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Slicing through the challenge of maintaining Pneumocystis in 
the laboratory
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ABSTRACT Pneumocystis jirovecii is a major fungal pathogen of humans that causes 
life-threatening lung infections in immunocompromised individuals. Despite its huge 
global impact upon human health, our understanding of the pathobiology of this deadly 
fungus remains extremely limited, largely because it is not yet possible to cultivate 
Pneumocystis in vitro, independently of the host. However, a recent paper by Munyonho 
et al. offers a major step forward (F. T. Munyonho, R. D. Clark, D. Lin, M. S. Khatun, et 
al., 2023, mBio 15:e01464-23, https://doi.org/10.1128/mbio.01464-23). They show that it 
is possible to maintain both the trophozoite and cyst forms of the mouse pathogen, 
Pneumocystis murina, in precision-cut lung slices for several weeks. Furthermore, they 
demonstrate that this offers the exciting opportunity to examine potential virulence 
factors such as possible biofilm formation as well as antifungal drug responses in the 
lung.
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P neumocystis jirovecii is a deadly pathogen of humans that causes life-threatening 
pneumonia in immunocompromised individuals. This fungus is found in the lungs 

of infants (1, 2) and is known to cause fatal pneumonia in patients with compromised 
immune responses, including transplant recipients (3, 4). It continues to be one of the 
most prevalent and severe infections among individuals with HIV/AIDS (5), representing 
a significant health challenge, particularly within the developing nations of sub-Saharan 
Africa. In addition to HIV/AIDS, a variety of other factors that promote immunosuppres­
sion have emerged as significant risk factors for Pneumocystis pneumonia (PCP) (6, 7). 
Moreover, PCP is becoming increasingly problematic for non-HIV-infected individuals 
in developed countries, including Sweden (8), the United Kingdom (9), and the United 
States (10). Despite the major impact of P. jirovecii on global health, our understanding of 
the biology of this fungus remains alarmingly limited. This is largely because significant 
challenges, primarily the lack of robust in vitro and ex vivo models, have severely 
restricted the experimental dissection of the pathogenesis of Pneumocystis species. 
Indeed, the absence of robust cultivation techniques is widely acknowledged to be the 
major obstacle in Pneumocystis research. Thus far, attempts to bypass likely auxotrophic 
requirements (predicted on the basis of genome sequence analyses) through supple­
mentation of culture media have not proven sufficient to facilitate growth in vitro (11).

Therefore, the paper entitled “Precision cut lung slices as an ex vivo model to study 
Pneumocystis murina survival and antimicrobial susceptibility” represents an exciting 
step forward (12). In this paper, Munyonho et al. describe the development of an 
innovative ex vivo model, based on the use of precision-cut lung slices (PCLS) from mice, 
to study the survival of the mouse pathogen Pneumocystis murina. Using a combina­
tion of cellular, molecular, and histochemical approaches, they firstly confirmed the 
viability of the lung slices over a 15-day period. Their thin lung sections maintained 
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the structural and functional characteristics of lung tissue, thereby providing a physio­
logically relevant environment for the pathogen by replicating the alveolar space of the 
host lung where Pneumocystis predominantly resides (13). Then, using a combination 
of reverse transcriptase-quantitative polymerase chain reaction and immunohistochem­
istry, Munyonho et al. demonstrated that, over this period, both the cyst and trophozoite 
forms of the fungus retained their viability in these lung slices but not in Dulbecco’s 
modified Eagle’s medium alone. This was the case for lung slices from immunocompe­
tent (C57BL/6) as well as immunodeficient (Rag2−/− Il2rγ−/−) mice. Having established 
this ground-breaking ex vivo PCLS system, the authors then highlight its potential 
applications by examining the susceptibility of P. murina to commonly used antifungal 
treatments such as trimethoprim-sulfamethoxazole and echinocandins (14, 15).

This important paper represents a significant breakthrough for the Pneumocystis 
research community and medical mycologists at large. From an academic perspective, 
the observation of Munyonho et al. that P. murina forms fungal aggregates, poten­
tially biofilms, in the tissue slices is intriguing. This observation, which is consistent 
with previous reports (16), paves the way toward the experimental dissection of this 
phenomenon as well as the mechanisms by which Pneumocystis species adhere to and 
scavenge from host tissue. Some limitations, such as the lack of a systemic immune 
response in the tissue slices, will influence their utility in the dissection of antifungal 
immune responses. Nevertheless, the native lung environment and the heterogeneity 
of resident cells are preserved in PCLS. For example, alveolar macrophages and alveolar 
dendritic cells are critical for the immune response against Pneumocystis (17, 18), and 
imaging of these cells in lung slices reveals similar antigen uptake and presentation 
when compared with in vivo imaging techniques such as intravital stabilized lung 
imaging (19). Looking forward, the use of PCLS in conjunction with advanced microflui­
dics and live imaging is likely to facilitate studies of the dynamics of immune recognition 
of Pneumocystis while reducing animal usage. Transcriptomic analyses of infected PCLS 
are likely to provide complementary information about Pneumocystis pathobiology and 
immune activation (20). The growth of Pneumocystis on PCLS might even empower 
forward genetics to yield mutants capable of independent growth on appropriately 
supplemented media in vitro.

Precision-cut tissue slices can also be prepared from organs such as the brain, liver, 
and pancreas, as well as from different species including rodents, monkeys, and humans. 
Indeed, in several recent studies, PCLS from a variety of species, including human, have 
been used to elucidate the adherence of other microbial pathogens and local cytokine 
responses against these pathogens (21–24). Therefore, from a clinical perspective, this 
new paper adds to the recent successful application of ex vivo PCLS systems for modeling 
lung disorders (25, 26) and for studies of asthma (27), chronic obstructive pulmonary 
disease (COPD) (28), and idiopathic pulmonary fibrosis (29). Organotypic brain slice 
cultures have also been used successfully to study neuroimmune responses to brain 
infections with Cryptococcus neoformans (30), a fungal pathogen that usually infects the 
lung initially but later disseminates to cause injury to the brain. Pneumocystis infections 
of the central nervous system have been reported in patients with advanced HIV disease 
(31, 32), but these remain understudied. Therefore, the development of organ­specific 
approaches for Pneumocystis also provides a unique opportunity to study fungus-host 
interactions in extra-pulmonary infections. Also, the availability of surgically resected 
lung and brain tissue offers exciting translational opportunities to use precision-cut 
tissue slices to study human­specific host-pathogen interactions, as well as to streamline 
the evaluation of new antifungal agents, thereby accelerating the pace of therapeutic 
advancements.

In summary, the study by Munyonho et al. represents an exciting step forward in 
Pneumocystis research. The development of a viable ex vivo model using PCLS will not 
only enrich our understanding of Pneumocystis biology but will also potentially shape 
how we approach PCP treatment and prevention.
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