2 MLP 0.765 ± 0.079 0.868 ± 0.06 0.694 ± 0.069 0.83 ± 0.042 0.798 ± 0.045 0.706 ± 0.348 0.724 ± 0.355 0.781 ± 0.382 0.9 ± 0.368 0.379 ± 0.133

Data reported are mean and standard deviation across K = 6-fold cross-validation. Best performing algorithms for each metric are indicated by an asterisk.