Table 2.
Algorithm name | ROC-AUC | AUC-PR | Balanced accuracy | Precision | Recall | F 0.5 | F 1 | F 2 | Log loss | Matthews correlation coefficient |
---|---|---|---|---|---|---|---|---|---|---|
AdaBoost classifier | 0.834 ± 0.021 | 0.891 ± 0.015 | 0.697 ± 0.026 | 0.757 ± 0.023 | 0.917 ± 0.033 | 0.835 ± 0.016 | 0.834 ± 0.009 | 0.905 ± 0.004 | 0.639 ± 0.005 | 0.456 ± 0.029 |
Bagging | 0.812 ± 0.01 | 0.871 ± 0.01 | 0.696 ± 0.019 | 0.753 ± 0.015 | 0.932 ± 0.015 | 0.828 ± 0.007 | 0.84 ± 0.004 | 0.903 ± 0.003 | 1.291 ± 0.226 | 0.463 ± 0.027 |
GradientBoosting classifier | 0.856 ± 0.013 | 0.9 ± 0.016 | 0.716 ± 0.018 | 0.766 ± 0.014 | 0.938 ± 0.013 | 0.856 ± 0.007 | 0.857 ± 0.003∗ | 0.908 ± 0.003∗ | 0.572 ± 0.042∗ | 0.502 ± 0.024 |
KNeighbors classifier | 0.586 ± 0.024 | 0.735 ± 0.019 | 0.551 ± 0.019 | 0.664 ± 0.011 | 0.946 ± 0.024 | 0.707 ± 0.008 | 0.783 ± 0.001 | 0.899 ± 0.0 | 3.322 ± 0.641 | 0.169 ± 0.042 |
LinearDiscriminantAnalysis classifier | 0.702 ± 0.012 | 0.794 ± 0.008 | 0.64 ± 0.013 | 0.734 ± 0.01 | 0.776 ± 0.01 | 0.622 ± 0.305 | 0.661 ± 0.324 | 0.751 ± 0.368 | 2.104 ± 0.19 | 0.288 ± 0.024 |
LogisticRegression classifier | 0.771 ± 0.011 | 0.842 ± 0.009 | 0.657 ± 0.008 | 0.73 ± 0.005 | 0.901 ± 0.01 | 0.791 ± 0.004 | 0.81 ± 0.005 | 0.901 ± 0.001 | 0.996 ± 0.039 | 0.368 ± 0.02 |
MLP classifier | 0.671 ± 0.013 | 0.826 ± 0.007 | 0.619 ± 0.012 | 0.711 ± 0.008 | 0.839 ± 0.01 | 0.749 ± 0.009 | 0.789 ± 0.007 | 0.899 ± 0.001 | 8.313 ± 0.708 | 0.265 ± 0.026 |
QuadraticDiscriminantAnalysis classifier | 0.525 ± 0.022 | 0.721 ± 0.022 | 0.525 ± 0.022 | 0.671 ± 0.024 | 0.366 ± 0.097 | 0.688 ± 0.0 | 0.779 ± 0.0 | 0.898 ± 0.0 | 18.716 ± 1.33 | 0.05 ± 0.042 |
RandomForest | 0.736 ± 0.006 | 0.825 ± 0.005 | 0.524 ± 0.005 | 0.649 ± 0.003 | 0.985 ± 0.005∗ | 0.764 ± 0.007 | 0.792 ± 0.005 | 0.899 ± 0.0 | 0.596 ± 0.004 | 0.132 ± 0.025 |
SGD classifier | 0.662 ± 0.017 | 0.845 ± 0.007 | 0.65 ± 0.016 | 0.728 ± 0.011 | 0.878 ± 0.024 | 0.758 ± 0.01 | 0.803 ± 0.007 | 0.898 ± 0.0 | 10.11 ± 0.525 | 0.343 ± 0.034 |
SVC classifier | 0.701 ± 0.007 | 0.808 ± 0.004 | 0.593 ± 0.011 | 0.693 ± 0.006 | 0.844 ± 0.02 | 0.742 ± 0.004 | 0.793 ± 0.002 | 0.901 ± 0.001 | 0.65 ± 0.019 | 0.214 ± 0.029 |
XGBoost classifier | 0.862 ± 0.008∗ | 0.905 ± 0.007∗ | 0.719 ± 0.021 | 0.77 ± 0.016 | 0.932 ± 0.013 | 0.864 ± 0.006∗ | 0.857 ± 0.003∗ | 0.906 ± 0.003 | 0.691 ± 0.031 | 0.504 ± 0.03 |
XGBoost Random Forest classifier | 0.829 ± 0.007 | 0.89 ± 0.006 | 0.732 ± 0.02∗ | 0.781 ± 0.016∗ | 0.918 ± 0.01 | 0.849 ± 0.003 | 0.855 ± 0.002 | 0.905 ± 0.003 | 2.715 ± 0.254 | 0.515 ± 0.031∗ |
FedAvg LR | 0.665 ± 0.128 | 0.826 ± 0.011 | 0.565 ± 0.052 | 0.673 ± 0.028 | 0.96 ± 0.032∗ | 0.745 ± 0.045 | 0.794 ± 0.012 | 0.899 ± 0.002 | 0.829 ± 0.108 | 0.187 ± 0.147 |
FedAvg MLP | 0.69 ± 0.018 | 0.78 ± 0.012 | 0.629 ± 0.01 | 0.719 ± 0.007 | 0.828 ± 0.022 | 0.744 ± 0.008 | 0.791 ± 0.007 | 0.899 ± 0.001 | 1.038 ± 0.239 | 0.282 ± 0.024 |
FedAvg SGD | 0.775 ± 0.011 | 0.847 ± 0.008 | 0.689 ± 0.011 | 0.77 ± 0.008∗ | 0.8 ± 0.01 | 0.794 ± 0.005 | 0.809 ± 0.004 | 0.902 ± 0.002 | 0.559 ± 0.013∗ | 0.385 ± 0.023 |
FedAvg XGBRF | 0.794 ± 0.007∗ | 0.876 ± 0.009∗ | 0.695 ± 0.023∗ | 0.754 ± 0.017 | 0.919 ± 0.012 | 0.825 ± 0.007∗ | 0.838 ± 0.008∗ | 0.902 ± 0.003∗ | 0.691 ± 0.0 | 0.451 ± 0.035∗ |
FedProx μ = 0.5 LR | 0.704 ± 0.101 | 0.823 ± 0.015 | 0.584 ± 0.042 | 0.683 ± 0.022 | 0.943 ± 0.03 | 0.762 ± 0.038 | 0.795 ± 0.009 | 0.9 ± 0.002 | 0.866 ± 0.092 | 0.232 ± 0.115 |
FedProx μ = 0.5 MLP | 0.7 ± 0.008 | 0.791 ± 0.006 | 0.63 ± 0.011 | 0.719 ± 0.007 | 0.833 ± 0.016 | 0.748 ± 0.007 | 0.794 ± 0.004 | 0.899 ± 0.001 | 1.312 ± 0.124 | 0.284 ± 0.023 |
FedProx μ = 2 LR | 0.761 ± 0.008 | 0.835 ± 0.007 | 0.601 ± 0.005 | 0.691 ± 0.003 | 0.947 ± 0.013 | 0.787 ± 0.008 | 0.804 ± 0.003 | 0.9 ± 0.001 | 0.875 ± 0.014 | 0.293 ± 0.01 |
FedProx μ = 2 MLP | 0.695 ± 0.022 | 0.785 ± 0.015 | 0.631 ± 0.02 | 0.722 ± 0.013 | 0.818 ± 0.02 | 0.747 ± 0.014 | 0.791 ± 0.005 | 0.899 ± 0.001 | 1.231 ± 0.285 | 0.282 ± 0.044 |
Data reported are mean and standard deviation across K = 6-fold cross-validation. Best performing algorithms for each metric are indicated by an asterisk.