Table 3.
Number of clients |
||||||||||
---|---|---|---|---|---|---|---|---|---|---|
2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | ||
Algorithm name | FedAvg LR | 0.874 ± 0.042 | 0.876 ± 0.041 | 0.872 ± 0.053 | 0.858 ± 0.046 | 0.861 ± 0.048 | 0.859 ± 0.051 | 0.855 ± 0.044 | 0.851 ± 0.045 | 0.855 ± 0.05 |
FedAvg MLP | 0.872 ± 0.072 | 0.876 ± 0.069 | 0.871 ± 0.074 | 0.877 ± 0.057 | 0.888 ± 0.061 | 0.879 ± 0.061 | 0.88 ± 0.059 | 0.867 ± 0.075 | 0.876 ± 0.06 | |
FedAvg SGD | 0.92 ± 0.025 | 0.898 ± 0.044 | 0.898 ± 0.049 | 0.891 ± 0.057 | 0.895 ± 0.056∗ | 0.893 ± 0.057 | 0.893 ± 0.051∗ | 0.88 ± 0.06∗ | 0.886 ± 0.055∗ | |
FedAvg XGBRF | 0.924 ± 0.015∗ | 0.902 ± 0.051∗ | 0.929 ± 0.02∗ | 0.907 ± 0.02∗ | 0.882 ± 0.036 | 0.901 ± 0.028∗ | 0.878 ± 0.048 | 0.845 ± 0.05 | 0.861 ± 0.043 | |
FedProx μ = 0 LR | 0.887 ± 0.041 | 0.885 ± 0.04 | 0.869 ± 0.048 | 0.866 ± 0.04 | 0.855 ± 0.048 | 0.854 ± 0.045 | 0.856 ± 0.054 | 0.853 ± 0.046 | 0.849 ± 0.047 | |
FedProx μ = 0 MLP | 0.872 ± 0.061 | 0.876 ± 0.063 | 0.874 ± 0.058 | 0.884 ± 0.052 | 0.882 ± 0.061 | 0.888 ± 0.067 | 0.882 ± 0.061 | 0.874 ± 0.067 | 0.87 ± 0.071 | |
FedProx μ = 2 LR | 0.906 ± 0.04 | 0.879 ± 0.042 | 0.891 ± 0.067 | 0.871 ± 0.05 | 0.857 ± 0.046 | 0.856 ± 0.047 | 0.856 ± 0.054 | 0.851 ± 0.05 | 0.858 ± 0.049 | |
FedProx μ = 2 MLP | 0.868 ± 0.06 | 0.866 ± 0.072 | 0.876 ± 0.072 | 0.881 ± 0.066 | 0.881 ± 0.066 | 0.882 ± 0.059 | 0.884 ± 0.053 | 0.874 ± 0.064 | 0.877 ± 0.056 |
Data reported are mean and standard deviation across K = 6-fold cross-validation. Best performing algorithms for each metric are indicated by an asterisk.