Table 1.
Algorithm name | ROC-AUC | AUC-PR | Balanced accuracy | Precision | Recall | F 0.5 | F 1 | F 2 | Log loss | Matthews correlation coefficient |
---|---|---|---|---|---|---|---|---|---|---|
AdaBoost classifier | 0.865 ± 0.033 | 0.939 ± 0.01 | 0.736 ± 0.069 | 0.844 ± 0.043 | 0.89 ± 0.047 | 0.897 ± 0.017 | 0.885 ± 0.027 | 0.942 ± 0.013 | 0.632 ± 0.007 | 0.499 ± 0.122 |
Bagging classifier | 0.82 ± 0.05 | 0.916 ± 0.025 | 0.69 ± 0.052 | 0.813 ± 0.027 | 0.897 ± 0.061 | 0.865 ± 0.021 | 0.862 ± 0.024 | 0.933 ± 0.01 | 1.001 ± 0.382 | 0.428 ± 0.123 |
GradientBoosting classifier | 0.879 ± 0.046 | 0.943 ± 0.026 | 0.723 ± 0.072 | 0.833 ± 0.042 | 0.911 ± 0.021 | 0.916 ± 0.03∗ | 0.894 ± 0.022 | 0.942 ± 0.015∗ | 0.444 ± 0.099 | 0.486 ± 0.119 |
KNeighbors classifier | 0.61 ± 0.099 | 0.806 ± 0.065 | 0.533 ± 0.029 | 0.729 ± 0.014 | 0.937 ± 0.046 | 0.782 ± 0.023 | 0.837 ± 0.007 | 0.927 ± 0.004 | 2.836 ± 0.617 | 0.111 ± 0.104 |
LinearDiscriminantAnalysis classifier | 0.763 ± 0.045 | 0.883 ± 0.031 | 0.681 ± 0.053 | 0.826 ± 0.04 | 0.77 ± 0.05 | 0.7 ± 0.344 | 0.714 ± 0.35 | 0.776 ± 0.38 | 1.608 ± 0.488 | 0.347 ± 0.095 |
LogisticRegression classifier | 0.831 ± 0.068 | 0.915 ± 0.039 | 0.734 ± 0.072 | 0.841 ± 0.043 | 0.894 ± 0.028 | 0.872 ± 0.047 | 0.883 ± 0.033 | 0.939 ± 0.011 | 0.648 ± 0.203 | 0.493 ± 0.134 |
MLP classifier | 0.739 ± 0.078 | 0.892 ± 0.032 | 0.703 ± 0.059 | 0.833 ± 0.038 | 0.815 ± 0.054 | 0.843 ± 0.038 | 0.858 ± 0.034 | 0.932 ± 0.013 | 6.616 ± 1.844 | 0.402 ± 0.119 |
QuadraticDiscriminantAnalysis classifier | 0.504 ± 0.057 | 0.774 ± 0.029 | 0.504 ± 0.057 | 0.725 ± 0.055 | 0.385 ± 0.081 | 0.757 ± 0.008 | 0.833 ± 0.006 | 0.926 ± 0.003 | 19.674 ± 1.492 | 0.009 ± 0.105 |
RandomForest | 0.816 ± 0.076 | 0.917 ± 0.027 | 0.552 ± 0.034 | 0.736 ± 0.016 | 0.993 ± 0.017∗ | 0.857 ± 0.043 | 0.874 ± 0.032 | 0.942 ± 0.014 | 0.508 ± 0.029 | 0.249 ± 0.121 |
SGD classifier | 0.755 ± 0.065 | 0.907 ± 0.025 | 0.735 ± 0.062 | 0.846 ± 0.032 | 0.857 ± 0.068 | 0.857 ± 0.037 | 0.876 ± 0.036 | 0.936 ± 0.015 | 7.525 ± 2.282 | 0.481 ± 0.143 |
SVC classifier | 0.838 ± 0.069 | 0.924 ± 0.032 | 0.711 ± 0.071 | 0.827 ± 0.041 | 0.883 ± 0.042 | 0.872 ± 0.042 | 0.886 ± 0.024 | 0.941 ± 0.008 | 0.44 ± 0.082∗ | 0.447 ± 0.145 |
XGBoost classifier | 0.89 ± 0.046∗ | 0.953 ± 0.018∗ | 0.765 ± 0.097 | 0.86 ± 0.062 | 0.911 ± 0.03 | 0.915 ± 0.03 | 0.900 ± 0.033∗ | 0.942 ± 0.014 | 0.461 ± 0.135 | 0.557 ± 0.167 |
XGBoost random forest classifier | 0.857 ± 0.064 | 0.936 ± 0.029 | 0.773 ± 0.057∗ | 0.868 ± 0.04∗ | 0.885 ± 0.047 | 0.907 ± 0.039 | 0.891 ± 0.041 | 0.936 ± 0.011 | 1.79 ± 0.853 | 0.558 ± 0.105∗ |
FedAvg LR | 0.69 ± 0.16 | 0.874 ± 0.042 | 0.617 ± 0.109 | 0.772 ± 0.054 | 0.955 ± 0.037∗ | 0.818 ± 0.054 | 0.863 ± 0.026 | 0.935 ± 0.008 | 0.655 ± 0.14 | 0.278 ± 0.25 |
FedAvg MLP | 0.76 ± 0.102 | 0.872 ± 0.072 | 0.671 ± 0.087 | 0.817 ± 0.051 | 0.768 ± 0.089 | 0.708 ± 0.35 | 0.728 ± 0.358 | 0.779 ± 0.382 | 0.767 ± 0.308 | 0.334 ± 0.179 |
FedAvg SGD | 0.828 ± 0.048 | 0.92 ± 0.025 | 0.757 ± 0.048∗ | 0.904 ± 0.049∗ | 0.707 ± 0.033 | 0.871 ± 0.032 | 0.872 ± 0.018 | 0.939 ± 0.008 | 0.545 ± 0.032∗ | 0.47 ± 0.084 |
FedAvg XGBRF | 0.829 ± 0.023∗ | 0.924 ± 0.015∗ | 0.739 ± 0.058 | 0.848 ± 0.043 | 0.883 ± 0.036 | 0.886 ± 0.02∗ | 0.875 ± 0.012 | 0.929 ± 0.005 | 0.691 ± 0.0 | 0.497 ± 0.089∗ |
FedProx μ = 0.5 LR | 0.755 ± 0.142 | 0.887 ± 0.041 | 0.653 ± 0.088 | 0.791 ± 0.042 | 0.941 ± 0.031 | 0.704 ± 0.349 | 0.729 ± 0.358 | 0.784 ± 0.384 | 0.609 ± 0.155 | 0.362 ± 0.198 |
FedProx μ = 0.5 MLP | 0.757 ± 0.096 | 0.872 ± 0.061 | 0.695 ± 0.088 | 0.829 ± 0.048 | 0.808 ± 0.075 | 0.843 ± 0.042 | 0.868 ± 0.028 | 0.937 ± 0.004 | 0.976 ± 0.314 | 0.387 ± 0.182 |
FedProx μ = 2 LR | 0.812 ± 0.079 | 0.906 ± 0.04 | 0.658 ± 0.028 | 0.79 ± 0.014 | 0.937 ± 0.025 | 0.866 ± 0.045 | 0.879 ± 0.025∗ | 0.941 ± 0.006∗ | 0.582 ± 0.137 | 0.398 ± 0.069 |
FedProx μ = 2 MLP | 0.765 ± 0.079 | 0.868 ± 0.06 | 0.694 ± 0.069 | 0.83 ± 0.042 | 0.798 ± 0.045 | 0.706 ± 0.348 | 0.724 ± 0.355 | 0.781 ± 0.382 | 0.9 ± 0.368 | 0.379 ± 0.133 |
Data reported are mean and standard deviation across K = 6-fold cross-validation. Best performing algorithms for each metric are indicated by an asterisk.