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Abstract

The Mnemonic Similarity Task (MST: Stark et al., 2019) is a modified recognition memory task 

designed to place strong demand on pattern separation. The sensitivity and reliability of the MST 

make it an extremely valuable tool in clinical settings. We develop new cognitive models, based 

on the multinomial processing tree framework, for two versions of the MST. The models are 

implemented as generative probabilistic models and applied to behavioral data using Bayesian 

graphical modeling methods. We demonstrate how the combination of cognitive modeling and 

Bayesian methods allows for flexible and powerful inferences about performance on the MST. 

These demonstrations include latent-mixture extensions for identifying individual differences in 

decision strategies, and hierarchical extensions that measure fine-grained differences in the ability 

to detect lures. One key finding is that the availability of a “similar” response in the MST reduces 

individual differences in decision strategies and allows for more direct measurement of recognition 

memory.
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Introduction

The Mnemonic Similarity Task (MST: Stark et al., 2015, 2019) is a modified recognition 

memory task designed to place strong demands on pattern separation. The most common 

form of the task involves two phases. The first is a study phase, in which a participant 

is presented with a sequence of stimuli, and is given a simple task to encourage active 

encoding. The second phase is a test phase, in which a sequence of items are presented and 

the participant must indicate whether or not they were presented on the study list. The key 
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innovation of the MST is that the test phase includes lure stimuli that are similar to, but 

not the same as, studied stimuli. The degree of the similarity is often quantified, so that an 

MST involves a range of different levels of lure stimuli. In one version of the MST, the only 

possible response options are “old” and “new”, which means that lure stimuli are correctly 

classified as new. In another version, the possible response options are “old”, “similar”, and 

“new”, which means the lure stimuli are correctly classified as similar.

Through the introduction of lure stimuli, the MST provides a more fine-grained test of 

recognition memory. Its sensitivity and reliability have made it an extremely valuable 

tool in clinical settings for identifying hippocampal dysfunction associated with healthy 

aging, dementia, schizophrenia, depression, and other disorders. The standard empirical 

measure of lure performance is the Lure Discrimination Index (LDI), which is the difference 

in the probability of a “similar” response to a lure compared to the probability of a 

“similar” response to a new item. An alternative, and potentially complementary, approach 

to empirical measures like the LDI is to use cognitive models of task behavior to make 

inferences about people’s underlying memory systems and decision processes. Model-based 

approaches have a long history in clinical assessment and have been applied to diagnostic 

tasks involving recognition (Snodgrass & Corwin, 1988), recall (Alexander et al., 2016; Lee 

et al., 2020), and semantics (Chan et al., 2001; Westfall & Lee, 2021).

Signal Detection Theory (SDT: Green & Swets, 1966; MacMillan & Creelman, 2004) 

is widely used as a model of recognition memory in tasks that do not incorporate lure 

stimuli. In these models, the old and new stimuli correspond to the SDT signal and 

noise distributions. One way to extend the SDT model to the MST would be to introduce 

additional distributions located between the signal and noise distributions representing the 

various levels of lure stimuli. This extension has been successfully used for the old-new 

task (e.g. Villarreal et al., 2022). For the old-similar-new task, however, an extended 

SDT approach also requires introducing a second decision criterion associated with the 

“similar” response. This makes the strong assumption that a “similar” response is based on 

a recognition memory strength that is too strong for a “new” response but too weak for an 

“old” response. Conceptually, as argued by Stark et al. (2019, p. 940), this assumption seems 

problematic. When presented with a lure item, it seems at least possible that a participant 

actively remembers the similar item presented during study, and is able to discriminate that 

item from the one being presented. Such a mental comparison would provide active evidence 

for a “similar” response, contrary to the assumptions of a SDT model.

A different cognitive modeling framework is provided by discrete models based on 

multinomial processing trees (MPTs: Batchelder & Riefer, 1980; Erdfelder et al., 2009; 

Kellen & Klauer, 2014), which are also widely used to model standard recognition memory 

tasks. The most common MPT model of recognition memory is the two-high threshold 

model. It assumes that when an old item is presented, there is some probability that it 

is remembered and an “old” response is made. If it is not remembered, the participant is 

assumed to guess, which could lead to either an “old” or “new” response. On the other hand, 

if a new item is presented, there is a probability it is remembered that this item was not 

studied, leading to a “new” response. Otherwise, the same guessing process is used. The 

two-high threshold model, in this sense, is consistent with the intuition that it is possible for 
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an old item being remembered, but also for a new item to be remembered not to have been 

studied (Klauer & Kellen, 2018).

In this article, we develop new MPT models of the study-test MST tasks with both old-new 

and old-similar-new response options. The models are implemented as graphical models 

(Lee & Wagenmakers, 2013). This allows Bayesian methods of inference to be applied, 

and also allows the core task models to be extended to provide accounts of individual 

differences in lure discriminability and response strategies. We demonstrate these features 

of the modeling approach in case studies using previously collected data. The structure of 

the remainder of this article is as follows. In the next section, we develop the two basic 

MPT models of the MST. We then describe the data used in the case studies. The first case 

study focuses on the old-new MST. The second case study focuses on the old-similar-new 

MST. We conclude by discussing how the models help measure and understand individual 

differences in recognition memory, and emphasize the role of Bayesian graphical models 

in allowing the flexible development of useful models while providing rigorous statistical 

inference.

New MPT Models of the MST

MPT Model of the Old-New Task

The two-high threshold model can naturally be extended to the MST, using the probability 

trees shown in Figure 1. There are three trees, corresponding to old, new, and lure stimuli. 

The processing of old stimuli is identical to the two-high threshold model, with probabilities 

ρ of remembering and γ of guessing old. The processing of new stimuli is almost identical 

to the two-high threshold model, except that the probability of remembering that an item 

was not studied is now ψ, which is potentially different from ρ. A weakness of the two-high 

threshold model is that it has to assume for identifiability that these probabilities are equal. 

It seems psychologically plausible, however, that these probabilities could be different, and 

the additional information provided by the MST design and its introduction of lure stimuli 

allows the equality constraint to be removed.

Most importantly, the MST model adds assumptions about processing lures. It is assumed 

that the first step is an attempt to remember the studied item on which the lure is based. 

If memory succeeds, there is then a probability δl that the presented lure is discriminated 

from the remembered item. If both memory and discrimination succeed, a “new” response is 

made. If memory succeeds but discrimination fails, an “old” response is made. If the studied 

item is not remembered, the same guessing process applies as for old and new stimuli. The 

δl discriminability applies to lures of type l, allowing for different probabilities depending on 

how similar the lure is to the previously studied item.

Collectively, these assumptions mean that the probability of responding “old” to an old item 

is

θ = ρ + (1 − ρ) γ,

(1)
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because it could arise either by remembering or guessing. The probability of responding 

“old” to a new item is

θ = (1 − ψ) γ,

(2)

because it can only arise by guessing. Finally, the probability of responding “old” to a level l
lure item is

θ = ρ (1 − δl) + (1 − ρ) γ,

(3)

because it could arise by remembering the relevant study item but failing to discriminate it 

from the presented item, or by failing to remember and then guessing.

MPT Model of Old-Similar-New Task

The MPT model of the old-similar-new MST requires two additional changes, as shown 

in Figure 2. The first is that guessing can produce “old”, “similar”, or “new” responses. 

The model has probabilities for all three possibilities, γo, γs, and γn, with the constraint 

γo + γs + γn = 1. The second change is that a “similar” response is made if a remembered 

item is distinguished from a presented lure. In the old-new task, this response is “new”, 

because all that can be indicated is that the item was not on the study list. In the old-similar-

new task, it can be identified as a lure item via a “similar” response.

The model now makes predictions about the probability of “old”, “new”, and “similar” 

responses for each type of presented item. For an old item, these probabilities are

θ = (ρ + (1 − ρ) γo, (1 − ρ) γn, (1 − ρ) γs),

(4)

where the vector θ lists the probabilities for “old”, “new”, and “similar” responses, in that 

order. For a new item, the probabilities are

θ = ((1 − ψ) γo, ψ + (1 − ψ) γn, (1 − ψ) γs) .

(5)

Finally, the probabilities for a level l lure item are

θ = (ρ(1 − δl) + (1 − ρ) γo, (1 − ρ) γn, (1 − ρ) γs) .

(6)
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Experiment

Participants

A total of 21 participants (13 female, mean age 21 years, age range 18–24 years) were 

recruited through the Sona Systems experimental management system at the University of 

California at Irvine, which organizes the participation of students in science experiments for 

course credit. All participants signed consent forms approved and conducted in compliance 

with the Institutional Review Board of the University of California at Irvine.

Methods

Participants were given both old-new and old-similar-new versions of the MST using 

different stimulus sets. In both tasks 128 images were studied while completing an indoor/

outdoor task to encourage active encoding (2.0s duration, 0.5s ISI). During testing, 192 

images were presented (2.0s duration, 0.5s ISI), made up of 64 repeated old images, 64 new 

images, and 64 lure images. The order of the task and the two stimulus sets assigned to each 

task were counterbalanced across participants.

Participants indicated their responses via on-screen button clicks. We used a web-based 

version of the MST (Stark et al., 2021) written in JavaScript using the jsPsych library 

(De Leeuw, 2015) to allow for remote testing. It is a mature, free, stable library that has 

been rigorously tested even for demanding reaction time-based experiments (De Leeuw & 

Motz, 2016; Hilbig, 2016; Pinet et al., 2017). In addition, we integrated the task with the 

open-source JATOS package (Lange et al., 2015) to provide a reliable means of securely 

administering test sessions on the web and managing the data.

In the MST, lure images have an empirically-derived “mnemonic similarity” in relation to 

their studied counterpart based on an independent assessment of how frequently each image 

is incorrectly judged to be identical to the study image (Lacy et al., 2011; Yassa et al., 2011). 

In the MST, this continuous probability is binned into five levels with level 1 lures being the 

most similar and level 5 lures being the least similar.

Behavioral Results

Accuracy ranged between 30% and 86% for the old-new task with a mean of 68%. and 

between 22% and 84% for the old-similar-new task with a mean of 62%. The product-

moment correlation for participant accuracy across the two tasks was r = 0.77. This is 

consistent with previous findings. For example, Stark et al. (2015) found LDI measures for 

these tasks to have a correlation of 0.79.

MPT Model for the Old-New MST

Basic Model

Figure 3 shows a graphical model representation of the MPT model for the old-new MST. In 

graphical models, nodes represent latent parameters and observed information, and specify 

how they are assumed to be related to one other. Children depend on their parents in the 

graph structure, and encompassing plates identify independent replications of the graph 
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structure. Using the notation adopted by Lee & Wagenmakers (2013), the model parameters 

ρ, ψ, γ, and δ = (δ1, …, δ5) are shown as circular and unfilled nodes, because they represent 

continuous latent parameters. Whether the stimulus item on trial t is an old, new, or level 

l lure is represented by st. This node is square and shaded, because it represents discrete 

observed information. The model parameters and item information together determine the 

probability θt of an “old” response. This is shown as a double-bordered node because it 

is a deterministic function of the parameters and item information. Finally, the observed 

behavior on trial t is yt = 1 if the response is “old” and yt = 0 if the response is “new”. This is 

discrete and observed, and depends on the response probability θt. The trial-level information

—the item information, response probability, and observed response—is encompassed by a 

plate that indicates the replication of this graph structure across trials.

We implemented the graphical model in JAGS (Plummer, 2003), which is a high-level 

scripting language that automates fully Bayesian inference based on computational methods. 

Throughout this article, we generally sampled models using 8 independent chains with 1000 

samples each after discarding 1000 burn-in samples. Convergence was assessed by visual 

inspection of traceplots and the standard R statistic (Brooks & Gelman, 1997). JAGS scripts 

and MATLAB code for applying the models are provided in supplementary information.

Descriptive Adequacy—Figure 4 summarizes the descriptive adequacy (or “fit”) of the 

model to each participant. Each panel corresponds to a participant, and their behavior is 

shown by the orange line. The line follows the item ordering old (O), level 1 lure (L1), 
level 2 lure (L2), …, level 5 lure (L5), and new (N). This ordering corresponds to decreasing 

similarity of the test item to a studied item. The line then indicates the proportion of “old” 

responses to each item type made by the participant. Optimal performance would be 100% 

“old” responses for old items and 0% “old” responses for all other items. The participants 

are labeled A–U and ordered in terms of decreasing overall accuracy across the panels. It is 

visually clear that more accurate participants show closer to optimal behavior, with lines that 

decrease as items become less similar.

The blue cross markers in Figure 4 show the mean of the posterior predictive distribution 

for the model and the lines above and below show the 95% credible interval. The posterior 

predictive distribution can be interpreted as the model’s attempt to re-describe the behavioral 

data. A descriptive adequate model should match the behavioral data. It is clear that 

the MPT model does this well for almost all of the participants. It closely matches the 

proportion of “old” responses to each item type, except for a couple of the worst-performed 

participants (e.g., Participants S and T). Most importantly, the model is able to capture the 

individual differences in participant behavior. For example, Participant A mostly responds 

“new” to the lure items, while Participant Q mostly responds “old”. The model is able to 

describe both of these extremes, and the intermediate sorts of behavior shown by the other 

participants.

Inferences—Figure 5 shows the parameter inferences made by the models. The left panel 

shows the relationship between the two memory parameters ρ and ψ. The right panel 

shows the relationship between ρ and the guessing old probability γ. Each participant’s joint 
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posterior with respect to the pair of parameters is summarized by a marker for the posterior 

mean and error bars for 95% credible intervals for each marginal posterior. The two memory 

parameters are modestly correlated with each other, but are not identical. This is evidence 

in favor of the modeling assumption to distinguish between remembering that an item was 

studied versus remembering that an item was not studied. The memory and guessing old 

parameters appear to vary independently across participants, consistent with them measuring 

different memory and decision making processes.

Figure 5 superimposes colored squares that suggest a possible interpretation of the 

individual differences revealed by the parameter inferences. Each color corresponds to 

a potential interpretable subgroup. The yellow and green squares represent a different 

sort of contaminant behavior. In the left panel, it is clear that Participants S, T, and 

U in these subgroups have very low memory performance. In the right panel they are 

separated into Participants S and T who guess “old” and “new” about equally often, and 

Participant U (and potentially Q) who almost always respond “old”. Random responding 

and repeated responding are two common sorts of contaminant behavior (Zeigenfuse & Lee, 

2010), and seem likely explanations for the poor performance of these participants. These 

interpretations are highly consistent with the observed behavior of Participants S, T, and U 

in Figure 4.

The right panel of Figure 5 identifies subgroups among participants who performed well 

in the task. The darker blue subgroup that includes Participants L, M, N, O, P, and R are 

inferred to have higher base-rates of guessing “old” and often have worse memory. The 

lighter blue subgroup includes the participants with the best memory and a lower probability 

of guessing “old”. This second subgroup generally corresponds to the participants with the 

greatest task accuracy.

Extension to Model Individual Differences

One way to incorporate the exploratory suggestion of subgroups into formal modeling is by 

extending the basic model to have hierarchical latent mixtures. As demonstrated by Bartlema 

et al. (2014, see also Lee 2018), hierarchical latent-mixture models provide a general 

statistical way of extending the cognitive models to account for two sorts of individual 

differences. The latent mixture extension allows for qualitatively different subgroups of 

participants, while the hierarchical extension allows for continuous variation within the 

subgroups. The latent mixture extension thus addresses both the contaminant behavior and 

the different types of attentive behavior. Intuitively, each component in the latent-mixture 

model corresponds to one of the colored boxes, and represents a different task strategy. 

The hierarchical extension then allows for variation in the parameters of participants within 

the same component, and represents fine-grained variability in exactly how a strategy is 

executed.

Figure 6 shows a graphical model that incorporates these extensions. There are five 

components in the latent-mixture model, indexed by a latent discrete parameter zi for 

the ith participant. The first two components correspond to attentive responding and 

focus on individual differences in the memory ρi and guessing base-rate γi individual 
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parameters. These parameters are assumed to be drawn from overarching truncated Gaussian 

distributions that are different depending on whether zi = 1 or zi = 2. In particular, the 

subgroup means are constrained to to be different with the first “low memory” subgroup 

having lower mean memory μρ
1 < μρ

2 but greater base-rate of guessing “old” μγ
1 > μγ

2 than 

the second “high memory” subgroup. Intuitively, this means zi = 1 corresponds to the dark 

blue strategy in Figure 5, in which worse memory for old items is compensated for by 

increasing guessing “old”, while zi = 2 corresponds to the light blue strategy in which old 

items are remembered better and the base-rate of guessing “old” is lower. The remaining 

three components correspond to different contaminant strategies, so that if zi = 3, there is 

always a 50-50 probability of responding “old” (θ = 1
2), if zi = 4 there is a high probability 

of responding “old” (θ = 0.99), and if zi = 5 there is a high probability of responding “new” 

(θ = 0.01).

The latent subgroup indicator is sampled for each participant from a categorical distribution 

zi ∼ categorical(ϕ) so that ϕ = (ϕ1, …, ϕ5) represents the base rate of each strategy. The base-

rate itself is given a Dirichlet distribution ϕ ∼ Dirichlet(1, …, 1) which corresponds to the 

assumption that all possible base-rates are equally likely. The memory for absence ψi and 

the discriminability probabilities δi do not define the proposed strategy differences and so 

continue to be allowed to vary independently across individuals.

Inferences—Figure 7 shows the inferences about subgroup membership, represented by 

the posterior distribution of zi, made by the model for each participant. The subgroup 

inferences largely match the proposed groupings in Figure 5. The most accurate Participants 

A–K are inferred to belong to the “high memory” group, and less accurate Participants 

L–R are inferred to belong to the “low memory” group. The exception is Participant 

J, whose classification is uncertain. There is also significant uncertainty for Participant 

H. For the remainder of the participants the inferences about group membership are 

relatively confident, because the most likely subgroup has most of the posterior mass. The 

three participants anticipated to show contaminant behavior are inferred to belong to the 

appropriate “random” or “always respond old” subgroups.

While the subgroup inferences make sense, given the assumption of the different possible 

strategies, it is important to test for the evidence of these strategies as an account of 

individual differences. In particular, evidence for dividing the non-contaminant participants 

into two subgroups is important. (It could be argued that it is always useful to allow for 

the possibility of contaminant behavior, even if it is not observed in a specific data set). 

Evidence for two qualitatively different forms of task-attentive behavior is provided by the 

Bayes factor comparing a model that includes the subgroups to one that does not.

We approximated this Bayes factor using the posterior distribution of ϕ1, which corresponds 

to the base-rate of “low memory” participants. If this base-rate is zero, the model reduces 

to having just one account of task-attentive behavior. Thus the Savage-Dickey method for 

estimating Bayes factors, which compares the ratio of prior to posterior densities at the point 

in parameter space where a more general model reduces to a nested special case, can be 
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used (Wetzels et al., 2010). The Bayes factor is BF10 = 5, meaning that the data are five 

times more likely under the model that incorporates the two subgroups. A figure showing 

the posterior distributions of the base-rate probabilities ϕ is provided in the supplementary 

information.

Extension to Model Discriminability

The inferred discriminabilities δi = (δi1, …, δi5) measure the ability of the ith person to 

discriminate a remembered study item from a current item on a test trial. In the modeling 

thus far, they are assumed to be independent. A stronger assumption would impose an 

order constraint, corresponding to the idea that more similar lures are more difficult to 

discriminate. Such an order constraint could be imposed in a strong way for each individual 

δi1 < … < δi5, or in a weaker way in a hierarchically extended model by applying it to the 

mean of group distributions for each level of lure.

We pursue an alternative approach using a model of the relationship between similarity 

and discriminability. This is also a form of hierarchical extension, specifying additional 

modeling assumptions about the relationship in terms of parameters that can vary across 

individuals. In an exploratory way, we observed that the inferences about δi in the 

unconstrained model showed a mostly monotonic and often S-shaped (sigmoidal) pattern 

of increase in the probability of discrimination as lures become easier to distinguish. A 

figure showing these results is provided in the supplementary information.

On this basis, we propose the logistic model relating lure similarity to discrimination 

probability

δil = 1
1 + exp −βi

l
nl + 1 − τi

,

(7)

where τ can be interpreted as a threshold for discriminability and β can be interpreted as 

a slope controlling how quickly discriminability increases. Figure 8 shows three specific 

examples of this relation that help understand the interpretation of the parameters. The lure 

similarity is normalized to lie between 0 and 1, so that the model is applicable to MST 

designs with any number of lure levels. The five levels for the current experiment have been 

mapped to normalized similarities of 1 ∕ 6, …, 5 ∕ 6. This is achieved by the l
nl + 1 − τ  term 

in the shift of the logistic. Accordingly, smaller values of τi mean that the discriminability 

probability begins to increase for more difficult lures. The specific examples show that for 

τi = 0.25 there is already some probability of discriminating level 1 lures and discrimination 

is near perfect for level 2 lures. For τi = 0.67, in contrast, level 4 lures are discriminated 

about half the time and only the least similar level 5 lures are consistently discriminated. The 

specific examples also show how slopes ranging from βi = 10 to βi = 20 impact the rate of 

increase in discriminability.
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Figure 9 shows a graphical model that implements the hierarchical extension for 

discriminability. The key change is that δi now becomes a deterministic function of βi and τi. 

In this model, only the latent-mixture components corresponding to attentive task behavior 

are included. Participants S, T, and U identified as contaminants by the analysis in Figure 7 

are excluded from the analysis.

This model remains descriptively adequate using the same approach to posterior predictive 

analysis presented in Figure 4. This is an important finding, since the model has been 

significantly extended by introducing the two strategies, and significantly constrained by 

the logistic relationship between lure similarity and discriminability. A figure showing the 

posterior predictive analysis for this model is provided in the supplementary information.

Inferences—Figure 10 summarizes the inferences about the relationship between lure 

similarity and discriminability for each participant. The solid lines show the logistic function 

corresponding to the inferred posterior means of the slope βi and threshold τi for the ith
participant. The violin plots show the posterior distributions for each lure level. The slopes 

are reasonably similar: almost all of the participants have low discriminability for the most 

difficult level 1 lures, near perfect discriminability for the easiest level 5 lures, and a steady 

rate of increase between those extremes. There is much more variability in the thresholds 

at which the increase in discriminability begins. For example, Participants D and E begin 

to show increasing discriminability for the level 2 lures, Participants G and H begin to 

increase for the level 3 lures, and Participants K and L begin to increase for level 4 lures. 

The interpretable variability in the threshold τi suggests that it is a useful measure of lure 

discrimination. It can be interpreted as a measure of how similar or different lures need to be 

so that a participant has some ability to discriminate them from remembered studied items.

Figure 11 shows one way in which the model can be used to measure participants memory 

based on their MST performance. The left panel summarizes the joint posterior distribution 

of the memory ρ and threshold τ parameters. Markers correspond to posterior means and 

error bars show 95% credible intervals. These two parameters capture the different aspects 

of memory assessed by the MST. The memory parameter corresponds to the ability to 

recall studied items. It essentially corresponds to the memory ability assessed by a standard 

recognition memory task. In support of this, the correlations of the posterior mean of ρ
with a standard frequentist d′ measure of discriminability are r = 0.81 between old and new 

items and r = 0.54 between old and lure items. The threshold parameter, on the other hand, 

corresponds to the ability to discriminate remembered items from similar ones presented at 

test. It corresponds to the pattern separation capabilities that the MST aims to measure.

The results in Figure 11 show that these abilities vary largely independently across the 

participants. Memory recall probabilities can vary from about 40% to about 80% and 

thresholds can vary from about 20% to 80% across the normalized similarity scale. Four 

illustrative participants are highlighted in Figure 11 to emphasize the usefulness of this 

analysis. They approximately represent the four possibilities of low versus high memory 

and low versus high discriminability. The behavioral performances of these participants, as 

originally presented in Figure 4, are shown in the four right hand panels. Participants N and 
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L are inferred to have worse discriminability than Participants C and A, which is evident 

behaviorally because they often respond “old” to lures. Participants N and C are inferred to 

have worse memory than Participants A and L, which is evident behaviorally because they 

fail to respond “old” to old stimuli more often.

MPT Model for the Old-Similar-New MST

Basic Model

We implemented the basic MPT model for the old-similar-new MST as a graphical model, 

following the same approach used to implement the old-new model in Figure 1. A figure 

showing the graphical model is provided in the supplementary information. The key change 

is that the behavioral data now take the form yt = 1 if the participant responded “old” on 

the tth trial, yt = 2 if they responded “new”, and yt = 3 if they responded “similar”. In the 

same way, the trial information is extended to st = 1 for old study items, st = 2 for new items, 

and st = 3 for lures. The choice probabilities θt are given by Equations 4, 5, and 6 for “old”, 

“new”, and “similar” responses.

Inferences—Figure 12 summarizes the inferences from applying this basic model to 

the old-similar-new MST data. There are two additional panels, showing the relationship 

between memory ρ and the additional guessing similar γs parameter, and between the 

guessing old γo and guessing similar γs parameters. Once again, there is a clear correlation 

between remembering an item was studied and remembering it was not studied. The 

analysis of memory and guessing parameters suggests that Participants R, S, and U may 

be contaminants. These three participants have much lower memory than the others. 

Participants R and S guess “old” more often than most other participants, perhaps to 

compensate for their poor memory. Participant U, on the other hand, appears to compensate 

by guessing “similar” with high probability. This suggests the need to consider an additional 

form of contaminant behavior based on repeatedly making “similar” responses.

Unlike the old-new analysis in Figure 5, there is no obvious subgroup structure for the 

memory and guessing behavior of the remaining attentive participants. They appear to form 

a single group with high memory probabilities, low probabilities of guessing “old” and 

moderate probabilities of guessing “similar”.

Extension to Model Individual Differences

We used the same modeling extensions and analyses as used for the old-new model. 

First, we developed a latent-mixture extension that allowed for two subgroups of attentive 

responding, defined in the same way as for the old-new model, and four possible types 

of contaminants: random responding, repeatedly responding “old”, repeatedly responding 

“new”, and repeatedly responding “similar”.

Inferences—A figure summarizing the inferences of this model, in the same form as 

Figure 7, is provided in the supplementary material. Participant R is inferred to be a random 

responding contaminant, and Participant U is inferred to be a repeated similar responding 

contaminant. Participant S is the only one inferred to belong to the low memory subgroup. 
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The model comparison of the one vs two attentive subgroups, however, found some evidence 

in favor of a single group, with a Bayes factor of 2.3. A figure showing the posterior 

distributions for ϕ is provided in the supplementary information.

While this model comparison does not provide conclusive evidence, it does favor the simpler 

account that there is only one qualitative form of attentive behavior in this version of the 

task. Accordingly, we considered a modified latent-mixture account, using only the mixture 

component for attentive behavior involving the model parameter, as the basis of subsequent 

modeling. Under this account, Participant S is inferred to be completing the task rather than 

being a contaminant.

Extension to Model Discriminability

Finally, we extended the model hierarchically to incorporate the same logistic relationship 

between lure similarity and discriminability used for the old-new model. Figures showing 

the inferred δil discriminabilities for each participant and lure both with and without this 

constraining model are provided in the supplementary information.

Descriptive Adequacy—Figure 13 shows a posterior predictive analysis for checking 

the descriptive adequacy of this final model for the 19 non-contaminant participants. MST 

behavior is now summarized in terms of the probability of both “old” and “similar” 

responses for the different types of test items. These are shown by the solid orange and 

broken light-blue lines, respectively. The posterior predictive means are shown by plus 

and cross markers, respectively. There is generally excellent agreement for both types of 

responses for all of the participants.

Inferences—Figure 14 shows that the old-similar-new model also provides interpretable 

inferences about participants’ performance. The summary of the joint posterior distribution 

of memory ρ and the discriminability threshold τ again shows they can vary largely 

independently across individuals. Four illustrative participants again highlight the usefulness 

of this analysis. Participants S and H are inferred to have worse discriminability than 

Participants A and B. This is evident behaviorally because S and H often respond “old” to 

lures whereas A and B often provide the correct “similar” response. Participants S and A 

are inferred to have worse memory than Participants H and B. This is evident behaviorally 

because they fail to respond “old” to old stimuli more often.

The results in Figure 14 show that the old-similar-new model continues to provide the 

useful measurement demonstrated earlier for the old-new model. In particular, the memory 

parameter ρ captures the ability to remember studied items, which is the key ability 

measured by recognition memory tasks. Conceptually, ρ corresponds to what the recognition 

(REC) empirical measure is designed to measure. The REC is defined as the difference 

between the rate of “old” responses to old stimuli and the rate of “old” responses to new 

stimuli (Stark et al., 2013). The correlation between the posterior mean of ρ and the REC 

measure for the non-contaminant participants is r = 0.90. The discriminability threshold 

parameter τ captures the ability to distinguish between remembered and presented items that 

are similar, which is the key pattern separation capability measured by the introduction of 
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lures to the MST. Conceptually, τ corresponds to what the lure discrimination index (LDI) 

is designed to measure. The LDI is defined as the difference between the rate of “similar” 

responses to lures and the rate of “similar” responses to new stimuli (Stark et al., 2013). The 

correlation between the posterior mean of τ and the LDI measure for the non-contaminant 

participants is r = − 0.83.

Discussion

Model-based approaches to measuring people’s performance on diagnostic tasks have the 

ability to make inferences about latent psychological variables that cannot be directly 

measured. Models do this by formalizing and testing theoretical assumptions about task 

behavior and the structure of individual differences. In this article, we applied the model-

based approach to the MST with the goal of measuring people’s ability to remember 

studied items, their ability to discriminate remembered items from presented lures, and their 

strategic guessing behavior when their memory fails. We developed novel MPT models of 

both the old-new and old-similar-new versions of the MST, showing that they were able to 

describe task performance at the individual level in a psychologically interpretable way, and 

identify meaningful subgroups of participants, including contaminant behavior.

In applying the models to data we relied exclusively on Bayesian methods. These 

methods have a number of important advantages. The most fundamental advantage is 

that they represent the uncertainty about inferences in a principled and complete way. 

The measurement of psychological variables will always involve uncertainty, because data 

are limited and noisy, and the models can only ever be useful approximations to true 

cognitive processes. Posterior distributions represent not just the most likely parameter 

values representing memory ability and decision making performance are, but how likely 

alternative values are. This representation of uncertainty allows the confidence in substantive 

conclusions to be calibrated appropriately.

The sequence of models we developed highlights another important advantage of Bayesian 

methods, which is the flexibility to build more complete accounts of task performance and 

individual difference (Bartlema et al., 2014; Lee, 2018). We used hierarchical latent-mixture 

modeling to account for both qualitative and quantitative patterns of individual differences 

in the old-new task, and a different sort of hierarchical extension to model the relationship 

between lure similarity and discriminability. Bayesian methods, through Bayes factors and 

posterior predictive checks, allowed these extended models to be justified in terms of the 

behavioral data. The end results of the exploratory modeling process were MPT models 

for both tasks that characterized individual memory in terms of two key parameters: the 

probability of remembering items ρ and the ability to discriminate remembered items from 

lures τ.

Beyond the meaningful measurement of individuals and groups, the model-based approach 

provides new insights into the merits of tasks themselves. For the experimental data we 

considered, the old-similar-new task has the advantage of providing a simpler modeling 

account of individual differences. It did not require considering two subgroups of attentive 

behavior. It is possible this is a general advantage, since the presence of subgroups for 
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the old-new task emerges from different strategies participants use when they are unable 

to remember and discriminate. The lack of a “similar” response option potentially is the 

basis for these different strategies. When only “old” and “new” responses are available, 

participants have to decide what level of perceived agreement is low enough to warrant a 

“new” response even though there is some strength of remembrance. Only responding “old” 

when they are certain of a match leads to different behavior than only responding “new” 

when they are certain of no match leads to different responses, even for two participants with 

the same underlying memory properties. The availability of a “similar” response does not 

eliminate the need for decision strategies, but it does lessen their impact. At least for the 

current data, this made modeling significantly simpler.

A different perspective on the relationship between tasks is not to treat comparison as 

a competition to reveal the best task, but to treat them as at least partly complementary 

ways of measuring cognitive capabilities. As emphasized above, an advantage of model-

based approaches using Bayesian methods is that they can extend to capture task nuances. 

Combining behavior on both the old-new and old-similar-new tasks to improve individual 

measurement is a promising direction for future research. In the within-participants data 

we used, the product-moment correlation of the posterior expectations across participants 

between the two tasks is r = 0.45 for ρ and r = 0.53 for τ. Understanding what these 

correlations mean is a challenging question, because there are many (not mutually exclusive) 

possibilities. The lack of perfect correlation could arise from limitations in one or both tasks 

controlling what can be measured, or because the cognitive models are too simple and miss 

important characteristics of the underlying memory and decision processes, or because the 

underlying cognitive properties generating task behavior are not stable. The model-based 

approach to exploring these possibilities is to develop a joint or common-cause model that 

attempts to account for behavior on both tasks simultaneously (Lee, 2018; Turner et al., 

2013). For example, latent-trait joint models provides a more complete way to assess the 

relationships between parameters (Klauer, 2010), and complete common-cause models can 

test possibilities such as memory components of the model being consistent across tasks but 

decision processes changing to adapt to different task demands.

In its traditional frequentist form, the LDI measure from the MST is correlated with 

age-related cognitive decline, with various MRI measures of hippocampal function and 

connectivity, and has been used in clinical populations such as dementia, schizophrenia, and 

depression (see Stark et al., 2019, for a review). It has proven effective in various clinical 

trials including A4, tracking odds of clinical decline towards Alzheimer’s (Jutten et al., 

2021; Papp et al., 2021) and HOPE4MCI, showing drug treatment effects (Bakker et al., 

2015). Here, ρ and τ correlate well with REC and LDI and are meant to reflect similar 

concepts. However, the potential advantage of the model-based ρ measure is that it directly 

measures the latent process of remembering and does not consider “old” responses caused 

by guessing. In the same way, the potential advantage of τ is that is describes how a latent 

discrimination process changes with item similarity, in the situation where the item has been 

remembered, and is unaffected by guessing. This more direct measurement may make ρ and 

τ more sensitive measures of memory performance than empirical measures like REC and 
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LDI. Examining whether the mode developed here captures these established effects better is 

an important direction for future research.
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Figure 1. 
Probability tree representation of the MPT model for the old-new MST.
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Figure 2. 
Probability tree representation of the MPT model for the old-similar-new MST.
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Figure 3. 
Graphical model representation of the MPT model for the old-new MST.
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Figure 4. 
Descriptive adequacy of the MPT model for the old-new MST for all 21 participants.
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Figure 5. 
Parameter inferences of the MPT model for the old-new MST applied to the 21 participants.
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Figure 6. 
Graphical model representation of the MPT model for the old-new MST with a hierarchical 

latent-mixture extension to allow for individual differences.
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Figure 7. 
Subgroup inferences for each participant based on the hierarchical latent-mixture extension 

of the MPT model of the old-new MST.
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Figure 8. 
Modeled relationship between the similarity of a lure to a studied item and the probability of 

discriminating the lure.
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Figure 9. 
Graphical model representation of the MPT model for the old-new MST with two 

subgroups of attentive participants and a logistic relationship between lure similarity and 

discriminability.
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Figure 10. 
The relationship between lure similarity and discriminability for each participant.
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Figure 11. 
Inferences about remembering probabilities and discriminability thresholds for all 

participants in the old-new MST (left panel), and summary behavior for four illustrative 

participants (right panels).
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Figure 12. 
Inferences of basic old-similar-new MPT model, showing the relationship between the 

memory ρ, memory for absence ψ, guessing old γo, and guessing similar γs parameters for 

the 21 participants.

Lee and Stark Page 29

Behaviormetrika. Author manuscript; available in PMC 2024 March 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 13. 
Descriptive adequacy of the extended MPT model for the old-similar-new MST for the 19 

non-contaminant participants.
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Figure 14. 
Inferences about remembering probabilities and discriminability thresholds for all 

participants in the old-similar-new MST (left panel), and summary behavior for four 

illustrative participants (right panels).
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