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E N V I R O N M E N T A L  S T U D I E S

Impacts of wind power on air quality, premature 
mortality, and exposure disparities in the United States
Minghao Qiu1*†, Corwin M. Zigler2, Noelle E. Selin1,3*

Understanding impacts of renewable energy on air quality and associated human exposures is essential for 
informing future policy. We estimate the impacts of U.S. wind power on air quality and pollution exposure disparities 
using hourly data from 2011 to 2017 and detailed atmospheric chemistry modeling. Wind power associated with 
renewable portfolio standards in 2014 resulted in $2.0 billion in health benefits from improved air quality. A total 
of 29% and 32% of these health benefits accrued to racial/ethnic minority and low-income populations respectively, 
below a 2021 target by the Biden administration that 40% of the overall benefits of future federal investments 
flow to disadvantaged communities. Wind power worsened exposure disparities among racial and income groups 
in some states but improved them in others. Health benefits could be up to $8.4 billion if displacement of fossil 
fuel generators prioritized those with higher health damages. However, strategies that maximize total health 
benefits would not mitigate pollution disparities, suggesting that more targeted measures are needed.

INTRODUCTION
Wind power provides climate, air quality, and health benefits by 
displacing the emissions of both greenhouse gases and air pollutants 
such as SO2 and NOx from fossil fuel electricity generating units 
(EGUs). Compared with longer-term and globally distributed cli-
mate benefits, the immediate and local air quality benefits of wind 
power development have the potential to incentivize policy-makers 
to take measures to address global energy and climate challenges. In 
the United States, much wind power development has historically 
been driven by the state-level renewable energy policies [such as a 
renewable portfolio standard (RPS)] (1–8). An RPS mandates elec-
tric utilities to deliver a certain fraction of their electricity sales from 
eligible renewable energy producers. The air quality benefits from 
renewable energy depend on the specific fossil fuel EGUs displaced 
and their emission profiles; the distribution of this displacement 
also affects the magnitude of air quality benefits that accrue to 
different population groups. Future policy-making on renewable 
energy can thus be informed by detailed understanding of the air 
quality benefits of the existing wind power implementation at the local 
and regional levels, including identifying specific fossil fuel EGUs 
associated with air quality improvements and implications for 
different population groups. In the U.S. context, this is relevant to 
the recent Inflation Reduction Act that focuses on decarbonizing the 
electricity sector through development of renewable energy (among 
many other targets).

Previous studies have used empirical data to evaluate the im-
pacts of historical wind power development on emissions from 
fossil fuel EGUs. One approach is to use statistical models to directly 
link the short-term variability of wind power to fossil fuel plant 
generation and emissions (9–12). These analyses directly exploit the 
exogenous variation in wind power production to establish a causal 
relationship between emissions and wind power. Cullen (10) and 

Novan (11) both evaluated emission reductions due to wind power 
development in Texas using hourly data. Another common approach 
is to use marginal emission factors (MEFs), the emission factors 
associated with the last EGU needed to meet power demand, to 
estimate the impacts of renewable energy. MEFs are often derived 
from regressions of emissions on electricity generation (13) or from 
dispatch models with historical data as inputs (14). Millstein et al. 
(15) used the Avoided Emissions and geneRation Tool (AVERT) 
model developed by U.S. Environmental Protection Agency (EPA), 
which calculates avoided emissions from historical generation 
patterns, to estimate emission changes due to U.S. solar and wind 
energy development between 2007 and 2015.

Studies that project the impacts of wind power and/or other 
types of renewable energy on air quality and health often rely on 
reduced-complexity air quality approaches that simplify the rela-
tionship between emissions and the formation of atmospheric fine 
particulate matters (PM2.5) and ozone (O3). Millstein et al. (15) used 
reduced-complexity atmospheric chemistry models to estimate 
cumulative air quality benefits of 28 to 108 billion dollars associated 
with the emission changes that they calculated with AVERT. Many 
other studies project the potential impacts of future wind power and 
renewable energy development on air quality and health (15–19). 
Sergi et al. (20) used a capacity expansion model and three reduced-
form atmospheric models to estimate the air quality and climate 
benefits of replacing existing fossil fuel power plants with wind, 
solar, or new natural gas plants to reduce the CO2 emissions in the 
United States, estimating an additional 7 to 14 billion dollars in 
net benefits by including air pollution–related health benefits as a 
co-objective along with climate benefits. However, the simplified 
air quality models used in these studies cannot account for some 
important factors in calculating the impacts of wind power on air 
quality, such as the seasonal and regional heterogeneous responses 
of PM2.5 and O3 to precursor emissions.

Air pollution affects different populations unequally and is an 
important focus of environmental justice efforts. As defined by 
Bullard (21), “Environmental justice embraces the principle that all 
people and communities are entitled to equal protection of environ-
mental and public health laws and regulations.” The concept of envi-
ronmental justice is multifaceted and involves a variety of considerations. 

1Institute for Data, Systems, and Society, Massachusetts Institute of Technology, 
Cambridge, MA, USA. 2Department of Statistics and Data Sciences, University of 
Texas, Austin, TX, USA. 3Department of Earth, Atmospheric, and Planetary Sciences, 
Massachusetts Institute of Technology, Cambridge, MA, USA.
*Corresponding author. Email: mhqiu@stanford.edu (M.Q.); selin@mit.edu (N.E.S.)
†Present address: Department of Earth System Science, Stanford University, Stanford, 
CA, USA.

Copyright © 2022 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
NonCommercial 
License 4.0 (CC BY-NC).

mailto:mhqiu@stanford.edu
mailto:selin@mit.edu


Qiu et al., Sci. Adv. 8, eabn8762 (2022)     2 December 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 12

A substantial body of work relevant to environmental justice has 
documented existing inequities in air pollution exposure among 
racial/ethnic and income groups (22–26). These disparities are 
associated with a variety of emission activities (27) and, in part, 
reflect systemic environmental racism such as long-lasting conse-
quences of discriminatory practices such as redlining (28). Research 
to better understand the disparities of exposure to environmental 
risks (e.g., air pollution) among different population groups, the 
causes of these disparities, and the potential solutions to reducing 
the exposure disparities can help further inform environmental 
justice efforts (29).

There are few existing studies that address the impacts of policies 
that could improve air quality (including renewable energy develop-
ment) on air pollution exposure disparities despite emerging interest 
from policy-makers. In January 2021, the U.S. government announced 
a target that 40% of the overall benefits of certain federal invest-
ments, including investments in the areas of clean energy, should 
flow to disadvantaged communities (30). As air quality benefits of 
U.S. renewable energy deployment comprise a large fraction of their 
total benefits (15, 18, 19, 31, 32), it is thus important to quantify the 
distributions of air quality benefits of renewable energy over different 
communities. Understanding the degree to which changes in energy 
production have influenced exposure disparities can inform efforts 
to mitigate them. Previous research has not explicitly assessed the 
distributional impacts of renewable energy on air quality for differ-
ent population groups. Zhu et al. (33) projected that the PM2.5 
disparities in California will generally reduce under decarbonization 
scenarios in 2050, with important heterogeneity across regions and 
scenarios. Retrospectively, a limited number of studies used econo-
metric methods to assess the implications of a subset of climate 
mitigation strategies (including emission trading or electric vehicle 
deployment) on inequities related to air pollutant emissions (34–37). 
However, these studies often do not account for the full complexity 
in the formation and transport of air pollution. To our knowledge, 
there has not been a comprehensive study that evaluates the impacts 
of renewable energy development on air quality and the exposure 
disparities while accounting for the detailed atmospheric processes 
and the empirical responses at the plant level.

Here, we estimate the air pollution and health impacts of wind 
power using EGU-level hourly data and detailed atmospheric chemis-
try modeling, for the seven independent system operator (ISO) 
regions in the United States. We then use these EGU-level impact 
estimates to assess the implications of wind power development on 
disparities in exposure to PM2.5 and O3. To do this, we first establish 
a statistical relationship between hourly wind power and unit-level 
electricity generation and emissions (CO2, SO2, and NOx) for each 
fossil fuel EGU from 2011 to 2017. We combine these unit-level 
emission changes for SO2 and NOx with source-receptor informa-
tion from the GEOS-Chem adjoint model (38) to estimate their 
impacts on PM2.5, O3 concentrations, and associated premature 
mortality in all 48 states in the contiguous United States. We further 
simulate the air quality impacts of the wind power used to meet RPS 
targets in 2014 under existing dispatch decisions and compare these 
results to idealized theoretical scenarios that identify the potential 
for increased air quality and health benefits. Last, we estimate the 
fraction of air quality benefits flowing to low-income and racial/
ethnic minority populations and examine the impacts of wind power 
on existing air pollution disparities among population groups, 
under current practice, and for our idealized scenarios.

RESULTS
In this section, we first present marginal impacts of wind power 
on unit-level emissions calculated using hourly data and statistical 
models. These emission effects are then used to calculate the associated 
premature mortality for each fossil fuel EGU, determined by the 
adjoint of GEOS-Chem, a global three-dimensional chemical trans-
port model, combined with epidemiological concentration response 
functions (CRFs). Using our unit-level estimates, we then calculate 
the benefits of wind power used to meet RPS targets in 2014, under 
current practices (ex post scenario), and idealized theoretical sce-
narios in which fossil fuel EGU displacements are prioritized on the 
basis of EGU’s emission intensity (emission-minimizing scenarios) 
or its contribution to overall premature mortality (health damage–​
minimizing scenario). Last, we present the distributional impacts of 
air quality changes under these scenarios and show the fraction of 
total benefits that accrues to disadvantaged communities.

Marginal impacts of wind power on unit-level emissions 
and associated premature mortality
Figure 1 (A to C) shows the changes in electricity generation, SO2, 
and NOx emission associated with a marginal increase (1 MWh) in 
wind power for fossil fuel EGUs in each of the ISO regions. Marginal 
increases in wind power have different impacts on fossil fuel EGUs 
with different fuel types in different regions. Most generation 
displaced by wind power comes from sources using natural gas and 
subbituminous coal, except for in the PJM interconnection (PJM) 
where 56% of the displaced generation comes from sources using 
bituminous coal. As a result of the displacement patterns, the emis-
sion change due to 1 MWh wind power differs markedly between 
different regions. The largest emission reduction due to wind power 
is seen in PJM, where 1 MWh wind power, on average, reduces SO2 
emissions by 2.2 kg and NOx emissions by 0.85 kg. The marginal 
emission impacts calculated using the data here are largely consistent 
with previous estimates using other methods (see fig. S1) (12, 14, 15). 
The estimated marginal effects on electricity generation and emissions 
are consistent across different statistical model specifications that 
include additional control variables and different time fixed effects 
(see tables S1 to S3).

The avoided emissions associated with marginal increases in 
wind power deviate markedly from the emission reductions esti-
mated using the ISO-wide average emission factors in our dataset 
(indicated by the black dots in Fig. 1, B and C). Our estimated SO2 
emission reduction associated with wind power is 74% larger for 
PJM but 43% smaller for Electric Reliability Council of Texas 
(ERCOT) than the ISO-wide average emission factors. This is con-
sistent with a previous analysis of the differences between average 
emission factors and MEFs (13). Our main statistical model only 
estimates the impacts of wind power on fossil fuel EGUs in the same 
ISO region; however, increases in wind power in one ISO region 
can likely displace generation from fossil power plants in the neigh-
boring regions due to interregional exchange of electricity (12). We 
further estimate the effects of wind power on electricity export 
(shown as the shaded areas in Fig. 1A) using a separate dataset from 
Energy Information Agency (39) (method detailed in the Supple-
mentary Materials). We focus on the impacts of wind power on 
fossil fuel EGUs within each region in the subsequent analysis 
due to the uncertainty in quantifying the effects of export on each 
individual power plant; the implications of interregional export of 
electricity for our air quality analysis are discussed below.
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Emission reductions due to marginal increases in wind power 
mostly come from a small number of fossil fuel EGUs in each ISO 
region, while the generation and emissions of most other units 
change only a small amount (see Fig. 1, D to F; see also fig. S2 for 
box plots of the EGU-level sensitivity). For example, 9.6% of the 
displaced generation, 11% of the CO2, 15% of the SO2, and 18% of 
the NOx reductions from a marginal increase of wind power in 
Midcontinent ISO (MISO) are associated with two adjacent power-
plants in West Iowa (point A, including four EGUs). Similarly, 6.0% 
of the displaced generation, 8.1% of the CO2, 18% of the SO2, and 
5.0% of the NOx reductions from a marginal increase of wind power 
in ERCOT are associated with a single subbituminous coal power 
plant in southeast Texas (point B, including four EGUs). Within 

each ISO region, 10% of EGUs are responsible for 28 to 52% of the 
total displacement of electricity generation, more than 64% of the 
total avoided SO2 emissions, and 42% of the avoided NOx emissions. 
We focus on the long-term average emission response to wind power 
for each EGU and thus do not explicitly account for the potentially 
different marginal impacts of wind power on emissions during different 
seasons, times of the day, gas price level (40), or congestion status (41). 
Differences in the emission impacts of wind power across different 
seasons and time of the day are limited (see figs. S3 and S4), and sea-
sonal variations are dominated by the variability in wind power pro-
duction (see the Supplementary Materials for further discussion).

Similarly, displacement of emissions from a small number of 
fossil fuel EGUs contributes the majority of avoided premature 
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mortality and monetized health benefits that result from marginal 
increases in wind power (shown in fig. S5). The unit-level health 
benefits are characterized as the monetized benefits of avoided 
premature mortality (in the entire United States) attributed to the 
EGU’s emission changes due to an increase of 1-MWh wind power 
in the corresponding ISO region. Impacts on premature mortality 
are calculated with CRFs from (42) and (43) and then monetized 
using a value of statistical life (VSL) of 7.4 million dollars (year 2006 
dollars) recommended by the U.S. EPA (44). Fossil fuel EGUs located 
upwind of populous regions show higher health impacts relative 
to their emission impacts. For example, 21% of the PM2.5-related 
health benefits and 11% of the O3-related benefits attributable to 
wind power and fossil fuel EGUs in the ERCOT region can be 
attributed to a single coal power plant near the Houston metropolitan 
area (point B). On average, 10% of the fossil fuel EGUs are respon-
sible for 57% of the PM2.5-related health benefits and 71% of the 
O3-related health benefits from all fossil fuel EGUs within each ISO 
region. O3-related health benefits are approximately 10% of the 
PM2.5-related health benefits. The spatial pattern of O3-related health 
benefits is slightly different from that of PM2.5-related benefits, mainly 
because of the different O3 chemistry regimes at different locations.

Responses to a marginal increase of wind power vary markedly 
across fossil fuel EGUs within each ISO region. On average, larger 
EGUs that use natural gas or subbituminous coal have larger (more 
negative) sensitivities to wind power within each ISO region. Con-
trolling for the size and the fuel type of the units, fossil fuel plants 
that are older and have pollution control technologies have larger 
(more negative) sensitivities to wind power (see table S4). We also 
observe some electricity generation and emission increases due to 
wind power: We find statistically significant (P < 0.05, adjusting for 
multiple comparisons; see Materials and Methods) positive associa-
tions between wind power and unit-level generation and emissions 
for six EGUs in our sample, including one coal-fired EGU in ISO 
New England (ISONE) and five gas-fired EGUs in Southwest Power 
Pool (SPP) and California ISO (CAISO). This may be because these 
EGUs were ramped up and down frequently to compensate for the 
variability of wind power, resulting in more frequent start-up, lower 

operating efficiency, and higher emissions (45, 46). For these six 
EGUs, we observe that their NOx emission factors (per unit heat 
input) increase with wind power production.

Marginal benefits of wind power development
In addition to the air quality benefits, we also estimate the benefits 
of wind power related to two other factors: reduced cost of fossil 
fuel generation (including the variable cost of fuel use, operations, 
and management) and monetized climate benefits from avoided 
CO2 emissions. The climate benefits are calculated using a social 
cost of carbon (SCC) of 35 dollars (year 2007 dollars) as recommended 
by the U.S. EPA (47). All monetary impacts presented in this paper 
are expressed in 2014 dollars adjusting for inflation. Figure 2 shows 
these three categories of benefits of wind power development at the 
ISO level. Consistent with the previous analyses (15, 48), we find the 
largest benefits of wind power development in the PJM, SPP, and 
MISO region where the air quality benefits account for 42, 26, and 
35% of the total benefits, respectively. The air quality impacts are 
dominated by the PM2.5-related health impacts (>93% of the total 
health impacts) in most ISO regions, while the O3-related health 
benefits account for 22 and 17% of the total air quality benefits in 
the ERCOT and SPP region, respectively. Benefits of wind power in 
CAISO, New York ISO (NYISO), and ISONE are dominated by the cost 
savings of fossil fuel generation, as the predominant natural gas units in 
these regions generally have higher costs but lower emission intensity 
(the marginal cost of electricity generation is $23 for sub-bituminous 
coal, $29 for bituminous coal, and $51 natural gas plants in our sam-
ple). Marginal benefits of wind power largely exceed the cost of wind 
power development [e.g., the levelized cost of wind energy estimates 
from (49)] in MISO, SPP, and PJM, where air quality benefits contrib-
ute a large margin to the total benefits (see fig. S6).

Wind power development in one ISO region can also lead to 
health benefits in neighboring ISO regions through pollution trans-
port, which account for 40 to 78% of the total air quality benefits 
(see the light blue and light green bars in Fig. 2). For example, every 
kilowatt-hour wind power increase in PJM leads to a total monetized 
health benefit of 4.4 cents, with 2.3 cents (52%) accruing to other 
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ISO regions and 2.1 cents (48%) retained within the PJM area. 
Another driver of the cross-border effects of wind power on air 
quality is due to the interregional export of electricity mentioned 
above. For NYISO and CAISO, we conduct a sensitivity analysis to 
calculate the emission and PM2.5 impacts due to the increased net 
export of electricity. We find that the total air quality impacts of the 
increased export of electricity are quite small due to the small mag-
nitude of absolute air quality benefits from wind power in these two 
regions (methods detailed in the Supplementary Materials).

Within each ISO region, the state-level benefits of wind power also 
vary markedly due to the heterogeneous responses of fossil fuel EGUs 
and regional atmospheric transport of air pollutants (see fig. S7). Im-
pacts of wind power on air pollution exposure in one state (state A) 
can be attributed to emission changes from three types of fossil fuel 
EGUs: units in state A (“in state”), units in other states but in the same 
ISO region (“in ISO”), and units in other ISO regions (“outside ISO”). 
For most states, the air quality benefits of wind power are dominated 
by transboundary pollution reductions that cross the border of states 
and ISO regions. On average, only 35.4% of the air quality benefits at 
the state level are associated with the in state emission changes. A total 
of 21.2% of the air quality benefits are associated with in ISO emission 
changes, and 43.4% are associated with the outside ISO emissions.

Application to RPS: Comparing ex post 
with theoretical scenarios
Figure 3A shows the total benefits of the wind power used to meet 
RPS targets in 2014 under the ex post scenario. Estimated with our 
statistical model, wind power associated with RPS reduced CO2 
emissions by 32 million tons (1.6% of the total power sector emissions 
in the United States in 2014), SO2 emissions by 51,000 tons (1.6% of 
U.S. total), and NOx emissions by 25,000 tons (1.3% of U.S. total) 
from fossil fuel EGUs in our sample. These estimates, however, do 
not aim to represent the causal effects of RPS policy (i.e., we do not 
aim to assess whether the RPS policy itself was the mechanism that 
led to this wind power development). Here, we use RPS as a case to 
quantify effects of wind power development. When monetized, this 
wind power generated total benefits of 5.0 billion dollars, account-
ing for economic cost savings, CO2 reductions, and air quality im-
provement in the contiguous United States. We estimate an annual 
reduction of 231 premature mortalities (95% confidence interval, 146 

to 318) from decreased PM2.5 concentrations due to wind power. The value of 
these mortalities accounts for 40% of the total benefits. Wind power has 
mixed impacts on O3 concentrations, with seasons and areas of both positive 
and negative improvements (see fig. S10). Nationwide, there is a small de-
crease in the annual Maximum Daily Average 8-hour (MDA8) O3 concen-
tration that leads to net health benefits of 0.9 million dollars.

Figure 3B shows the relative benefits of wind power under the 
four theoretical scenarios compared with the ex post scenario. Our 
idealized scenarios are not intended to be realistic policy options 
but are intended to explore the theoretical maximum potential for 
alternative displacement strategies to lead to benefits. A smaller but 
different set of fossil fuel EGUs is displaced under the theoretical 
scenarios that maximize emission reductions or health benefits. For 
example, under the CO2-minimizing scenario, only 228 fossil fuel 
EGUs reduce more than 1% of their annual generation as a result of 
wind power (compared to 952 fossil fuel EGUs in the ex post 
scenario), but the total avoided CO2 emissions are 57% larger. As a 
result, the theoretical scenarios lead to larger environmental bene-
fits despite smaller reductions in cost savings relative to the ex post 
scenario. Under the health damage–minimizing scenario, the same 
amount of wind power could deliver 11.6 billion dollars in total 
benefits (relative to 5.0 billion dollars under the ex post scenario). 
The additional benefits mostly come from health benefits associated 
with PM2.5 reductions (6.7 billion dollars); additional climate bene-
fits add another 0.47 billion dollars. Economic cost savings decreases 
by a small amount (0.26 billion dollars), because the theoretical sce-
narios do not minimize the economic cost of electricity generation. 
The O3-associated damage also slightly increases (by 0.28 billion 
dollars) under the theoretical scenarios, due to higher NOx emission 
reductions that lead to O3 increases in certain seasons and regions 
(see fig. S11). Relative comparisons between these scenarios remain 
largely similar with alternative CRFs and values of VSL or SCC (see 
table S5 and fig. S12). We also show that these theoretical scenarios 
will generate smaller benefits if each state takes separate action to 
prioritize displacements (e.g., only 9.1 billion dollars under the health 
damage–minimizing scenario) relative to the case that prioritizes 
within each ISO region as shown above (see fig. S13).

Distributional effects of air quality benefits from wind power
The air quality benefits of wind power are distributed unequally 
across populations with different baseline exposure to air pollution, 
as well as across different income and racial/ethnic groups. For each 
subgroup, we calculate the differences between the impacts of wind 
power on the subgroup’s mortality rates and the nationwide average 
impacts due to changes in PM2.5 and O3 (see Fig. 4, A and B). Posi-
tive differences indicate that mortality rates declined more due to 
wind power for the group compared to the nationwide average. 
People living in more polluted areas (“high-PM2.5” group, defined 
as populations living in the 20% grid cells with the highest PM2.5 in 
2014) experienced 16% greater PM2.5-related health benefits than 
average in the ex post scenario. Households with annual income 
less than or equal to twice the federal poverty level [“low-income” 
group in Fig. 4, defined by EPA’s Environmental Justice Screening 
and Mapping Tool (50)] experienced a slightly larger benefit (+1.6%). 
Hispanic residents experienced substantially smaller-than-average 
PM2.5 benefits (−43%), while Black populations experienced rela-
tively larger benefits (+4.4%). Relative benefits for each income 
group, racial/ethnic group, and decile group of baseline PM2.5 con-
centration are shown in figs. S14 and S16.
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The distributional effect of wind power on air quality is highly 
variable at the state level. Figure 4 (C to E) shows the relative PM2.5 
health benefits experienced by different population groups relative 
to the state average. Populations living in the high-PM2.5 locations 
within each state do not always experience greater health benefits 
compared to the state-level average (see Fig. 4C and fig. S18). In 
most states, low-income populations experienced a larger reduction 
in PM2.5-related premature mortality relative to the state average 
(see Fig. 4D and fig. S17). On the other hand, wind power leads 
to larger PM2.5 benefits for racial/ethnic minority groups relative to 
the state average in about a quarter of the states, as much as 4.5% 
greater, but is up to 22% less in the other three quarters. We find the 
relative impacts of wind power on PM2.5 pollution experienced by 
the high-PM2.5, low-income, and racial/ethnic minority groups 
remain largely consistent across different scenarios at the state level 
despite the differences in total avoided emissions and mortality 
(also see fig. S19). These patterns remain consistent across recent 
changes in demographic patterns (see fig. S21 for a sensitivity analysis 
using demographic data for different years between 2007 and 2019) 
and when accounting for changes in the underlying electricity sys-
tems (see fig. S22 for a separate analysis that only uses the more 
recent emissions and generation data of 2017).

Of the total air quality benefits from the wind power associated 
with the 2014 RPS targets, we estimate that 32% flows to the low-
income populations and 29% flows to the racial/ethnic minority 
groups as defined by EPA’s Environmental Justice Screening and 
Mapping Tool (50) (see fig. S15 for the fraction of the low-income 

and racial/ethnic minority populations living in each county). Fractions 
of benefits flowing to the low-income and racial/ethnic minority 
populations are similar in the two alternative scenarios that maximize 
total avoided mortality or CO2 reductions. Across three emission 
scenarios, 32.5 to 32.7% of the benefits accrue to the low-income 
populations and 28.8 to 29.1% of the benefits accrue to the racial/
ethnic minority groups (see fig. S23). Fractions of benefits flowing 
to each income and racial/ethnic group can be found in fig. S24.

We perform sensitivity analyses to explore the factors that influence 
distributional effects of wind power on air quality using alternative 
air quality modeling methods and demographic information at 
higher spatial resolution. Our main analysis calculates the impacts 
on exposure disparities using county-level demographic data, mainly 
due to the spatial resolution of GEOS-Chem (0.5° × 0.625°, approx-
imately comparable to the sizes of typical U.S. counties). To assess 
the influence of spatial resolution of the air quality model and 
demographic information on the exposure disparities, we conduct a 
sensitivity analysis using the Intervention Model for Air Pollution 
(InMAP) model. InMAP is a reduced-form air quality model that 
simulates PM2.5 concentrations at higher spatial resolution than 
GEOS-Chem (approximately at the census tract level) and has been 
previously used to evaluate the impacts of specific emission sources 
on PM2.5 exposure disparities (23, 27). We calculate the impacts on 
exposure disparities using InMAP and the census tract level demo-
graphic information to account for the demographic variability 
within counties. For another sensitivity analysis, we use a highly 
simplified approach that calculates the inverse distance-weighted 
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Fig. 4. Percentage difference in health benefits for different demographic groups relative to the nation-wide or state-level average. (A and B) Percentage difference 
in health benefits for different demographic groups at the national level compared with the nation-wide average. Positive relative benefits indicate that the specific 
population group experiences a larger reduction in premature mortality rate compared to the national average changes. (C to E) Results for different demographic groups 
at the state level compared with the state-wide average changes in premature mortality. Each dot in the box plots represents one state, and the box lines represent the 
25th, 50th, and 75th percentile of the state-level results. Positive relative benefits indicate that the specific population group experiences a larger reduction in PM2.5-related 
premature mortality rate compared with the state average. Negative benefits indicate smaller reductions in mortality rates. Only states that have fossil fuel EGUs in our 
original sample are plotted here. The three emissions scenarios are shown in different colors.
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emissions [IDWEs; used in (51)], which only considers the emission 
changes and the distance between EGUs and county centers, to 
quantify the influence of distance from sources relative to atmospheric 
chemistry and pollution transport (see fig. S25). Across these differ-
ent approaches and emission scenarios, we estimate consistently 
that 31 to 33% of the air quality benefits accrue to low-income 
populations (see fig. S23). The alternative approaches estimate a 
slightly higher fraction of benefits accruing to the racial/ethnic 
minority populations (30 to 35% with InMAP and 33 to 35% with 
IDWE) under different emission scenarios, but none exceeds 40%, 
the target for overall policy benefits recently set at the national level. 
InMAP estimates at the census tract level are virtually identical to 
results from the same model aggregated at county scale, suggesting 
that the spatial resolution of air quality modeling and demographic 
information has little effect on estimated distributional impacts. 
This is consistent with a recent work showing that the exposure 
disparities among racial/ethnic groups are primarily driven by the 
regional (not local) variability in air quality (24) and the robustness 
of exposure disparity calculations at the census tract level compared 
with finer scale analyses (52). We observe similar variability and 
heterogeneity of wind power impacts on racial/ethnic minority and 
low-income populations across states between GEOS-Chem and 
InMAP (see fig. S26). However, numerical estimates for specific 
states vary, likely due to assumptions in InMAP that simplify 
chemistry and pollution transport.

DISCUSSION
Our analysis provides unit-level estimates of the impacts of wind 
power on emissions, air quality, premature mortality, and exposure 
disparities using high spatial and temporal resolution data and 
detailed atmospheric chemistry modeling. We identify a small set of 
fossil fuel EGUs that are responsible for large fractions of the air 
quality impacts of wind power within each region. The unit-level 
information is critical for correctly estimating the changes in air 
quality—for example, we find that heterogeneous impacts of wind 
power on O3 concentrations are negligible when aggregated but 
are important for some neighborhoods and population groups at 
smaller scales.

We quantify a large gap between realized and the theoretical 
upper bound of air quality benefits of wind power. While our theo-
retical scenarios do not consider transmission constraints and 
detailed dispatch processes, they show that large gains in health 
benefits could be achieved by targeting a few high-damaging fossil 
fuel EGUs with only a modest increase in economic cost. Relative 
to the ex post scenario, we observe increased health benefits under 
health damage–minimizing scenarios in all states, suggesting that 
modified dispatch decisions could provide environmental benefits 
throughout the country by targeting only a few fossil fuel EGUs in a 
few states. Comparisons between different theoretical scenarios also 
demonstrate the relative impacts of using different environmental 
indicators as the criteria (e.g., carbon emissions or health benefits) 
and illustrate potential trade-offs between climate benefits and air 
quality benefits.

By combining empirical estimates at the unit level with a detailed 
chemical transport model, our analysis estimates the air quality 
effects of wind power at high spatial and temporal resolution that 
are important for understanding local impacts on health and air 
pollution exposure disparities. In particular, our analysis jointly 

considers the seasonal and diurnal variability of wind power pro-
duction and atmospheric chemistry regimes, an important compo-
nent for accurately modeling effects on PM2.5 and O3. Comparing 
to our InMAP simulations with identical emission changes, health 
benefits estimated by GEOS-Chem are 34 to 66% larger (across 
different scenarios). On the other hand, our aggregated estimates of 
impacts on air quality and human health are lower than the previous 
estimates reported by Millstein et al. (15) (see fig. S8). These differences 
are driven by the fact that EGUs associated with large emission 
reductions are often far away from population centers. Because we 
take into account the specific locations of these units, and previous 
studies were aggregated at regional scale, we calculate a smaller 
reduction in the population-weighted PM2.5 concentrations. There 
is also considerable variability across different methods of translat-
ing emissions into air pollution damages. This highlights important 
differences between reduced-complexity models (RCMs) and full-
chemistry transport models. Similar to most previous studies 
[e.g., (15, 23, 38)], our estimates of health benefits only consider 
the avoided mortality using CRFs derived from long-term exposure 
studies and thus do not consider the full impacts of air pollution on 
human health.

Our results suggest that a large fraction of the air quality impacts 
of state-level policy decisions to develop wind power will fall on 
other states or ISO regions. Therefore, although air quality benefits 
could substantially offset costs at a regional level, state-level air 
quality benefits alone may not provide enough incentive for many 
individual states to take actions [although adoption of RPS was 
not historically driven by quantifying such environmental benefits 
(53)]. We also directly quantify the theoretical maximum gains in 
air quality benefits that would be achieved if the states within 
each ISO region could cooperate to prioritize displacing the most 
health-damaging sources.

We find highly heterogeneous impacts of wind power on existing 
disparities in air pollution exposure in different U.S. states. Under 
the current practice (ex post scenario), wind power development 
can have larger benefits for demographic groups known to experi-
ence greater pollution burdens in some states but relatively smaller 
benefits in others. This could contribute to shrinking or enlarging 
the existing pollution disparities identified in prior work, depending 
on the location. Even for the same state, wind power development 
could reduce pollution disparities between different racial/ethnic 
groups but further enlarge disparities between low and high income 
households. The theoretical scenarios that minimize the total air 
pollution damages or CO2 emissions do not increase their relative 
impacts for the high-PM2.5, low-income, or racial/ethnic minority 
groups. This underscores the importance of explicitly incorporating 
distributional issues into policy design. We find that the accurate 
modeling of the pollutant transport and the absolute magnitude of 
PM2.5 reductions at different locations are essential for assessing 
the differential impacts of wind power on racial/ethnic groups for 
PM2.5. Under the health damage–minimizing scenario (see figs. S23 
and S25), the fractions of benefits flowing to minority populations 
are slightly higher in IDWE estimates where the range of modeled 
pollution transport is shorter and the air quality impacts are much 
more localized than the GEOS-Chem model. InMAP estimates a 
larger reduction in PM2.5 in Texas relative to other parts of the 
country and thus estimates a higher fraction of benefits flowing to 
the racial/ethnic minority population, as Texas has a higher fraction 
of the racial/ethnic minority population compared to the national 
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average. Low computational cost and higher spatial resolution are 
often cited as reasons for using RCMs. Our results show that the 
benefit of the increased model resolution is quite limited in this 
case, as disparities in pollutant exposure from the power sector are 
driven by regional patterns. Distributional impacts from InMAP 
are similar to those from the GEOS-Chem simulation when aggre-
gated at the national scale (despite differences in the estimated 
absolute mortality). However, the more accurate representation of 
varying chemistry and meteorological conditions in GEOS-Chem 
leads to very different calculated impacts for specific locations 
(see fig. S25).

Our data-driven approach identifies the impacts of wind power 
on air quality and human health for individual fossil fuel EGUs. 
Our approach can thus be easily extended to regions with available 
wind power and emission data and modified to investigate similar 
questions (e.g., the impacts of solar power). Detailed information 
for the energy system and accurate modeling of pollution transport 
can provide a key basis for designing complementary policies to 
existing renewable energy programs to maximize and distribute air 
quality benefits in an equitable way. The assessed impacts at the 
EGU level can provide important insights on the localized benefits 
of wind power and its distribution in different communities. In 
conclusion, we find that the overall benefits associated with increas-
ing renewable energy capacity under the current market systems are 
substantial but achieve far less air quality benefit than they could if 
more damaging fossil fuel EGUs were displaced. However, even 
efforts that prioritize total health benefits do not increase the frac-
tion of benefits accruing to the racial/ethnic minority groups and 
low-income groups. As air quality benefits comprise a large fraction 
of the overall benefits of similar policies, this informs analysis to-
ward future policies that might meet recently set national goals to 
address environmental justice. More targeted policy design could 
achieve higher overall environmental benefits from renewable 
energy development and better address existing disparities in expo-
sure to air pollution.

MATERIALS AND METHODS
Data
Our analysis focuses on the seven ISO regions in the United States: 
CAISO, ERCOT, ISONE, MISO, NYISO, PJM, and SPP. Hourly 
level electricity generation and emissions (CO2, SO2, and NOx) of 
major fossil fuel EGUs (nameplate capacity > 25 MW) are obtained 
from the EPA Air Market Program Data for the years 2011 to 2017 
(54). The hourly wind power production and the load demand of 
each ISO region are derived from each individual ISO website (for 
NYISO and ERCOT, 2015 to 2017; for the remaining ISOs, 2011 to 
2017). We include only the fossil fuel EGUs that have at least 10% 
nonmissing values of observed generation and emissions during the 
period. Our final sample consists of 1264 EGUs: 744 EGUs that use 
natural gas, 248 EGUs that use subbituminous coal, 213 EGUs that 
use bituminous coal, and 59 EGUs of other types of fuel. The EGUs 
in our final sample covered 67% of electricity generation and more 
than 94% of the emissions in the seven ISO regions in 2014.

Unit-level and plant-level characteristics such as location, primary 
fuel type, age, and stack height are derived from the EPA Emissions 
& Generation Resource Integrated Database (55). Plant-level infor-
mation on annual net generation, heat inputs used for electricity 
generation, and cost are derived from the U.S. Energy Information 

Administration (56). The marginal cost of fuel consumption for 
electricity generation is calculated using fuel cost per unit of heat 
input [dollar per metric million British thermal unit (MMBtu)] and 
average heat rate of the plant (MMBtu per megawatt-hour). The 
marginal operation and maintenance (O&M) cost is calculated as 
the total O&M cost of flue gas desulfurization, ash collection, and 
water abatement subtracting the revenues made from the byproducts 
of these processes, divided by the net generation.

Statistical models
Our statistical model follows the statistical model used by Cullen 
(10). For each EGU i in our sample, we estimate the marginal 
impacts of wind power on the unit-level electricity generation and 
emissions with the following equation

	
​​
​​Y​ i,ymdh​​ = ​ α​ i​​ + ​ ∑ 

n=0
​ 

24
 ​​​(​​ ​β​i1​ n ​ ​W​ i,ymdh−n​​ + ​β​i2​ n ​ ​W​i,ymdh−n​ 2 ​  + ​γ​ in​​ ​X​ iymdh−n​​​)​​​

​   
​+ δ​ i,ymh​​ + ​ε​ i,ymdh​​

 ​​	 (1)

where Yi,ymdh is the electricity generation or emissions (CO2, SO2, 
and NOx) of unit i at year y, month of year m, day of month d, and 
hour of day h. Wi,ymdh is the wind power production in the ISO 
region (which unit i belongs to). Xi,ymdh is the set of control variables 
including the contemporary and lagged system demand (with both 
linear and quadratic forms) in the ISO region (which unit i belongs 
to). i,ymh is the year-month-hour fixed effects that we use in the 
main specification. i,ymdh is the normally distributed error term. 
Our main model only estimates the impacts of wind power on the 
EGUs in the same ISO region.

The main parameters of interest are {​​​i1​ n ​​, ​​​i2​ n ​​}n=0,…,24 that measure 
the impacts of wind power at hour t−n on the unit-level generation 
and emissions at some specific hour t. These parameters measure 
the causal impacts of wind power under the identifying assumption 
that the hourly wind power W is uncorrelated with the error term  
after controlling for the electricity demand and the time fixed 
effects. As suggested by previous literature, this assumption is likely 
to be satisfied as the hourly variation in wind power production can 
be viewed as exogenous (10, 11). The exogeneity of wind power 
production comes from the facts that (i), in the short run, the wind 
power potential is almost entirely driven by exogenous meteorological 
variables (such as wind speed) and that (ii) real wind power produc-
tion is very close to the wind power potential, as the marginal cost 
of wind power production is negligible. The quadratic form of W in 
the regression models allows us to partially capture the nonlinear 
impacts of wind power on unit-level emissions and generation at 
different levels of wind power. Our model also allows historical 
wind power and demand (up to 24 hours) to influence the current 
emissions, as previous study shows that accounting for dynamics in 
the power production could significantly influence the estimates 
of emission offsets of wind power (10). We aggregate the impacts 
of current and lagged wind power into the coefficients i1 and i2 
(​​​ i1​​ = ​ ∑ n=0​ 24 ​​ ​ ​i1​ n ​​, ​​​ i2​​ = ​ ∑ n=0​ 24 ​​ ​ ​i2​ n ​​).

We calculate the partial derivative of Yi due to a unit change 
of Wi, ∂Yi/∂Wi (denoted as the marginal impacts of wind power on 
unit i) as

	​​  ∂​Y​ i​​ ─ ∂​W​ i​​
 ​  = ​ ​ i1​​ + 2 ​​ i2​​ × ​​ 

_
 W ​​ i​​​	 (2)
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where ​​‾ ​W​ i​​​​ denotes the average value of wind power production in 
the ISO region (which unit i belongs to) across all hours. ∂Yi/∂Wi 
thus quantifies the marginal impact of wind power on unit i at the 
average wind power production level.

We use the heteroskedasticity and autocorrelation consistent 
(HAC) covariance matrix estimator (the Newey-West estimator) to 
estimate the standard error (SE) (57). The maximum lag with posi-
tive weight for the Newey-West estimator is 24 hours. We also ad-
just the P values of the estimates to adjust for multiple comparisons 
with the procedure from Benjamini and Hochberg (58). This proce-
dure adjusts the test statistic and P value of the estimated sensitivity 
for each EGU and controls the expected portion of “false discover-
ies” (falsely rejected null hypothesis) below a certain threshold.

Alternative specifications of the statistical model
We use several alternative specifications of the statistical model to 
understand the influence of potential confounders and model speci-
fications on the estimated wind power effects. Tables S1 to S3 show the 
estimated changes in electricity generation, SO2, and NOx emissions 
from fossil fuel EGUs due to marginal increases in wind power in 
each ISO region, under different statistical models. In addition to 
our main specification (column 1 in the tables), we also construct 
two alternative specifications of the time fixed effects and quantify 
the influences of gas prices, zero values (thus testing the effects of 
wind power on operating fossil fuel EGUs alone), missing values, 
and the congestion status. Sources of the underlying variables and 
regression specifications are detailed in the Supplementary Materials.

Air quality modeling
We use GEOS-Chem to estimate the impacts of wind power on PM2.5 
and O3 concentrations. GEOS-Chem is a global three-dimensional 
chemical transport model driven by meteorological input from the 
Goddard Earth Observing System (GEOS) of the NASA Global Mod-
eling and Assimilation Office (www.geos-chem.org/) (59).

We estimate the unit-level impacts of wind power production 
on air quality using the adjoint of the GEOS-Chem model. The 
GEOS-Chem adjoint model can calculate how model parameters 
(e.g., emissions in a single grid cell) influence model outputs (e.g., PM2.5 
concentrations in a single grid cell or over a larger spatial domain) 
(60). Here, we use archived model outputs from Dedoussi et al. (38) 
that calculate the sensitivities of the state-level population-weighted 
PM2.5 and O3 concentrations to the SO2 and NOx emission changes 
in each 0.5° × 0.666° grid cell in the contiguous United States. The 
adjoint model projects how emission changes in any location influ-
ence PM2.5 concentrations with full spatial resolution and then 
aggregates these concentrations to calculate impacts on state-level 
population weighted concentrations. More details regarding the air 
quality sensitivities can be found in the Supplementary Materials 
and Dedoussi et al. (38).

We use the GEOS-Chem forward model to simulate the air quality 
impacts of the wind power used to meet RPS targets in 2014, under 
different scenarios, and for our analysis on exposure disparities. We 
use GEOS-Chem version 12.3.0 with a horizontal resolution of 0.5° × 
0.625° in North America (61). More details on GEOS-Chem can be 
found in the Supplementary Materials.

Health impacts
The health impacts of wind power development are quantified in 
terms of the premature mortality associated with changes in exposure 

to PM2.5 and O3. For premature mortality associated with PM2.5, we 
use the CRF from Krewski et al. (42). We estimate the premature 
mortality of all causes [hazard ratio (HR): 1.056 (95% confidence 
interval, 1.035 to 1.078)], cardiopulmonary diseases [HR: 1.129 
(1.095 to 1.164)], and lung cancer [HR: 1.129 (1.056 to 1.225)]. 
Table S5 shows the avoided all-cause mortalities related to PM2.5 
changes estimated with alternative CRFs (62–65). For O3, we esti-
mate the premature mortality using the CRF from Turner et al. 
(43). We calculate the premature mortality for all causes [HR: 1.02 
(1.01 to 1.04)] and for respiratory diseases [HR: 1.12 (1.08 to 1.16)].

All-cause and cause-specific baseline mortality rates of the 30-plus 
population in the United States in 2014 are derived from the 10th 
version of the International Classification of Diseases (66). For the 
analysis on the exposure disparities, we use county-specific baseline 
mortality rates from the U.S. Centers for Disease Control and 
Prevention (67). Gridded population data are obtained from the 
Columbia University Center for International Earth Science Informa-
tion Network (68) for the year 2015 and scaled to match the 
state-level U.S. population in 2014. Population data and the fraction 
of adults over 30 years old in each state are obtained from the 
U.S. Census Bureau (69).

Distributional impacts
We calculate the impacts of wind power on population-weighted 
PM2.5 and O3 concentrations for different demographic groups. We 
combine simulated PM2.5 and O3 concentrations from GEOS-Chem 
with the county-level demographic information (i.e., population counts 
of different income and racial/ethnic groups in each county). We 
then estimate the premature mortality of each demographic group 
in each county due to changes in PM2.5 and O3 and further aggre-
gate the results to the state and national levels. The main analysis 
uses the American Community Survey data from 2013 to 2017 (70), 
and we perform sensitivity analyses with demographic data in 
other years (2007 to 2011 and 2015 to 2019). We also match the 
GEOS-Chem outputs with the county-level population count of the 
racial/ethnic minority and low-income groups as defined in the 
Environmental Justice Screening and Mapping Tool developed by 
the U.S. EPA. We defined the high-PM2.5 group as populations 
living in the 20% grid cells with the highest PM2.5 in 2014. We use 
the estimates of ground-level PM2.5 (annual average of 2014) from 
Hammer et al. (71), which uses satellite products as a data-informed 
baseline. We perform a sensitivity analysis using the simulated PM2.5 
concentration from GEOS-Chem to determine the high-PM2.5 group 
and to find similar results.

To address whether our results were influenced by the spatial 
resolution of GEOS-Chem, we perform a sensitivity analysis with 
the InMAP at the census tract level (72). The spatial resolution of 
our GEOS-Chem simulation is 0.5° × 0.625°, approximately the size 
of typical U.S. counties (see fig. S20). InMAP is a reduced complexity 
model that simulates annual average PM2.5 concentrations at finer 
resolution near urban areas and has been previously used at national 
scale to identify disparities in pollutants between different racial/
ethnic groups (23, 27). The grid cell size of InMAP varies dynamically 
on the basis of the population density (smaller cell size in the urban 
populous regions) but is generally comparable to the size of census 
tracts (see fig. S20).

We also perform a sensitivity analysis that accounts only for 
displaced emissions and the EGU locations (and thus ignores the 
role of atmospheric chemistry and meteorology). This approach 

http://www.geos-chem.org/
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calculates the IDWEs as a simplified way to assess the air pollution 
exposure. For each county i, IDWE is calculated as

	​​ IDWE​ i​​ = ​ ∑ 
j∈J

​ ​​ ​emissions​ j​​ × ​distance​i,j​ −1​​	 (3)

where J is the set of all fossil fuel EGUs in our sample and distancei,j 
is the distance between the center of county i and EGU j. This 
approach has been previously applied as a simplified reduced-
complexity approach for assessing pollution exposure (51).

Emission projections
We estimate the impacts of wind power associated with RPS targets 
in 2014 on emissions and air quality under current (ex post scenario) 
and idealized theoretical scenarios. In 2014, the total amount of 
renewable power generation associated with RPS (number of re-
newable energy credits) was 118.9 TWh in the 21 states that we 
studied, and 52.7% of the target was met by wind power produced 
in the seven ISO regions (62.6 TWh). RPS targets met by wind power 
in each state and the wind power production used to meet the RPS 
are shown in fig. S9. State-level RPS targets and the amount of wind 
power used for compliance are derived from the annual RPS com-
pliance reports (73) and the website of each individual state. To derive 
an hourly estimate, the wind power used to meet RPS targets in 2014 
is then aggregated to the ISO level and partitioned to each hour 
based on the observed temporal pattern of wind power production  
in 2014.

We use Eq.1 to estimate the ex post impacts of the wind power 
associated with RPS on unit-level emissions. We can use marginal 
effects (Eq. 1) to quantify nonmarginal emission changes because 
the amount of wind power associated with RPS targets is quite small 
(1.5% of the U.S. total generation in 2014) and comparable to the 
variability of observed wind power that is used to estimate the marginal 
effects. Impact of wind power on the emissions of unit i in a specific 
hour t can thus be calculated as

	​ Emissio​n​ it​​ = ​ ​ i1​​ × ​W​ it​​ + ​​ i2​​ × (​W​it​ 
2 ​ − (​W​ it​​ − ​W​it​ 

2 ​ ) )​	 (4)

where Wit is the amount of wind power produced in the ISO 
region (which unit i belongs to) at hour t to meet RPS targets. This 
allows us to estimate what the emissions would have been for each 
fossil fuel EGU if the amount of wind power associated with RPS in 
2014 was not produced.

Idealized theoretical scenarios
The impacts of wind power on unit-level electricity generation and 
emissions under the ex post scenario are the outcome of current 
dispatch decisions that the system operators decide dispatch schedules 
based on the marginal generating cost subject to dispatch constraints. 
We also construct theoretical scenarios to estimate theoretical maxi-
mum emission reductions and health impacts for hypothetical cases 
where dispatch decisions are made using other unit-level characteris-
tics instead of the marginal cost. For each hour of 2014, each of the 
theoretical scenarios displaces the same amount of electricity genera-
tion from the fossil fuel EGUs in our sample as the ex post estimates. 
However, each theoretical scenario decides which unit to ramp 
down based on alternative criteria. This could be formulated as an 
optimization problem

	​​  
​min​ ​g​ it​​

​ ​ ​  ∑ 
i∈I

​​​ ​g​ it​​ × ​k​ i​​
​  

s.t. ​ ∑ 
i∈I

​​​ ​g​ it​​ = ​ G​ It​​
​​	 (5)

where git represents the amount of electricity generation changes of 
unit i at hour t under the theoretical scenario. ki is the unit-level 
characteristic that is used in the hypothetical dispatch decision. I is 
the set of fossil fuel EGUs within each ISO region. The objective 
is to minimize the emissions or pollution-related mortalities. The 
constraint condition of the optimization problem makes sure that 
the total displacement of electricity generation is the same as the 
displaced generation in the ex post scenario every hour for each ISO 
region (GIt).

We design four theoretical scenarios: three that use unit-level 
emission intensity (CO2, SO2, and NOx) and one that uses unit-level 
impacts on premature mortality as the decision criteria. The three 
emission-minimizing scenarios minimize the total emissions from 
fossil fuel EGUs and thus maximize the avoided emissions due to 
wind power generation by displacing electricity generation from 
EGUs with higher emission intensity. The health damage–minimizing 
scenario minimizes the health damages from fossil fuel EGUs based 
on their impacts on premature mortality. Our main scenarios do 
not include any dispatch constraints on how much generation could 
be displaced for each unit. We perform sensitivity analyses that 
evaluate these four scenarios with some dispatch constraints that 
the electricity generation is only allowed to be displaced up to a cer-
tain fraction (detailed in the Supplementary Materials; see fig. S27). 
We also design four additional sensitivity scenarios that displace 
same amount of electricity generation as the ex post scenario for 
each state (instead of each ISO region), which simulate the impacts 
of a situation in which each state is only allowed to coordinate the 
dispatch schedule of EGUs within the state. More details on the 
theoretical scenarios can be found in the Supplementary Materials.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn8762
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