Skip to main content
. 2024 Mar 1;5(3):100945. doi: 10.1016/j.patter.2024.100945

Table 3.

AUC-PR score of models trained using federated learning as the quantity of client sites increased, tested on the PPMI dataset

Number of clients
2 4 6 8 10 12 14 16 18
Algorithm name FedAvg LR 0.874 ± 0.042 0.876 ± 0.041 0.872 ± 0.053 0.858 ± 0.046 0.861 ± 0.048 0.859 ± 0.051 0.855 ± 0.044 0.851 ± 0.045 0.855 ± 0.05
FedAvg MLP 0.872 ± 0.072 0.876 ± 0.069 0.871 ± 0.074 0.877 ± 0.057 0.888 ± 0.061 0.879 ± 0.061 0.88 ± 0.059 0.867 ± 0.075 0.876 ± 0.06
FedAvg SGD 0.92 ± 0.025 0.898 ± 0.044 0.898 ± 0.049 0.891 ± 0.057 0.895 ± 0.056∗ 0.893 ± 0.057 0.893 ± 0.051∗ 0.88 ± 0.06∗ 0.886 ± 0.055∗
FedAvg XGBRF 0.924 ± 0.015∗ 0.902 ± 0.051∗ 0.929 ± 0.02∗ 0.907 ± 0.02∗ 0.882 ± 0.036 0.901 ± 0.028∗ 0.878 ± 0.048 0.845 ± 0.05 0.861 ± 0.043
FedProx μ = 0 LR 0.887 ± 0.041 0.885 ± 0.04 0.869 ± 0.048 0.866 ± 0.04 0.855 ± 0.048 0.854 ± 0.045 0.856 ± 0.054 0.853 ± 0.046 0.849 ± 0.047
FedProx μ = 0 MLP 0.872 ± 0.061 0.876 ± 0.063 0.874 ± 0.058 0.884 ± 0.052 0.882 ± 0.061 0.888 ± 0.067 0.882 ± 0.061 0.874 ± 0.067 0.87 ± 0.071
FedProx μ = 2 LR 0.906 ± 0.04 0.879 ± 0.042 0.891 ± 0.067 0.871 ± 0.05 0.857 ± 0.046 0.856 ± 0.047 0.856 ± 0.054 0.851 ± 0.05 0.858 ± 0.049
FedProx μ = 2 MLP 0.868 ± 0.06 0.866 ± 0.072 0.876 ± 0.072 0.881 ± 0.066 0.881 ± 0.066 0.882 ± 0.059 0.884 ± 0.053 0.874 ± 0.064 0.877 ± 0.056

Data reported are mean and standard deviation across K = 6-fold cross-validation. Best performing algorithms for each metric are indicated by an asterisk.