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Abstract

BACKGROUND: Polygenicity and genetic heterogeneity pose great challenges for studying
psychiatric conditions. Genetically informed approaches have been implemented in neuroimaging
studies to address this issue. However, the effects on functional connectivity of rare and common
genetic risks for psychiatric disorders are largely unknown. Our objectives were to estimate and
compare the effect sizes on brain connectivity of psychiatric genomic risk factors with various
levels of complexity: oligogenic copy number variants (CNVs), multigenic CNVs, and polygenic
risk scores (PRSs) as well as idiopathic psychiatric conditions and traits.

METHODS: Resting-state functional magnetic resonance imaging data were processed using

the same pipeline across 9 datasets. Twenty-nine connectome-wide association studies were
performed to characterize the effects of 15 CNVs (1003 carriers), 7 PRSs, 4 idiopathic psychiatric
conditions (1022 individuals with autism, schizophrenia, bipolar conditions, or attention-deficit/
hyperactivity disorder), and 2 traits (31,424 unaffected control subjects).

RESULTS: Effect sizes on connectivity were largest for psychiatric CNVs (estimates: 0.2-0.65

z score), followed by psychiatric conditions (0.15-0.42), neuroticism and fluid intelligence (0.02—
0.03), and PRSs (0.01-0.02). Effect sizes of CNVs on connectivity were correlated to their effects
on cognition and risk for disease (7= 0.9, p=5.93 x 1076). However, effect sizes of CNVs
adjusted for the number of genes significantly decreased from small oligogenic to large multigenic
CNVs (r=-0.88, p=8.78 x 107%). PRSs had disproportionately low effect sizes on connectivity
compared with CNVs conferring similar risk for disease.

CONCLUSIONS: Heterogeneity and polygenicity affect our ability to detect brain connectivity
alterations underlying psychiatric manifestations.

Polygenicity and genetic heterogeneity pose great challenges for studying mechanisms and
risk underlying psychiatric conditions (1). Rare copy number variants (CNVs), as well as
common variants, confer risk for neurodevelopmental and psychiatric disorders such as
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autism spectrum disorder and schizophrenia (SZ). CNVs that increase risk for autism and/or
SZ also decrease 1Q (2,3). Their effect sizes range from large to mild (e.g., 22q11.2 and
15911.2 deletions decrease 1Q by 29 and 3 points, respectively, and increase risk for SZ with
odd ratios of 23 and 1.9, respectively) (Table 1) (4,5). Effect sizes of CNVs on cognition
and risk for neurodevelopmental and psychiatric disorders are positively correlated to the
number of genes they contain. To account for the fact that not all genes contribute equally
to the impact of CNVs, we developed a CNV severity score, which is the sum of genes
encompassed in CNVs, weighted by the sensitivity of each gene to loss of function (6).
Both the number of genes included in a CNV and its severity score are measures of the

level of multigenicity of a CNV. This severity score can predict the effect size of CNVs on
cognition with close to 80% accuracy (7,8). Furthermore, the mean effect size on cognitive
ability of one point of this severity score is similar for benign oligogenic and deleterious
multigenic CNVSs, which suggests that effect sizes of large CNVs are the additive effects of
many individual genes with small effects.

Similarly, for common variants, polygenic risk scores (PRSs) are additive models developed
to estimate the aggregate effects of thousands of single nucleotide polymorphisms (SNPs)
with very small individual effects (9,10). The risk for SZ ranges from odds ratio of 3.3 to 4.6
(9) when comparing individuals in the bottom and top deciles of PRS-SZ, similar or higher
than the risk conferred by some oligogenic CNVs such as 1g21.1 and 15q11.2 deletions.

For PRS-1Q, contrasting bottom and top deciles shows moderate to large effect sizes of
approximately 9 to 12 points of 1Q (11), which is similar to several CNVs associated with
neurodevelopmental and psychiatric disorders (e.g., 16p11.2 duplication) (Table 1).

Because cognition is thought to be subserved by largescale brain networks (12), it is
reasonable to hypothesize that the effects of genetic variants on cognition and behavior
(8,13) are mediated by brain structure and networks (14,15). The organization of such
networks can be inferred using resting-state functional magnetic resonance imaging (rs-
fMRI) (16,17). Functional connectivity (FC) has gained traction in the past decade,
characterizing increasingly reproducible patterns of alterations associated with psychiatric
conditions (18). However, these studies reported small effect sizes, which appeared
discordant with the severity of autism and attentiondeficit/hyperactivity disorder (ADHD)
(19,20). Genetically informed approaches have been introduced with the hope of focusing on
a specific biological risk. Effects of CNVs on FC have been investigated at only 2 genomic
loci in humans (16p11.2 and 22¢11.2) (14,21), demonstrating robust effects. Little is known
about the effect sizes on FC of psychiatric PRS (22,23). While PRSs and CNVs can have
similar effect sizes on psychiatric risk, the effects on connectivity of these 2 classes of
variants with vastly different levels of genomic complexity have never been compared.

Our aims were to 1) estimate and compare the effects of oligogenic (e.g., 4 protein-coding
genes for 15q11.2 CNVs) and multigenic (e.g., 49 protein-coding genes for 22q11.2 CNVs)
CNVs (24) and PRSs for psychiatric conditions on brain connectivity; 2) characterize the
relation between effect sizes of genomic variants on cognition/behavior and connectivity;
and 3) test the relation between the level of multigenicity (measured by the number of genes
and the severity score) and effect sizes of CNVs on connectivity.
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To this end, we analyzed rs-fMRI data in 33,452 individuals and performed 29 connectome-
wide association studies (CWASs) for 15 CNVs, 7 PRSs, 4 idiopathic conditions,
inflammatory bowel disease, and 2 traits (fluid intelligence and neuroticism).

METHODS AND MATERIALS

Cohorts

The selection process for the CNVs, PRSs, and psychiatric conditions and traits are detailed
in the Supplementary Materials and Methods.

Our analysis included 33,452 individuals from 9 datasets (Figure 1 and Tables 1 and 2).
Each study of the corresponding dataset was approved by the research ethics review boards
of the respective institutions. This project was approved by the research ethics review board
at the Centre Hospitalier Universitaire Sainte-Justine.

Clinical Genetic Datasets.—We used 4 genetically informed CNV datasets, which
were recruited based on the presence of a CNV associated with neurodevelopmental and
psychiatric disorders, regardless of symptomatology (detailed in Supplementary Materials
and Methods). Of note, the term oligogenic refers to CNVs containing 1 gene < CNV <5
genes, while multigenic CNVs contain more than 5 genes. These categories are descriptive,
and cutoffs are descriptive. None of the analyses rely on these categories.

These 4 datasets included the Simons Variation in Individuals Project (SVIP for 16p11.2
and 1g21.1 CNVs) (25) and the University of California, Los Angeles 22g11.2 CNV project
(UCLA). fMRI data have not yet been published for the Montreal rare genomic disorder
family project (MRG, Canada) (8) and the Define Neuropsychiatric-CNVs Project (Cardiff,
United Kingdom).

Unselected Population.—CNVs associated with neurodevelopmental and psychiatric
disorders and nonpsychiatric CNVs were also identified in the UK Biobank (UKBB)

dataset (25) (Supplementary Materials and Methods). Nonpsychiatric CNVs were defined as
variants without any previous association with a psychiatric condition in large case-control
studies (4,26-28).

Idiopathic Psychiatric Conditions Cohorts.—We used the Autism Brain Imaging
Data Exchange 1 (ABIDEL) (29), Autism Brain Imaging Data Exchange 2 (ABIDE2)

(30), ADHD-200 (31), the Consortium for Neuropsychiatric Phenomics (CNP) (32), and an
aggregate dataset of 10 SZ studies (14,33); collectively, these datasets include individuals
with idiopathic autism, ADHD, SZ, and bipolar disorder (BIP), as well as their respective
control subjects. Psychiatric assessments are detailed in Supplementary Materials and
Methods.

CNV Calling and PRS Computation

CNVs were identified in the UKBB using PennCNV (34) and QuantiSNP (35) following
previously published methods (7) (Supplementary Materials and Methods).
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We computed 7 PRSs for individuals of European ancestry in the UKBB using Bayesian
regression and continuous shrinkage priors (36) (Table 2; Supplementary Materials and
Methods; and eTable 1 in the Supplement).

rs-fMRI Preprocessing

All datasets were preprocessed using the same parameters of Neuroimaging Analysis Kit
(37). Preprocessed data were visually controlled for quality of the coregistration, head
motion, and related artifacts (Supplementary Materials and Methods).

Computing Connectomes

We segmented the brain into 64 functional seed-based regions and 12 networks defined

by the Multiresolution Intrinsic Segmentation Template (MIST) brain parcellation (38). FC
was computed as the temporal pairwise Pearson’s correlation between the average time
series of the 64 seed-based regions, and then Fisher-z transformed. The connectome of

each individual encompassed 2080 connectivity values: (63 x 64)/2 = 2016 region-to-region
connectivity + 64 within seed-based region connectivity. We chose the 64 parcel atlas of

the MIST parcellation (https://simexp.github.io/multiscale_dashboard/index.html) because it

falls within

the range of network resolution previously identified to be maximally sensitive

to FC alterations in neurodevelopmental and psychiatric disorders such as autism (39). We
corrected for multiple comparisons using a false discovery rate (FDR) strategy (40).

Connectome-wide Association Studies

We performed 29 CWASs using one of the two approaches:

1.

Contrasting cases and their respective controls for 7 CNVs associated with
neurodevelopmental and psychiatric disorders and 8 nonpsychiatric CNVs
(Tables 1 and 2), 4 idiopathic psychiatric disorder cohorts (autism, SZ, BIP,

and ADHD), and 1 non-brain-related condition (inflammatory bowel disease).
Control subjects refer to 1) individuals without a CNV for analysis investigating
the effect of CNVs and 2) individuals without a diagnosis in analyses
investigating effects of psychiatric conditions.

Investigating the linear effects of 7 continuous PRSs: autism, BIP, SZ,
cross-disorder (ADHD, autism, BIP, SZ, anorexia nervosa, major depression,
obsessive-compulsive disorder, and Tourette syndrome), and 1Q, as well as

2 non-brain-related control traits (low-density lipoprotein and chronic kidney
disease) and 2 continuous traits provided by the UKBB (neuroticism and fluid
intelligence).

FC was z-scored based on the variance of the pooled control subjects used for each CWAS
(Cohorts column in Tables 1 and 2). They were conducted by linear regression, in which
z-scored FC values were the dependent variables and genetic or diagnostic status or traits
were the explanatory variables. PRSs and traits were normalized within the UKBB sample.

It was previously demonstrated that global signal-adjusted (GSA)-FC profiles show
stronger correlations with cognition (41) and reduce confounding effects in multisite studies
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(42). We therefore used GSA-FC profiles for this study. Global effect sizes obtained without
GSA are available in eTable 5 in the Supplement.

Models were adjusted for sex, scanning site, head motion, age, and global signal (= GSA)
defined as the mean of all 2080 Fisher’s z values (42). FC profiles were defined as the 2080
p values of 2080 connections.

Z-SCOT€connection [i.... 2080]~Bo + Peenetic status T Page T Brmotion T Bsex T Psite T Petoal signal

This linear regression was applied for each of the 2080 functional connections. Because

all raw connectomes were normalized on the variance of the control subjects, regression
estimates (B) can be interpreted as z scores. We corrected for multiple testing using FDR (g <
.05) as well as a permutation procedure (see Supplementary Materials and Methods). Effect
size of genetic risk, conditions, and traits on connectivity was defined as the top decile of the
2080 absolute p values. Sensitivity analyses using a cross-validation approach (43) ensured
that effect sizes were stable across the different sample sizes investigated in the study.

Multiple Testing

Within each independent variable (15 CNVs, 7 PRSs, 4 conditions, and 2 traits), we
corrected for the number of tests (2080 connections) using the Benjamini-Hochberg FDR
correction at a threshold of g < .05 (40,44). We also computed an empirical p value by
conducting a permutation test, shuffling the genetic or clinical status labels of the individuals
included in each CWAS (5000 permutations). We estimated the empirical p value by
calculating the frequency of obtaining an effect size equal to or greater than the original
observation (45).

Estimating Effect Sizes Using Cross-validation

We generated effect sizes for each sample using K-fold cross-validation with 2-, 5-, and
10-fold cross-validation (43). For each genetic risk, condition, and trait, we split the sample
into K segments (for case-control analyses, segments are stratified accordingly); then, for K
iterations, we held out a segment as a training sample to generate a betamap and identify the
connections with effect size estimates in the top decile. On the remaining independent test
group, we extracted the top decile connections and computed their mean effect sizes. The
overall effect size was computed as the mean of K estimates (eFigure 1 in the Supplement
and the Supplement).

Bootstrap Procedure to Estimate 95th Confidence Intervals of Effect Size Ratios

We identified the 95% confidence intervals for the ratios of effect sizes using a bootstrap
procedure (46). First, for each sample, we generated the actual betamap and identified the
top decile connections and their mean X. Then, for 5000 iterations, we resampled with
replacement of the same number of subjects (for case-control analyses, the resampling was
performed separately in each group), generated a resampled betamap, and took the mean
of the identified connections to form a distribution (x_1, x_2, ...x_5000). To generate a
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distribution of ratios for a given pair X_1, X_2 (where X_1 > X_2), we took the ratios of the
bootstrap distributions (x_1 1/x 2 1,x 1 2/x 2 2,,...x_1 5000/x_2_5000).

Sum of Genes and CNV Severity Score

The CNV severity score was previously published and is an additive model (7,8). It is

the sum of genes included in a CNV, and each gene is weighted by its sensitivity to loss
function, which is measured by the loss of function observed/expected upper bound fraction
(LOEUF) score, which is available for each coding gene (47). Smaller values of LOEUF
represent genes with highest sensitivity to loss of function (more severe genes); therefore,
the inverse of LOEUF is used in the additive model:

CNV severity score = (genel X 1/LOEUF,;) + (gene2 X 1/LOEUF00) + ...

This severity score is predictive of CNV effect size on cognition (7,8) and risk for
psychiatric conditions (3,48).

As a sensitivity analysis, we computed a CNV severity score based on the probability

of being loss of function intolerant (49), which is another constraint score with a binary
distribution (>0.8 for intolerant genes and close to O for all other genes). As a result, this
score only takes into account the contribution of intolerant genes.

RESULTS

Effects of Genetic Risk Factors and Psychiatric Conditions on Brain Connectivity

All 7 CNVs were associated with neurodevelopmental and psychiatric disorders, and

none of the 9 nonpsychiatric CNVs significantly altered functional connections (FDR,
2080 connections, g < .05) (Table 3). Empirical p-value analyses (pval effect)—performing
contrasts in 5000 randomly sampled groups—found the same level of significance compared
with the FDR procedure (Table 3).

The previously published 22q11.2 deletion FC profile showed the largest effects (mean of
brainwide estimates in the top decile = 0.65), followed by the 16p11.2 deletion, which also
showed large effects on FC profiles (0.57). The 22g11.2 and 16p11.2 FC profiles were
robust and correlated (= 0.7 and 0.83) to previously published profiles that were based on
smaller samples (14). 1921.1 deletion and duplication FC profiles showed moderate to large
effects on FC. 15q11.2 deletion showed the mildest effects among CNVs associated with
neurodevelopmental and psychiatric disorders. Individual CNV FC profiles in 3-dimensional
maps showing effect sizes for each of the 64 functional regions are available at https://
claramoreau9.github.io/Braimaps_Github.html.

All brain-related PRSs (SZ, BIP, autism, cross-disorder, and 1Q) altered FC profiles.
The non-brain-related PRSs (low-density lipoprotein, chronic kidney disease) showed no
significant effects (Table 3).

Individuals diagnosed with idiopathic SZ, BIP, and autism but not ADHD had significantly
altered FC compared with control subjects. SZ, ADHD, and autism FC profiles were
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previously published (14), but we recomputed them with additional individuals. Correlations
between new and previously published profiles were 0.95, 0.70, and 0.86, respectively.

Effect sizes were largest for CNVs associated with neurodevelopmental and psychiatric
disorders, followed by psychiatric conditions, fluid intelligence, neuroticism, and PRS
(Figure 2A-D). Effect sizes of deletions were on average 1.3-fold larger than their reciprocal
duplications. Effect sizes for a change in 1 SD of a cognitive trait or a PRS were on average
one order of magnitude smaller than those associated with CNVs (Figure 2E). To test the
relation between genome-wide association study (GWAS) sample size and the effect of PRS
on FC, we compared the PRS-SZ based on the most recent GWAS in 76,755 subjects with
SZ (50) to the one based on an older GWAS computed with 23,585 subjects with SZ (51).
The 2 FC profiles associated with the 2 PRS-SZ were correlated (r= 0.89), but the number
of significant connections was higher for the FC profile based on the larger SZ-GWAS. The
effect size (for 1 SD of PRS) was also larger, with the top decile of g values increasing from
0.0138 (95% Cl, 0.011-0.016) to 0.016 (95% CI, 0.013-0.019).

Sensitivity analyses showed that effect size estimates were robust to several cross-validations
as well as the effects of sex, pooled or matched control subjects, clinical or unselected
ascertainment, and medication (Supplementary Results).

Relation Between Effect Sizes of CNVs on Connectivity and Cognition or Risk for
Neurodevelopmental and Psychiatric Disorders

We observed a correlation between the effect size of CNVs on FC and their previously
reported effect size on cognitive ability (7) (#= 0.9, p=5.93 x 107%), but effects of CNVs on
FC were systematically smaller than their effect on cognitive ability (Figure 2F). Effect size
on FC was also correlated with previously reported general risk for neurodevelopmental and
psychiatric disorders, i.e., the highest risk conferred by each CNV for either autism (26,28)
or SZ (4,52) (r=10.79, p=.001) (Figure 2H). As expected, this correlation was weaker

for autism (r=0.75) and SZ (r= 0.6) risk separately because some CNVs confer a high

risk for autism but not SZ and vice versa (eFigure 4 in the Supplement). The correlation
with cognitive ability was similar across all 12 networks (Figure 2G; eFigure 5 in the
Supplement).

Most Networks Are Affected by Genetic Risk and Conditions

Genetic risk, conditions, and traits affected connections that were distributed across all
functional brain networks (Figure 3). However, basal ganglia—thalamus and somatomotor
networks exhibited overconnectivity across most genetic risks and conditions (sum p values:
2.1 and 1.1, respectively). In contrast, limbic and auditory networks were predominantly
underconnected (sum p values: —2.7, —1.3, respectively).

Effect Sizes of Individual Genes Within CNVs Decrease as CNVs Increase in Number of
Genes

We first asked if there was a relation between the number of genes in a CNV (Figure 4A)
and its effect size on FC. This was the case (r=0.72, p=.002) (Figure 4B), and the relation
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was similar when genes were weighted by their sensitivity to gene dosage (severity score, r=
0.76, p=.0009) (Figure 4C).

To investigate the effects of multigenicity on connectivity, we computed for each CNV an
effect size adjusted for gene content (effect size divided by the number of genes included
in the CNV). We observed that the adjusted effect size of CNVs significantly decreased

as CNVs increased in number of genes (r=-0.85, p= 3 x 107°) (Figure 4D). Using the
severity score showed the same phenomenon (7= -0.88, p= 8.8 x 1075) (Figure 4E). In
other words, compared with small oligogenic CNVs, large multigenic CNVs have smaller
effects on FC than expected based on the number of genes they contain. We performed the
same analysis using probability of being loss of function intolerant (instead of LOEUF) to
test the assumption that only a few intolerant genes contribute to the CNV-associated FC
alterations (eFigure 6 in the Supplement). The same decrease in effect size was observed as
the number of intolerant genes increased in CNVs.

In contrast, there was no relation between the severity score and its adjusted effect size on
I1Q (r=0.30, p=.25) (eFigure 7 in the Supplement).

To further investigate the effect of multigenicity on FC, we examined PRS and CNVs with
similar effects (previously published) (Table 3) on cognitive ability and risk for autism
and SZ. PRS effect sizes on connectivity were disproportionately lower (between 38- and
13-fold lower) than those observed for the selected CNVs (1g21.1 deletions, 16p11.2, and
22011.2 duplications and 15q11.2 deletions) (Figure 2E).

DISCUSSION

Main Findings

In this large rs-fMRI dataset, we demonstrated that most rare and common genetic risks

for neurodevelopmental and psychiatric disorders affect FC, but effect sizes vary over an
order of magnitude across variants. We showed that the effect sizes of CNVs on FC were
correlated with their previously reported effects on cognitive ability and risk for autism

and SZ connectome-wide. This relation was observed across all brain networks, which is
consistent with the fact that fluid intelligence is thought to be subserved by networks widely
distributed across the brain (53). Whether these associations across all networks are causal
of 1Q decrease in CNV carriers remains an open question.

Multigenicity had a profound impact on FC signals; as CNVs increased in size and number
of genes, effect size of CNVs adjusted for gene content (number of genes and severity score)
rapidly decreased. In line with this observation, PRS had minute effects on FC, and the latter
was disproportionately low compared with that observed for CNVs with similar effect sizes
on 1Q and risk for autism or SZ.

Similar Effect Sizes Across Functional and Structural MRI

Effect sizes on FC across neurodevelopmental CNVs and psychiatric conditions are
consistent with those reported for structural MRI measures (54,55) even when much larger
samples are investigated (Cohen’s d= -1 and d= 0.6 for cortical surface and thickness,
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respectively, in n= 475 carriers of the 22g11.2 deletion) (56). For autism (57) and SZ

(58), previously reported effect sizes for cortical thickness (Cohen’s d=0.21 and 0.5,
respectively) were also similar to those observed in our study for FC (54). To date, the only
effect sizes reported for PRS were for SZ (g = 0.02 for cortical surface and thickness) and are
consistent with the very small effects in this study (59).

Even Small Levels of Multigenicity Increase Heterogeneity at the FC Level

We observed that the effect size on FC of one gene (the CNV-adjusted effect size) declines
(by an order of magnitude) for increasingly multigenic CNVs. In other words, a gene would
contribute to a smaller FC effect in a multigenic CNV compared with a gene with the

same severity score (sensitivity to gene dosage) encompassed in a small oligogenic one.
Multigenic CNVs may therefore represent heterogeneous combinations of relatively distinct
FC profiles associated with each dosage-sensitive gene (Figure 4F). This suggests that genes
within a CNV or a polygenic score may cancel out each other’s effects on FC, leading to
weaker effect sizes.

This effect of multigenicity may not be restricted to FC. As an example, Down syndrome,
which encompasses more than 200 protein-coding genes (60), has an extreme effect size
on cognition (a mean decrease of 3.3 SD) (8,61) but has been associated with smaller
effect sizes on MRI structural measures (below 1.65 Cohen’s @) (62,63). Based on our
observations, genetic effects on rs-fMRI would be best observed (with the largest effects)
in the context of monogenic variants such as FMR1, NRXN1, or CHDS. This would likely
apply to other brain modalities.

Why Are Polygenic Scores Associated With Such Small Effect Sizes?

Limitations

The microscopic effect sizes associated with autism-PRS, SZ-PRS, and intelligence-PRS are
possibly related to extreme levels of heterogeneity. Our comparison of 2 PRS-SZ based on
GWASs of different sample sizes suggests that further increasing the GWAS sample size will
improve the detection of significant connections altered by PRS but will not substantially
increase the effect size of psychiatric PRS on rsfMRI.

The CNV-PRS discordance is striking for PRS-1Q, which has been associated with moderate
to large effects on cognitive ability. There are infinite combinations of different common
variants that would lead to the same PRS. This may explain why PRS shows minimal
convergence on a particular connectivity pattern. Of note, both traits (fluid intelligence and
neuroticism) also showed similar effect sizes, suggesting comparable levels of heterogeneity.

However, alternative interpretations are possible. Current PRSs may be vastly improved
when larger GWASSs will be available. Some of the CNVs investigated have small sample
sizes, which leads to inflated effect sizes. FC may not represent a relevant intermediate
phenotype for genetic risk or cognitive traits.

Genetic heterogeneity is only one of the plausible interpretations that may explain
observations such as the survivor effect where large deleterious multigenic CNVs are
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only observed in resilient individuals with disproportionally low alterations at the brain
connectivity level. Similarly, bias toward less individuals, who have a higher probability of
completing the MRI scan coils contributes as well to this drop in effect size. An alternative
interpretation that may explain why effect sizes of CNVs on FC < cognition is that FC

is a noisy metric, and noise could be increased in individuals with neurodevelopmental
conditions (i.e., head movement despite being carefully adjusted for).

For PRSs, the portability across populations is poor, which may contribute to the small
effects of PRSs on FC. Finally, CNVs including intolerant genes are under negative
selection, whereas this is likely not the case for psychiatric PRSs, which are the sum of
many variants that are individually frequent. This fundamental difference may contribute
to differences in FC effect sizes observed for a PRS and a CNV matched for the level of
disease risk.

Confounding factors including sex bias and age differences may have influenced some
of the results. However, carefully conducted sensitivity analyses provided similar results
(Supplemental Results). Larger samples will be required to detect potential interactions
between genetic risk and age or sex.

Polygenicity may predominantly result in polyconnectivity, a scenario in which thousands
of autism or SZ genomic risk variants lead to a diverse set of connectivity patterns
associated with the conditions. Future studies will require both indepth partitionings of
polygenic scores and clustering of rare variants—based on relevant gene functions—to obtain
mechanistically coherent subgroups of individuals.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Cognitive traits: UKBB CNYV calling in: Idiopathic psychiatric
. UKBB. MRG, cohorts

Polygenic scores Cardiff, SVIP ABIDE 1&2, CNP,

computed in: UKBB S7., ADHD200

1) Preprocessing and QC 15 CNVs (7 psychiatric CNVs, 8
non-psychiatric CNVs);

7 PRS (of 4 psychiatric conditions,
1Q, 2 non-brain related conditions);

2) MIST parcellation into
64 ROIs # 3) Connectomes

N ' 4 psychiatric conditions and 1
s < W control condition (IBD);
V2 IQ; Neuroticism.

4)29 CWAS

v

Aim 1: Estimate and compare the effects of oligogenic, multigenic and polygenic
risk for psychiatric conditions on brain connectivity

\4 v

Aim 2: Characterize the relationship between effects sizes of genomic variants on
brain connectivity vs. on cognition/behaviour.

v v

Aim 3: Test the relationship between the level of multigenicity and effect sizes of
genomic variants on connectivity

Datasets

[

5 UKBB v v v v
2.2 2 [ ABIDE1-2 v v
g 2 2 | ADHD200 J J
S92 CNP v v
T »n O
—~ . 9 Cobre N N
= o B SVIP v v v v
2% g MRG v N v V4
= 5 8| UCLA v v v v
O g

Cardiff N N N N

Figure 1.
Method flowchart. ABIDE, Autism Brain Imaging Data Exchange; ADHD, attention-deficit/

hyperactivity disorder; CNP, Consortium for Neuro-psychiatric Phenomics; CNV, copy
number variant; CWAS, connectome-wide association study; GP, general population; 1BD,
inflammatory bowel disease; MIST, Multiresolution Intrinsic Segmentation Template; MRG,
Montreal rare genomic disorder family project; PRS, polygenic risk score; ROI, region

of interest; QC, quality control; SVIP, Simons Variation in Individuals Project; SZ,
schizophrenia; UCLA, University of California, Los Angeles; UKBB, UK Biobank.
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Figure 2.

Relation between effect sizes of CNVs on cognition and connectivity. (A-D) Effect size
of genetic risk, conditions, and traits on FC. Effect sizes of (A) CNVs, (B) idiopathic
psychiatric conditions, (C) traits, and (D) PRSs on FC. Each dot (or diamond) is the mean
of estimates in the top decile (the 208 connections with the highest p estimates). x-axis
values represent the effect sizes z-scored on the variance of the control group. Full dots
represent significant effect sizes (the intersection of FC profiles with altered connections
surviving false discovery rate and empirical p values using 5000 permutation tests g <
0.05) (Table 3), and empty diamonds are nonsignificant effect sizes. (E) Ratio of effect
sizes between genetic risk, conditions, and traits. Ratios are only computed for groups
that have significant effect sizes on FC. The ratio is the line (numerator) divided by the
column (denominator). The 95% confidence interval for each ratio was computed using
a bootstrap procedure (43,46) (see Methods and Materials). Boxes with black borders
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highlight CNVs and PRSs that should have similar effects on connectivity because they

are matched for effect size on cognition or risk for disease. We also highlight CNVs that
have effect sizes on cognitive ability equal or smaller than 1 z score to highlight the
discordance with effect of 1 z score of fluid intelligence on connectivity. (F) Effect sizes

of CNVs on IQ and FC. We used previously published effect sizes of CNVs on 1Q (7).

The x-axis indicates decrease in 1Q associated with each CNV. The y-axis indicates effect
sizes of CNVs on FC (top decile of estimates). (G) Effect sizes of CNVs on 1Q and

FC for 12 functional networks. The x-axis indicates decrease in 1Q associated with each
CNV (7). The y-axis indicates effect sizes of CNVs on FC for 12 functional networks
(mean of the top decile of network-wide estimates) (For a representation of each network
individually, see eFigure 5 in the Supplement). (H) Effect sizes of CNVs on FC and risk
for autism or SZ. Correlation between previously published effect sizes of CNVs on autism
or SZ risk (4,26,28,52) and their effect sizes on FC. We used the highest risk conferred

by each CNV for either autism (26,28) or SZ (4,52). The x-axis indicates odd ratios for
autism (A) or SZ (H). The y-axis indicates effect sizes on FC (top decile of estimates).
ADHD, attention-deficit/hyperactivity disorder; am, anteromedial; ASD, autism spectrum
disorder; BIP, bipolar disorder; CKD, chronic kidney disease; CNV, copy number variant;
CrossD, cross-disorder; DEL, deletion; DMN, default mode network; DUP, duplication; FC,
functional connectivity; FP, frontoparietal network; IBD, inflammatory bowel disease; intel,
intelligence; lat, lateral; LDL, low-density lipoprotein; OR, odds ratio; pm, posteromedial;
PRS, polygenic risk score; SZ, schizophrenia; Vis, visual.
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Figure 3.
Similarities at the network level across genetic risks, psychiatric conditions, and traits.

Sankey plot shows effect sizes across 12 networks for genetic risk (left) and conditions,
and traits (right). The thickness of the connecting lines represents these effect sizes, which
were defined as the mean g value of all significant connections within the network and
between the network and the other 11 networks. The length and color of rectangles on
either side of each network in the middle of the Sankey plot represents the sum of

effect sizes across all genetic risks, conditions, and traits for that particular network. For
each network, effect size values are summarized in the 12 boxes (bottom of the figure).
Brain maps represent the maximum estimate value for each functional region (Table 3).
Red indicates overconnectivity; blue indicates underconnectivity. Color bars represent the
B value. ASD, autism spectrum disorder; AUD PINS, auditory network and posterior
insula; BG Thal, basal ganglia thalamus; BIP, bipolar disorder; CER, cerebellum; Cross-D,
cross-disorder; CNV, copy number variant; DEL, deletion; DM am IhAG, default mode
network anteromedial and left angular gyrus; DM |, default mode network lateral; DM pm,
default mode network posteromedial; DUP, duplication; Fluid intel, fluid intelligence; FP,
frontoparietal network; LIM, limbic network; MOT, somatomotor network; NT, neuroticism;
PRS, polygenic risk score; SZ, schizophrenia; VATT SAL, ventral attentional and salience
network; VIS, visual network; VVIS DVIS, ventral and dorsal visual network.
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Figure 4.
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Relation between multigenicity and connectivity. (A) Number of genes and severity score.
Bar plot showing for each CNV, the number of genes encompassed, and the sum of genes
weighted by their intolerance score (sum of 1/LOEUF). The sum of 1/LOEUF values of all
genes encompassed in a CNV is highly predictive of the effect size of CNVs on cognitive
ability. (B) Relation between effect sizes on FC and number of genes. The y-axis indicates
effect size of CNVs on FC. The x-axis indicates number of genes in each CNV. (C) Relation
between effect sizes on FC and severity score. The y-axis indicates effect size of CNVs on
FC. The x-axis indicates severity score for each CNV. (D) Adjusted effect sizes on FC and
multigenicity (genes). The y-axis indicates mean effect of 1 gene on FC (CNV effect sizes
on FC adjusted for number of genes). The x-axis indicates number of genes in each CNV.
(E) Adjusted effect sizes on FC and multigenicity (severity score). The y-axis indicates
mean effect on FC of one point of severity score (CNV effect sizes adjusted by the severity
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score). The x-axis indicates severity score for each CNV. (F) Genetic heterogeneity within
a CNV. Genes encompassed in the 16p11.2 CNV are color-coded based on their LOEUF
score. Two scenarios are represented. Right, genes converge on shared brain patterns: the
effect size of the CNV increases linearly with the number of intolerant genes and is large.
Left, genes within a CNV are associated with distinct patterns: the resulting effect size is
weaker. BP, breakpoint; CNV, copy number variant; DEL, deletion; DUP, duplication; FC,
functional connectivity; LOEUF, loss of function observed/expected upper bound fraction;
PRS, polygenic risk score.
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Specific Reagent or - Additional
Resource Type Resouree Source or Reference Identifiers Information
Include name of manufacturer, company, Include catalog
repository, individual, or research lab. Include | numbers, stock
PMID or DOI for references; use “this paper” | numbers, database
. . if new. IDs or accession Include any
Add additional rows Include species : numbers. and/or additional
as needed for each and sex when RRIDs I’?RIDs are information or
resource type applicable. highly éncouraged' notes if
search for RRIDs at necessary.
https://scicrunch.org/
resources.
Antibody NA NA NA NA
Bacterial or Viral
Strain NA NA NA NA
Biological Sample NA NA NA NA
Cell Line NA NA NA NA
Chemical Compound
or Drug NA NA NA NA
Commercial Assay Or
Kit NA NA NA NA
Deposited Data;
Public Database NA NA NA NA
Genetic Reagent NA NA NA NA
Organism/Strain NA NA NA NA
Peptide, Recombinant
Protein NA NA NA NA
Recombinant DNA NA NA NA NA
Sequence-Based
Reagent NA NA NA NA
Neurolmaging
Software; Algorithm Analysis Kit, Scikit- | https://github.com/claramoreau9/
Learn, R, Python NeuropsychiatricCNVs_Connectivity NA NA
Transfected Construct NA NA NA NA

Other
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