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AZI2 mediates TBK1 activation at unresolved selective autophagy cargo receptor 
complexes with implications for CD8 T-cell infiltration in breast cancer
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ABSTRACT
Most breast cancers do not respond to immune checkpoint inhibitors and there is an urgent need to 
identify novel sensitization strategies. Herein, we uncovered that activation of the TBK-IFN pathway that 
is mediated by the TBK1 adapter protein AZI2 is a potent strategy for this purpose. Our initial observations 
showed that RB1CC1 depletion leads to accumulation of AZI2, in puncta along with selective macro-
autophagy/autophagy cargo receptors, which are both required for TBK1 activation. Specifically, disrupt-
ing the selective autophagy function of RB1CC1 was sufficient to sustain AZI2 puncta accumulation and 
TBK1 activation. AZI2 then mediates downstream activation of DDX3X, increasing its interaction with IRF3 
for transcription of pro-inflammatory chemokines. Consequently, we performed a screen to identify 
inhibitors that can induce the AZI2-TBK1 pathway, and this revealed Lys05 as a pharmacological agent 
that induced pro-inflammatory chemokine expression and CD8+ T cell infiltration into tumors. Overall, we 
have identified a distinct AZI2-TBK1-IFN signaling pathway that is responsive to selective autophagy 
blockade and can be activated to make breast cancers more immunogenic.
Abbreviations: AZI2/NAP1: 5-azacytidine induced 2; CALCOCO2: calcium binding and coiled-coil 
domain 2; DDX3X: DEAD-box helicase 3 X-linked; FCCP: carbonyl cyanide p-triflouromethoxyphenyl-
hydrazone; a protonophore that depolarizes the mitochondrial inner membrane; ICI: immune check-
point inhibitor; IFN: interferon; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; RB1CC1/ 
FIP200: RB1 inducible coiled-coil 1; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; 
TBK1: TANK binding kinase 1
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Introduction

ICIs (immune checkpoint inhibitors) can induce durable ther-
apeutic responses in cancer patients [1,2]. However, the applic-
ability of ICIs in breast cancer has been limited to triple negative 
breast cancer (TNBC) and ERBB2/HER2+ breast cancer sub-
types [3–6]. As such, it remains a formidable challenge to expand 
the prominent benefits of this treatment modality to most breast 
cancer patients with tumors that are not immunogenic (i.e., 
luminal subtype breast cancers). To overcome this problem, 
there is a need to identify strategies that can stimulate immuno-
logically quiescent or “cold” tumors into immunologically “hot” 
tumors, with increased tumor infiltrating lymphocytes (TILs) 
and improved responses to ICIs [5,7].

One approach to make “cold” tumors “hot” is through activat-
ing TBK1, a key signaling node in the IFN (interferon) pathway 
that is normally triggered by the presence of pathogens [8–12]. 
Current efforts to activate TBK1 in tumors are based on viral 
mimicry strategies with agonists that can activate typical TBK1 
adaptor proteins such as STING1 and MAVS [10,13–16]. These 
adapters normally function as sensors for cytoplasmic DNA and 
viral RNA respectively, but in the presence of therapeutic agonists, 
they can also promote TBK1 auto-phosphorylation by inducing 
higher order TBK1 oligomerization [8,17,18]. Subsequently, 
TBK1 activation leads to phosphorylation of downstream

transcription factors of the interferon response such as IRF3 and 
IRF7, along with expression of pro-inflammatory chemokines 
[19,20]. Hence, the use of STING1 and MAVS agonists represent 
a general viral mimicry strategy that can be potentially exploited to 
activate the TBK1-IFN pathway for improved ICI responses 
[10,14–16]. However, tumors can develop resistance mechanisms 
by silencing these adapter proteins [21] and it would be beneficial 
to uncover alternative strategies for this purpose.

Macroautophagy/autophagy is a lysosomal degradation 
pathway utilized by cells to degrade cargo that are enclosed 
within double membrane structures termed autophagosomes, 
for cytoplasmic quality control or recycling of metabolites 
[22,23]. More specifically, autophagy can be further classified 
into a more generic process termed “bulk autophagy” that 
degrades cytoplasmic material upon nutrient deprivation 
and “selective autophagy” that involves degradation of specific 
cargo such as viruses, bacteria, or damaged organelles [24– 
29]. In both processes, RB1CC1/FIP200 plays a key scaffold-
ing role to initiate autophagosome formation [30]. The N- 
terminal portion of RB1CC1 interacts with ATG13 and 
together with ULK1 and ULK2, this complex mediates nutri-
ent sensing signals from AMPK and MTOR to regulate bulk 
autophagy [31–34]. Alternatively, the C-terminal domain of
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RB1CC1 that shares homology with yeast Atg11, plays a role 
in selective autophagy and can interact with selective auto-
phagy cargo receptors such as SQSTM1/p62, CALCOCO2, 
TAX1BP1, CCPG1, NBR1 and OPTN [26,28,35–38]. It is 
also worth noting that this region of RB1CC1 interacts with 
the TBK1 adapter proteins AZI2/NAP1 and TBKBP1/ 
SINTBAD [38,39]. Moreover, TBK1 has been shown to be 
important in selective degradation of mitochondria (mito-
phagy), by phosphorylating the cargo receptors SQSTM1, 
OPTN and CALCOCO2 [28,40–42], highlighting the role of 
this kinase in the regulation of selective autophagy. Recent 
observations also suggest that selective autophagy can proceed 
in an LC3-lipidation independent manner, albeit less effi-
ciently [35,43,44]. Thus, it is possible that RB1CC1’s C termi-
nus can function independently from its N terminus that is 
crucial for instigating downstream processes involving LC3- 
lipidation machinery (e.g., ATG12–ATG5-ATG16L1).

More recently, it has been found that depletion of RB1CC1 
can lead to TBK1 hyper-activation [45,46]. Moreover, we have 
found that the activation of TBK1 upon loss of RB1CC1 can 
promote CD8+ T cell infiltration into mammary tumors and 
sensitize them to ICIs [39]. However, the mechanisms that 
orchestrate TBK1 activation in the absence of RB1CC1 
remains unclear and it is important to elucidate this process 
to uncover novel therapeutic strategies and agents that can 
sensitize breast cancers to ICIs. In this study, we uncovered a 
key role for the TBK1 adapter protein, AZI2, in mediating 
TBK1 activation at unresolved selective autophagy receptor 
complexes upon depletion of RB1CC1. Furthermore, we iden-
tified Lys05 as a therapeutic agent that can induce TBK1 
activation, leading to increased pro-inflammatory cytokine 
expression, interferon responses and CD8+ T cell recruitment. 
These findings establish a new parallel for TBK1-IFN pathway 
activation that is mediated by AZI2 and can be triggered by 
disruption of selective autophagy.

Results

RB1CC1 ablation leads to the formation of AZI2 puncta 
that colocalize with selective autophagy cargo receptors

TBK1 adapter proteins play a key role in the auto-activation 
of TBK1 by promoting higher order oligomerization of this 
kinase [17,18]. In order to understand the underlying 
mechanism for TBK1 activation upon depletion of RB1CC1, 
we have previously identified AZI2 as the key adapter protein 
that is essential for TBK1 hyper-activation under this circum-
stance [39]. We have also excluded the requirement of other 
TBK1 adapter proteins, TBKBP1 and TANK, in our prior 
study and have now found that other interferon pathway 
related TBK1 adapters STING1 and MAVS were not enriched 
upon depletion of RB1CC1 by CRISPR in MDA-MB-231 
breast cancer cells (Fig. S1A). This indicated that TBK1 acti-
vation in RB1CC1-deficient cells was not due to accumulation 
of STING1 or MAVS upon autophagy blockade [47,48]. To 
further validate this, we depleted STING1 and MAVS by 
siRNA in 231 cells with RB1CC1 KO, but neither of these 
perturbations diminished p-TBK1 (S172) levels (Fig. S1B).

Altogether, this provided justification for examining AZI2 as 
a key player in TBK1 activation upon depletion of RB1CC1.

One key feature that is associated with TBK1 adapter 
proteins upon activation is the change in their localization 
or oligomerization, such as the translocation of STING1 from 
the ER membrane to the Golgi [17]. Interestingly, when we 
examined tissue sections from transplanted polyoma middle T 
(PyMT) driven mammary tumors (designated as Ctrl cells) 
that can be induced to conditionally ablate RB1CC1 upon 
tamoxifen administration (designated as RB1CC1 KO cells) 
[39], we found that tumors formed by RB1CC1 KO cells 
displayed punctate AZI2 staining, while tumors formed by 
Ctrl cells exhibited mostly diffuse staining of AZI2 (Figure 
1A). To validate the in vivo observations, we took advantage 
of PyMT: sgAZI2 mammary tumor cells that we have gener-
ated previously [39] and re-expressed GFP-AZI2 in these cells, 
to allow for visualization of AZI2 localization in live cells, 
without the need for antibody staining (PyMT: sgAZI2: GFP- 
AZI2 cells, abbreviated as Ctrl +AZI2 cells and RB1CC1 KO 
+AZI2, before and after hydroxy-tamoxifen induced deletion 
of RB1CC1, respectively). By comparing Ctrl +AZI2 and 
RB1CC1 KO +AZI2 cells, it was evident that AZI2 formed 
punctate structures in the absence of RB1CC1 (Figure 1B). By 
establishing this in vitro system, we could also subject these 
cells expressing GFP-AZI2 to imaging flow cytometry (gating 
strategy depicted in Fig. S1C), to allow for high-throughput 
unbiased quantification of AZI2 puncta in cells. This ortho-
gonal method also revealed a stark increase in the percentage 
of cells with AZI2 puncta upon depletion of RB1CC1 (Figures. 
1C,D). These rigorous observations set the foundation for 
examining the novel phenomena of AZI2 puncta formation 
upon depletion of RB1CC1.

To understand these AZI2 punctate structures in more 
detail, we performed co-immunoprecipitation experiments of 
GFP-AZI2 with lysates from Ctrl +AZI2 and RB1CC1 KO 
+AZI2 cells respectively. The co-immunoprecipitated proteins 
from each cell type was then subjected to liquid chromato-
graphy-mass spectrometry (LC-MS) (Supplementary Table 1). 
A network analysis of proteins enriched in RB1CC1 KO 
+AZI2 cells, that have increased puncta formation, was then 
performed using STRING analysis [49]. Interestingly, this 
analysis revealed that AZI2 was interacting with selective 
autophagy cargo receptors such as TAX1BP1, NBR1 and 
SQSTM1 along with known interactors such as TBK1 (Fig. 
S1D). Crucially, when we performed immuno-fluorescence 
experiments in RB1CC1 KO +AZI2 cells, we could observe 
activated p-TBK1 (S172) staining that coincided with the 
locations of GFP-AZI2 puncta (Figure 1E). This indicated 
that AZI2 puncta were indeed the sites of TBK1 activation. 
Notably, colocalization of GFP-AZI2 with SQSTM1, 
TAX1BP1, NBR1 and OPTN reaffirms the mass spectrometry 
results (Figures. 1F–I), whereas only partial colocalization was 
observed for CALCOCO2 (Fig. S1E). Both AZI2 and TBK1 
have been implicated in the process of selective autophagy 
[26] and the presence of multiple selective autophagy cargo 
receptors at GFP-AZI2 puncta were in line with their coop-
erative functions during this process [36]. These selective 
autophagy receptors are usually recruited to ubiquitinated 
cargoes and indeed we observed colocalization of GFP-AZI2
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with ubiquitin as well (Figure 1J). We also inspected coloca-
lization with other key organelle markers such as the endo-
plasmic reticulum (PDIA4/ERP72), Golgi complexes

(GOLGA1/Golgin97), endosomes (RAB5A, RAB7A), lyso-
somes (LAMP1), mitochondria (TOMM20) and autophago-
somes (MAP1LC3B) but did not find substantial overlap

Figure 1. RB1CC1 ablation leads to the formation of AZI2 puncta. (A) micrographs showing immunohistochemical staining of AZI2 puncta (red arrows) in 
transplanted Ctrl or RB1CC1 KO tumors. Scale bar: 100 µm. (B) confocal imaging of GFP-AZI2 in Ctrl or RB1CC1 KO +AZI2 cells. Scale bar: 20 µm. (C) representative 
images for events gated from imaging cytometry analysis in D. Scale bar: 7 µm. (D) dot plots showing mean pixel intensity against max pixel intensity from imaging 
cytometry analysis of Ctrl or RB1CC1 KO +AZI2 cells. Bar chart shows percentage gated cells representing cells with GFP-AZI2 puncta. ****indicates p < 0.0001. (E-I). 
Confocal imaging of RB1CC1 KO +AZI2 cells showing colocalization of GFP-AZI2 with cells stained for (E) p-TBK1, (F) SQSTM1, (G) TAX1BP1, (H) NBR1, (I) OPTN and (J) 
ubiquitin. Scale bar: 20 µm. (K) model depicting the constituents colocalizing with GFP-AZI2 in puncta. 

AUTOPHAGY 527



between AZI2 and these organelle markers (Fig. S1E). Overall, 
we have found the formation of AZI2 punctate structures that 
are associated with activated TBK1, selective autophagy cargo 
receptors and ubiquitin upon depletion of RB1CC1 (Figure 
1K). This suggested that blockade of selective autophagy could 
lead to accumulation of unresolved AZI2-TBK1 signaling 
complexes.

AZI2 puncta formation is required for TBK1 activation 
and is downstream of cargo receptor aggregation

Upon identification of some of the molecular constituents within 
AZI2 puncta, we were then interested in dissecting the sequence 
by which these components were recruited to these protein 
complexes. Using PyMT: sgAZI2 mammary tumor cells [39] 
with re-expression of GFP (designated as Ctrl -AZI2 and 
RB1CC1 KO -AZI2 cells, before and after hydroxy-tamoxifen 
induced deletion of RB1CC1, respectively), we found that abla-
tion of RB1CC1 did not lead to TBK1 activation in RB1CC1 KO 
-AZI2 (Figure 2A). Contrastingly, in RB1CC1 KO +AZI2 cells, 
there was induction of TBK1 activation upon RB1CC1 depletion 
(Figures. 2A,B), reiterating a key role for AZI2 in this mode of 
TBK1 activation. Apart from its activation (p-TBK1 levels), in 
contrast to RB1CC1 KO +AZI2 cells, the recruitment of TBK1 
into punctate structures was also abolished in RB1CC1 KO 
-AZI2 cells (Figure 2C). In the case of cargo receptor puncta 
formation, RB1CC1 KO -AZI2 cells maintained the formation of 
SQSTM1, TAX1BP1, NBR1 and OPTN puncta (Fig. S2A), sug-
gesting that AZI2 does not function upstream of cargo receptor 
accumulation. Additionally, we found that cells depleted of 
TBK1 (−TBK1) still exhibited increased AZI2 puncta formation 
upon loss of RB1CC1 (Figures. 2D,E). Altogether, this indicated 
that AZI2 recruitment into punctate structures is a key event that 
occurs upstream of TBK1 activation, but likely downstream of 
selective autophagy cargo receptor complex formation.

To determine whether selective autophagy cargo receptor 
accumulation were indeed upstream events relative to AZI2 
recruitment and TBK1 activation, we utilized HeLa cells 
depleted of TAX1BP1, CALCOCO2, NBR1, OPTN and 
SQSTM1 (Penta KO cells) that were generated by Lazarou et 
el [42]. In HeLa cells, silencing of RB1CC1 led to increased p- 
TBK1 levels (Figure 2F, first 2 lanes), whereas this response 
was attenuated in the Penta KO cells (Figure 2F, Lanes 3–4). 
Similarly, we also found by immuno-fluorescence analyses 
that the AZI2 and p-TBK1 puncta formation that occurs 
upon silencing of RB1CC1 in HeLa cells, was abolished in 
Penta KO cells (Figures. 2G,H). In RB1CC1F/F: SQSTM1−/− 

cells [50], when we depleted RB1CC1 by adenovirus mediated 
Cre delivery (Ad-Cre), p-TBK1 and AZI2 puncta formation 
could still proceed (Figs. S2B-C). It is likely that the other 
cargo receptors could function redundantly in the absence of 
SQSTM1 alone since we do observe formation of TAX1BP1 
puncta in these SQSTM1 depleted cells (Fig. S2C). Altogether, 
our genetic analyses of the components within AZI2 puncta 
indicate that aggregation of selective autophagy cargo recep-
tors into puncta precedes AZI2 recruitment, which then leads 
to TBK1 activation (Figure 2I). Given the known functions of 
RB1CC1 and these other constituents in the process of selec-
tive autophagy [24], it is possible that the posited sequence of

events occur prior to RB1CC1 recruitment and phagophore 
formation. Thus, when RB1CC1 is genetically depleted, selec-
tive autophagy is stalled, leading to the accumulation of these 
upstream components that are normally recruited prior to the 
formation of the phagophore (Figure 2I).

AZI2 puncta formation and TBK1 activation are markedly 
induced upon inhibition of selective autophagy

If indeed AZI2 were recruited to puncta containing cargo 
receptors at the initial steps of selective autophagy, we should 
also be able to observe some level of AZI2 puncta formation 
upon induction of selective autophagy, even without deletion 
of RB1CC1 leading to further accumulation of AZI2 puncta. 
To investigate this, Ctrl +AZI2 cells were treated with HBSS 
(Hank’s buffered salt solution) or 20 µM FCCP (trifluoro-
methoxy-carbonylcyanide-phenylhydrazone) for 3 h to induce 
bulk or selective autophagy of mitochondria (mitophagy) 
respectively (Figure 3A). Interestingly, the formation of 
GFP-AZI2 puncta was prominent in FCCP treated cells but 
not HBSS treated cells, whereas RB1CC1 puncta formation 
could be observed under both conditions (Figure 3A). This 
observation was recapitulated using imaging cytometry assays, 
with a higher percentage of cells containing GFP-AZI2 puncta 
in FCCP-treated cells relative to control but not when bulk 
autophagy was induced by HBSS (Figure 3B). In contrast, by 
comparing Ctrl -AZI2 and RB1CC1 KO -AZI2 cells which 
express GFP only, no increase in puncta formation were 
observed by microscopy nor imaging flow cytometry (Figs. 
S2D-E). Moreover, neither HBSS treatment nor FCCP treat-
ment induced puncta formation in Ctrl -AZI2 cells, indicating 
that the puncta forming properties observed in Ctrl or 
RB1CC1 KO +AZI2 cells were due to AZI2 and not GFP 
(Fig. S2F). In addition to FCCP treatment to induce mito-
phagy, we could also observe GFP-AZI2 puncta formation 
upon treatment with other agents (i.e., MG132 and H2O2) 
that are known to induce other forms of selective autophagy 
(Fig. S3A). With FCCP treated Ctrl +AZI2 cells, we were also 
able to observe the kinetics of AZI2 puncta formation and 
TAX1BP1 puncta formation in more detail (Fig. S3B). 
Interestingly, we could observe increased TAXBP1 puncta 
per cell at 60 minutes post-FCCP treatment timepoints but 
increased GFP-AZI2 puncta were only observed at 120 min-
utes post-FCCP treatment (Fig. S3B). This observation sup-
ports the model of selective autophagy cargo receptor 
aggregation preceding AZI2 recruitment (Figure 2I). In the 
case of FCCP induced AZI2 puncta formation, it is also 
interesting to note that this stimulus for mitophagy induced 
AZI2 puncta that coincided with TAX1BP1 and OPTN, but 
not SQSTM1 (Fig. S3C). This suggests that there could still be 
specificity in the involvement of cargo receptors at the early 
stages of selective autophagy, with respect to different cargoes 
or stimuli. Altogether, this suggested that AZI2 puncta for-
mation is generally induced in various forms of selective 
autophagy but not starvation induced bulk autophagy.

RB1CC1’s N-terminus has been found to be important 
for LC3-lipidation and bulk autophagy in our recent study 
[31], while its C-terminus ATG11 homology domain has 
been reported to play a role in selective autophagy [26–28].
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Figure 2. AZI2 puncta formation is required for TBK1 activation and is downstream of cargo receptor aggregation. (A) immunoblots showing levels of RB1CC1, 
SQSTM1, GFP-AZI2, p-TBK1 and ACTB in Ctrl or RB1CC1 KO cells ± AZI2 expression. (B) confocal imaging showing formation of p-TBK1 puncta (white arrows) in Ctrl or 
RB1CC1 KO cells ± AZI2 expression. Scale bar: 10 µm. Bar chart shows quantification of p-TBK1 puncta per cell for each condition. (C) confocal imaging showing 
formation of TBK1 puncta (white arrows) in Ctrl or RB1CC1 KO cells ± AZI2 expression. Scale bar: 10 µm. Bar chart shows quantification of TBK1 puncta per cell for 
each condition. (D) immunoblots showing levels of RB1CC1, TBK1 and ACTB in Ctrl or RB1CC1 KO ± TBK1 expression. (E) confocal imaging showing formation of AZI2 
puncta (white arrows) in Ctrl or RB1CC1 KO cells ± TBK1 expression. Scale bar: 50 µm. (F) immunoblots showing levels of RB1CC1, TAX1BP1, CALCOCO2, NBR1, OPTN, 
SQSTM1, p-TBK1 and ACTB in HeLa or Penta KO cells treated with non-targeting or siRNA against RB1CC1. (G-H) confocal imaging showing formation of (G) AZI2 or 
(H) p-TBK1 puncta (white arrows) in HeLa or Penta KO cells treated with non-targeting or siRNA against RB1CC1. Scale bar: 10 µm. Bar charts showing quantification 
of puncta/cell. * indicates p < 0.05, ****indicates p < 0.0001. (I) flow chart showing sequence of key events related to TBK1 activation in selective autophagy. 
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We have previously generated mice with a RB1CC1 KI 
allele (mutation in residues 582–585 within RB1CC1’s N- 
terminus) that effectively inhibits LC3-lipidation to the 
extent of that observed in RB1CC1 KO cells [31,39] but 
we have found that the accumulation of the selective auto-
phagy cargo receptor, SQSTM1, is not as marked in 
RB1CC1 KI cells relative to RB1CC1 KO cells (Fig. S4A). 
Although, there was less SQSTM1 accumulation in RB1CC1 
KI cells, it was equivalent to that observed in ATG16L 
depleted cells (Fig. S4A). Since LC3-lipidation is not an 
absolute requirement for selective autophagy [35], the dif-
ference in SQSTM1 accumulation in RB1CC1 KI and 
RB1CC1 KO cells indicate that RB1CC1 KI cells still harbor 
residual selective autophagy activity through RB1CC1’s C- 
terminus. Accordingly, we were interested in dissecting the 
contributions of these specific domains of RB1CC1 toward 
the regulation of AZI2 puncta formation. To this end, we 
utilized RB1CC1 KI: sgAZI2: GFP-AZI2 cells that can be 
induced by hydroxy-tamoxifen to delete the floxed RB1CC1 
allele, leaving only the bulk-autophagy-defective RB1CC1 
KI allele [31] (abbreviated as RB1CC1 KI +AZI2 cells; 
these cells before induced deletion contain one functional 
RB1CC1 allele and are designated Ctrl +AZI2 cells). 
Interestingly, RB1CC1 KI +AZI2 cells did not exhibit any 

marked increase in GFP-AZI2 puncta formation when 
observed by microscopy nor imaging cytometry (Figures. 
3C,D) despite inhibition of LC3-lipidation in these cells 
[39]. Concomitantly, depletion of autophagy proteins 
involved in the LC3-lipidation machinery (e.g., ATG5 and 
ATG7) did not lead to TBK1 activation nor AZI2 puncta 
formation in Ctrl cells (Figure 4A–C) Recent reports have 
indicated that selective autophagy can occur without the 
LC3-lipidation machinery, albeit less efficiently [35,43,44]. 
This is further supported by our observation that depletion 
of ATG5 or ATG7 leads to less accumulation of SQSTM1 
and TAX1BP1 relative to cells lacking RB1CC1 (Figure 4A), 
suggesting selective autophagy flux was not completely 
blocked upon disrupting LC3-lipidation. Thus, our results 
indicate that disrupting LC3-lipidation (i.e., through 
expression of RB1CC1 KI or knockout of ATG5, ATG7) 
was not sufficient to induce AZI2 puncta and TBK1 activa-
tion (Figures 3C,D and 4A–C) because selective autophagy 
was not sufficiently perturbed.

Conversely, depletion of ATG13, that is required for 
both bulk and selective autophagy [24,32,33], could induce 
TBK1 activation and AZI2 puncta formation to the same 
degree as RB1CC1-depleted cells (Figs. S4B-D). To further 
ascertain that blocking selective autophagy is sufficient for                                    

Figure 3. AZI2 puncta formation and TBK1 activation are markedly induced upon inhibition of selective autophagy. (A) confocal imaging showing AZI2 (green) and 
RB1CC1 (red) puncta formation in Ctrl +AZI2 cells cultured under control, HBSS conditions or 20 µM FCCP treatment for 3 h. Scale bar: 10 µm. (B) dot plots from 
imaging cytometry analysis of Ctrl +AZI2 cells cultured under control, HBSS conditions or 20 µM FCCP treatment for 3 h. Bar charts showing quantification of 
percentage cells with GFP-AZI2 puncta. ***indicates p < 0.001, **indicates p < 0.01, ns indicates not significant. (C) fluorescence microscopy imaging of GFP-AZI2 
puncta in Ctrl or RB1CC1 KO or RB1CC1 KI cells +AZI2. Scale bar: 25 µm. (D) dot plots from imaging cytometry analysis of cells in C. Bar charts showing quantification 
for relative percentage of cells with GFP-AZI2 puncta. **indicates p < 0.01. 
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AZI2 puncta formation and TBK1 activation, we generated 
RB1CC1 C-terminal truncation mutants to specifically dis-
rupt its selective autophagy functions (Figure 4D). RB1CC1 
KO cells were reconstituted with doxycycline-inducible 
empty vector (+EV), wildtype RB1CC1 (+WT), RB1CC1 
residues 1–1200 (+1200), or residues 1–1300 (+1300). As 
expected, re-expression of WT RB1CC1 could rescue the 
increased p-TBK1 and SQSTM1 levels and the same can be 
observed for re-expression of RB1CC1 residues 1–1300 
(Figure 4D, Fig. S4E). However, re-expression of RB1CC1 
residues 1–1200 which lack both the coiled-coil regions that 
bind to some selective autophagy receptors such as 
TAX1BP1, and the claw domain of RB1CC1 (Fig. S4F-G), 
was deficient in rescuing elevated p-TBK1 and SQSTM1 
levels. Notably, the MAP1LC3B flux was still similar for 
cells with re-expression of WT and RB1CC1 residues 1– 
1200 (Figure 4E), indicating that residues 1–1200 of                                           

RB1CC1 maintains bulk autophagy functions in the absence 
of its selective autophagy function. Consistent with the 
effects on p-TBK1 levels (Figure 4D, Fig. S4E), we found 
that re-expression of WT and RB1CC1 residues 1–1300, but 
not RB1CC1 residues 1–1200, could reduce AZI2 puncta 
formation in RB1CC1 KO cells (Figure 4F). Taken together, 
these results indicate that inhibition of selective autophagy 
can contribute to the formation of AZI2 puncta and TBK1 
activation, while residues 1200–1300 of RB1CC1 appear to 
be critical for mediating this function.

DDX3X interacts with AZI2 and contributes to the 
expression of pro-inflammatory genes upon TBK1 
activation in RB1CC1 depleted cells

Upon TBK1 activation, adapter proteins such as AZI2 also play 
key roles in bridging downstream substrates with TBK1 to induce 

Figure 4. Depletion of genes required for selective autophagy induces AZI2 puncta and TBK1 activation. (A) immunoblots showing levels of RB1CC1, ATG5, ATG7, p- 
TBK1, SQSTM1, TAX1BP1 and ACTB in Ctrl, RB1CC1 KO, ATG5 KO and ATG7 KO cells. (B-C) confocal imaging of (B) GFP-AZI2 or (C) p-TBK1 puncta in Ctrl, RB1CC1 KO, 
ATG5 KO and ATG7 KO cells. Bar charts showing quantification for number of puncta per cell. ****indicates p < 0.0001. Scale bar: 20 µm. (D) immunoblots showing 
levels of HA-RB1CC1, p-TBK1, SQSTM1 and ACTB in RB1CC1 KO cells transduced with doxycycline inducible empty vector (+EV), RB1CC1 WT (+WT), RB1CC1 residues 1– 
1200 (+1200) or 1–1300 (+1300). (E) immunoblots showing levels of HA-RB1CC1, MAP1LC3B or ACTB in RB1CC1 KO cells transduced with doxycycline inducible empty 
vector (+EV), RB1CC1 WT (+WT) or RB1CC1 residues 1–1200 (+1200) ± 200 nM BafA1 treatment. (F) confocal imaging of GFP-AZI2 puncta in RB1CC1 KO cells 
transduced with doxycycline inducible empty vector, RB1CC1 WT, RB1CC1 residues 1–1200 or RB1CC1 residues 1–1300. Scale bar: 10 µm. Bar charts showing 
quantification for number of puncta per cell. ****indicates p < 0.0001, ns indicates not significant. 

AUTOPHAGY 531



their phosphorylation [51]. In the TBK1-IFN pathway, typical 
substrates include the transcription factors IRF3 or IRF7 [19,52]. 
Accordingly, we then investigated the levels of IRF3 and IRF7 in 
nuclear fractions of RB1CC1 KO cells. Although basal levels of 
nuclear IRF3 and IRF7 were observed in Ctrl cells, we did not 
observe any increased nuclear accumulation of either of these 
transcription factors upon RB1CC1 depletion (Fig. S5A). To 
identify potential substrates of TBK1 that could impinge on the 
IFN pathway, we revisited the mass spectrometry data of AZI2 
interacting proteins that play a role in innate immunity (Proteins 
highlighted in blue, Fig. S1D). Interestingly, we identified DDX3X 
as an AZI2 interacting protein, that has been reported to be                                                

phosphorylated by TBK1, leading to its increased association with 
IRF3 to promote IFN-related gene expression [53–55]. We vali-
dated the association between AZI2 and DDX3X by co-immuno-
precipitation, but the interaction between these two proteins 
(Figure 5A) and total levels of DDX3X (Fig. S5B) were not 
increased upon RB1CC1 ablation. Nonetheless, it is possible that 
the activation of TBK1 specifically in RB1CC1-deficient cells 
could lead to increased phosphorylation of DDX3X by TBK1. 
Indeed, we observed higher levels of p-DDX3X (S102) [56] in 
231 RB1CC1 KO cells relative to wildtype MDA-MB-231 cells 
(Figure 5B). We also observed an increased interaction between 
DDX3X and IRF3 in RB1CC1 KO +AZI2 cells relative to Ctrl 

Figure 5. DDX3X interacts with AZI2 and contributes to the expression of pro-inflammatory genes upon TBK1 activation in RB1CC1 depleted cells. (A) immunoblots of 
GFP and DDX3X showing levels of these proteins in inputs and IP:GFP fractions from Ctrl -AZI2, Ctrl +AZI2 and RB1CC1 KO +AZI2 cells. (B) immunoblots showing levels 
of RB1CC1, p-DDX3X (S102), DDX3X and ACTB in MDA-MB-231 WT and RB1CC1 KO cells. (C) immunoblots of DDX3X and IRF3 showing levels of these proteins in 
inputs and IP:DDX3X fractions from Ctrl -AZI2, RB1CC1 KO -AZI2, Ctrl +AZI2 and RB1CC1 KO +AZI2 cells. (D) confocal imaging of GFP-AZI2 puncta and DDX3X 
localization in Ctrl or RB1CC1 KO +AZI2 cells. Scale bar: 10 µm. (E) immunoblots showing levels of RB1CC1, DDX3X, IRF3, VCL and PARP1 in cytoplasmic and nuclear 
extracts from Ctrl or RB1CC1 KO +AZI2 cells. (F) immunoblots showing levels of RB1CC1, DDX3X and GAPDH in Ctrl or RB1CC1 KO +AZI2 cells. (G) bar charts showing 
relative mRNA levels of Cxcl9, Cxcl10 and Ccl5 normalized to Actb expression in Ctrl or RB1CC1 KO +AZI2 cells and respective shRnas. 
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+AZI2 cells and this effect was absent in RB1CC1 KO -AZI2 cells 
(Figure 5C). Moreover, increased nuclear DDX3X levels were 
found in RB1CC1 KO +AZI2 cells compared to Ctrl +AZI2 cells 
(Figures. 5D,E) and RB1CC1 KO MDA-MB-231 cells relative to 
wildtype cells (Fig. S5C). These data suggest that AZI2 constitu-
tively interacts with DDX3X but upon TBK1 activation, AZI2 
promotes DDX3X phosphorylation. To validate the involvement 
of DDX3X in the regulation of pro-inflammatory chemokine and 
IFN gene expression upon loss of RB1CC1, we then generated Ctrl 
shDdx3x cells, which were depleted of DDX3X (Figure 5F). 
Silencing of Ddx3x could abolish the increased expression of 
pro-inflammatory chemokines such as Cxcl9, Cxcl10 and Ccl5 in 
RB1CC1 KO cells (Figure 5G). Similarly, DDX3X knockdown by 
siRNA could reverse the increased expression of the chemokine 
CCL5 upon RB1CC1 depletion in MDA-MB-231 cells (Figs. S5D- 
E). Collectively, these results indicate that in addition to the 
activation of TBK1, AZI2 also plays an important role in the 
propagation of downstream pro-inflammatory signaling, at least 
in part through DDX3X.

Inhibitor screen identifies Lys05 as an inducer of AZI2 
puncta formation and corresponding TBK1 activation 
with increased pro-inflammatory cytokine expression

Our results thus far have indicated that depletion of RB1CC1 
leads to stalling of the selective autophagy process, resulting in 
accumulation of unresolved selective autophagy cargo receptor 
complexes that promote AZI2 mediated TBK1 activation. From 
our previous studies [39], we have also found that the activation 
of TBK1 upon depletion of RB1CC1 is important in promoting 
increased expression of pro-inflammatory chemokines, CD8+ T- 
cell infiltration and improved ICI responses. Although genetic 
depletion of RB1CC1 can lead to the formation of AZI2 puncta 
and TBK1 activation, it is crucial to identify pharmacological 
agents to translate this prospective strategy for combination 
therapy with ICIs. In line with that, we employed Ctrl +AZI2 
cells in a mini-screen comprising a panel of small molecule 
inhibitors to identify agents that could induce AZI2 puncta 
formation (Figure 6A). Cells were treated for 24 h with respec-
tive inhibitors and the formation of AZI2 puncta was quantified 
through live cell imaging. From this experiment, we identified 
Lys05 as an inhibitor that induced the largest fold change (13.8- 
fold change, p = 0.0063) in AZI2 puncta formation relative to 
vehicle treated controls at 24 h post treatment (Figure 6B). Lys05 
is a dimeric chloroquine that has been shown to be a more 
potent autophagy inhibitor with increased anti-tumor activity 
[57]. The superior efficacy of Lys05 relative to chloroquine (CQ) 
was also recapitulated in our inhibitor screen, with chloroquine 
inducing only about an eight-fold change in AZI2 puncta for-
mation (p = 0.0228) relative to controls (Figure 6A). 
Consequently, we went on to validate the ability of both these 
compounds to induce AZI2 puncta in Ctrl +AZI2 cells through 
imaging cytometry. Lys05 induced AZI2 puncta formation sig-
nificantly, while CQ only generated a modest effect (Figure 6C). 
Accordingly, the levels of TBK1 activation upon treatment with 
CQ or Lys05 respectively were in line with the potency of these 
compounds in inducing AZI2 puncta (Figure 6D). The levels of 
p-TBK1 upon treatment with Lys05 were also inspected by 
immuno-fluorescence and we observed increased TBK1

activation in Lys05 treated Ctrl +AZI2 cells (Figure 6E, upper 
panels). In contrast, Ctrl -AZI2 cells did not exhibit a significant 
increase in p-TBK1 puncta formation (Figure 6E, lower panels), 
indicating that the activation of TBK1 upon Lys05 treatment 
occurs largely through AZI2. A key downstream feature of TBK1 
activation upon depletion of RB1CC1 is the increased produc-
tion of pro-inflammatory chemokines and interferons [39,58]. 
To assess whether Lys05 would invoke a similar response, we 
evaluated the expression levels of these genes and found 
increased Cxcl9, Cxcl10, Ccl5, Ifna and Ifnb expression in Ctrl 
+AZI2 cells treated with Lys05 for 72 h (Figure 6F). Moreover, 
increased levels of p-STAT1 were also observed upon Lys05 
treatment, indicating that the TBK1-interferon pathway was 
activated (Figure 6G).

Consequently, we evaluated the effects of Lys05 treatment on 
CD8+ T cell infiltration in mammary tumors in vivo. Ctrl cells 
were transplanted into syngeneic FVB mice and when tumors 
were ~50 mm3 in size, they were randomized and treated with 
50 mg/kg of Lys05 or vehicle as control (Figure 6H). Mice were 
treated with daily intraperitoneal injections for a week and 
tumor tissues were then harvested for immunohistochemical 
analysis. We observed a marked increase in tumor infiltrating 
CD8+ T cells for Lys05-treated tumors relative to vehicle controls 
(Figure 6I). Additionally, we also treated 4T1 cell derived tumors 
utilizing the same experimental design (Figure 6H) and Lys05 
treatment increased CD8+ T cell infiltration in this model as well 
(Fig. S6A). Notably, the effects of pharmacologically inhibiting 
autophagy through Lys05 were consistent with that observed via 
genetic depletion of RB1CC1 [39]. To determine the importance 
of AZI2 in mediating CD8+ T cell infiltration upon autophagy 
inhibition, Ctrl -AZI2 cells were transplanted into mice and 
RB1CC1 ablation was induced by tamoxifen treatment of mice 
when tumors were ~50 mm3 (Fig. S6B), as previously described 
[39]. In this AZI2-deficient setting, RB1CC1 depleted tumors 
exhibited a comparable level of CD8+ T cell infiltration as con-
trols (Fig. S6B), unlike our previous observations where RB1CC1 
depletion could markedly increase CD8+ T cell infiltration [39]. 
The increased CD8+ T cell infiltration that is induced by Lys05 
(Figure 6I) was associated with increased expression of pro- 
inflammatory chemokines Cxcl9, Cxcl10 and Ccl5 (Figure 6F) 
and these chemokines have been reported to play key roles in 
CD8+ T cell recruitment [59]. To determine the contribution of 
increased chemokines (e.g., CXCL9, CXCL10) to CD8+ T cell 
infiltration upon Lys05 treatment, mice that were treated with 
Lys05 were additionally administered with anti-CXCR3 blocking 
antibodies. By disrupting the CXCL9-CXCR3 or CXCL10- 
CXCR3 signaling axis, the increase in CD8+ T cell infiltration 
that was induced by Lys05 treatment can be abolished (Fig. S6C). 
Moreover, we inspected the expression of T cell activation and 
exhaustion markers for CD8+ T cell populations upon Lys05 
treatment. We found an increase in the percentage of CD8+ T 
cells which express the activation marker CD69 but no changes 
for CD44 (Fig. S6D). On the other hand, CD8+ T cells from both 
vehicle or Lys05 treated tumors expressed the exhaustion marker 
PDCD1/CD279/PD-1 at similar levels (Fig. S6E). Altogether, 
these results indicate that pharmacological inhibition of auto-
phagy via Lys05 can induce AZI2 puncta formation, TBK1 
activation, downstream pro-inflammatory interferon responses 
and increased CD8+ T cell infiltration into mammary tumors.
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Figure 6. Inhibitor screen identifies Lys05 as an inducer of AZI2 puncta formation, TBK1 activation and increased CD8+ T-cell infiltration. (A) bar charts showing number of AZI2 
puncta per image for respective inhibitors after 24-h treatment. (B) volcano plot with -log10 p-values and log2 fold change for AZI2 puncta per image for respective inhibitors 
relative to vehicle control treated cells. (C) dot plots from imaging cytometry analysis of Ctrl +AZI2 cells treated with vehicle control, 100 µM chloroquine (CQ) or 20 µM Lys05 for 
24 h. Bar charts showing quantification of percentage cells with GFP-AZI2 puncta. *indicates p < 0.05. (D) immunoblots showing levels of SQSTM1, p-TBK1 and ACTB in Ctrl +AZI2 
cells treated with vehicle control, 100 µM chloroquine (CQ) or 20 µM Lys05 for 24 h. (E) confocal imaging showing formation of p-TBK1 puncta in Ctrl ± AZI2 cells treated with 
vehicle or 20 µM Lys05. Scale bar: 10 µm. Bar chart shows quantification of p-TBK1 puncta per cell for each condition. (F) bar charts showing transcript levels of respective genes in 
Ctrl +AZI2 cells treated with vehicle or 20 µM Lys05. (G) immunoblots showing levels of p-TBK1, p-STAT1, STAT1 and ACTB in Ctrl +AZI2 cells treated with vehicle or 20 µM Lys05. 
(H) schema showing experimental design for mice transplanted with iKO cells and treated with either PBS or Lys05 at 50 mg/kg i.P. daily. (I) micrographs showing levels of CD8+ T 
cell infiltration for PBS or Lys05 treated mice. Scale bar: 200 µm. Bar chart shows quantification of CD8+ T cells per 20× field of view (n = 6 per group), **indicates p < 0.01. 
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Increased AZI2 expression levels are associated with 
increased CD8+ T cell infiltration and better prognosis in 
human breast cancer patients

Based on our mechanistic studies, we have implicated AZI2 as 
a key adaptor protein for TBK1 activation upon inhibition of 
selective autophagy. We were then interested in identifying 
potential associations between AZI2 levels and clinical para-
meters in breast cancer patients. To this end, AZI2 levels were 
inspected in a tissue microarray of breast cancer samples (n =  
101) by immunohistochemistry and scored in a blinded 

manner based on intensity and percent coverage of staining 
(Figure 7A). Based on this scoring, we did not find any 
significant changes in AZI2 scores between histological sub-
types of breast cancer (Figure 7B, ANOVA test, p = 0.48), 
suggesting that AZI2 expression is not confined to particular 
subtypes of breast cancer. Since activation of AZI2-TBK1 sig-
naling upon autophagy inhibition could impinge on CD8+ T 
cell infiltration (Figure 6), we then stained and scored for CD8+ 

T cell infiltration on a separate tissue microarray corresponding 
to the same set of samples (Figure 7C). This analysis led to an 

Figure 7. Association between AZI2 protein expression levels with CD8+ T cell infiltration and prognosis in human breast cancer patients. (A) micrographs showing 
representative images for AZI2 intensity scores by immunohistochemical analysis of a human breast cancer tissue microarray (n = 101). Scale bar: 100 µm. Insets show 
magnified areas demarcated by red boxes. (B) bar chart showing AZI2 staining scores among histological subtypes of breast cancer. No statistical significance was 
observed with ANOVA test (p = 0.48). (C) micrographs showing representative images for CD8+ T cell infiltration scores by immunohistochemical analysis of a human 
breast cancer tissue microarray (n = 101). Scale bar: 200 µm. (D) Supplementary table summarizing the R coefficients and p-values from Spearman’s and Pearson’s test 
for AZI2 intensity scores against CD8+ T cell infiltration scores. (E) kaplan-meier plot of relapse free survival in breast cancer patients with lowest tertile of AZI2 gene 
expression (black) relative to other patients in the cohort with higher AZI2 expression (red). Log-rank test, p = 0.00071. (F) graphical summary showing that inhibition 
of selective autophagy is necessary to elicit AZI2 puncta formation, TBK1 activation and enhanced ICI efficacy, while blocking bulk autophagy alone is not sufficient. 
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interesting positive association between AZI2 expression levels 
and CD8+ T cell infiltration in these tumors (Figure 7D), 
suggesting that AZI2 could play a role in human breast tumors. 
Furthermore, we sorted Ctrl +AZI2 cells into populations that 
expressed high or low GFP-AZI2 (Fig. S7A) and found that the 
levels of GFP-AZI2 was proportionate to the amplitude of p- 
TBK1 activation in RB1CC1 KO +AZI2 cells (Fig. S7B). We 
also interrogated publicly available breast cancer patient data 
using KM plot [60] and found a correlation between higher 
levels of AZI2 expression and better relapse free survival 
(Figure 7E). Hence, these associations suggest that activation 
of AZI2-TBK1 signaling may contribute to increased CD8+ T 
cell infiltration in breast tumors and better outcomes in human 
breast cancer patients. Accordingly, the mechanistic insights 
gained through elucidation of the AZI2-TBK1 pathway could 
potentially have translational implications for making tumors 
more immunogenic in breast cancer.

Discussion

The TBK1-IFN pathway can be activated by PAMPs (patho-
gen associated molecular patterns) and plays an important 
role as a cellular alarm system during virus or bacterial infec-
tion [61]. For that reason, it has been exploited as a strategy to 
make cold tumors hot and responsive to ICIs. In this study, 
we found a novel stimulus, whereby blockade of selective 
autophagy can trigger the activation of this pathway. The 
unique crosstalk between blockade of selective autophagy 
and TBK1 activation suggests that the TBK1-IFN pathway 
does not just respond to pathogen associated molecules but 
rather to pathogenic actions as well. Virophagy and bacterio-
phagy are primitive forms of cell autonomous immunity. 
However, pathogens have evolved mechanisms to inhibit 
selective autophagy [26,28,62] and evade degradation. It is 
possible that cells evolved mechanisms to counteract the inhi-
bition of selective autophagy by pathogens, through coupling 
such an event to the activation of TBK1-IFN signaling. 
Indeed, when we overexpressed a viral protein from SARS- 
CoV-2 that has been reported to inhibit autophagosome-lyso-
some fusion (ORF3A protein) [63,64], we could observe 
increased phosphorylation of TBK1 (Fig. S7C). 
Immunofluorescence experiments also revealed increased 
AZI2 and p-TBK1 puncta formation in MDA-MB-231 cells 
expressing SARS-CoV-2 ORF3A relative to empty vector con-
trols (Fig. S7D), suggesting that inhibition of autophagy by 
viral proteins can activate the AZI2-TBK1 pathway.

Another key finding from genetic dissection of the auto-
phagy process is that the AZI2-TBK1 pathway was activated 
specifically upon disruption of selective autophagy but not 
bulk autophagy (Summarized in Figure 7F). An underlying 
reason for this could be the lack of involvement of AZI2 in 
the process of bulk autophagy. This notion is supported by 
our observation that HBSS induced starvation did not 
induce AZI2 puncta, unlike other stimuli for selective auto-
phagy, such as FCCP and MG132 (Figures. 3A,B, Figs. 
S3A). Furthermore, other studies have implicated AZI2 in 
selective autophagy but to our knowledge, it has not been

described as an essential gene for bulk autophagy [26,65]. 
Leveraging on the genetic mutants of RB1CC1 that are 
specifically deficient in bulk autophagy (RB1CC1 KI) or 
selective autophagy (RB1CC1-deltaCT), we were able to 
home in on the contribution of halted selective autophagy 
toward AZI-TBK1 activation (Figures 3C,D and 4D–F). It 
would be interesting to develop these mutant alleles of 
RB1CC1 in mouse models to ascertain their pathological 
and physiological roles in future studies. Additionally, we 
found that genetic depletion of genes required for both 
types of autophagy (e.g., RB1CC1, ATG13) could induce 
TBK1 activation, whereas depletion of genes that were only 
required for LC3 lipidation and bulk autophagy (e.g., 
ATG5, ATG7) could not (Figures. 4A, S4B-D). It is con-
ceivable that bulk autophagy inhibition is uncoupled from 
the TBK1-IFN signaling circuit, since MTOR would regu-
larly inhibit bulk autophagy under nutrient replete condi-
tions [32,33,66]. It is worth noting that prior studies have 
shown that ATG5 or ATG7 depletion can lead to elevated 
IFN responses [67], but one plausible explanation could be 
that cell specific contexts would determine the extent of 
IFN activation. In particular, we found that depletion of 
ATG5 or ATG7 could impact RB1CC1 levels as well (Figure 
4A) and if RB1CC1 levels are drastically affected in a 
certain cell type by ATG5 or ATG7 loss, this would con-
found the specific contributions of the respective autophagy 
genes toward IFN pathway activation.

Through our analysis of the sequence of events culminating in 
TBK1 activation upon RB1CC1 ablation, we found that selective 
autophagy cargo receptors played an essential role upstream of 
AZI2-TBK1 (Figures. 2F–H). This is in line with the initial events 
that occur in the process of selective autophagy [24]. Based on our 
current understanding, TBK1 activation then leads to phosphor-
ylation of cargo receptors to promote their interaction with 
RB1CC1 [27,38]. Hence, cells that lack RB1CC1 can still proceed 
through the initial steps of selective autophagy, but without pha-
gophore formation, the cargo receptor complexes containing acti-
vated TBK1 will not be resolved, leading to accumulation in cells. 
Even then, TBK1 activation does not necessarily lead to down-
stream IFN responses, and it is well described that TBK1 adapter 
proteins are key mediators to achieve this [51]. In this respect, we 
found that AZI2 interacts with and mediates downstream activa-
tion of DDX3X, that is important for increased expression of pro- 
inflammatory chemokines (Figure 5). This is consistent with sev-
eral studies showing that DDX3X is a substrate of TBK1 and plays 
a role in promoting IRF3 mediated transcription [53–56].

Apart from the mechanistic insights centered upon AZI2, we 
have also discovered pharmacological agents (i.e., Lys05) that 
can induce AZI2 puncta formation in breast cancer cells (Figure 
6). Lys05 is a dimeric chloroquine molecule and is a more potent 
autophagy inhibitor [57], providing further evidence that phar-
macological inhibition of autophagy recapitulates our findings 
with genetic depletion of autophagy genes (Figures 1–4). 
However, in addition to inhibition of autophagy in tumor cells 
alone, pharmacological inhibition of autophagy could also affect 
other components of the tumor microenvironment. It would be 
interesting to dissect the specific effects of autophagy inhibition 
in different cellular contexts for future studies. Importantly, 
Lys05 could also increase TBK1 activation, pro-inflammatory
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chemokine expression and CD8+ T cell infiltration (Figure 6). 
Nonetheless, increased CD8+ T cell infiltration may not neces-
sarily lead to anti-tumor outcomes because CD8+ T cells can 
eventually become exhausted (Fig. S6E). Essentially, inhibition 
of autophagy through Lys05 and chloroquine derivatives could 
represent a potent strategy to make cold tumors hot and this 
could be key to making tumors responsive to ICIs [68]. In 
addition to activation of the TBK1 pathway, inhibition of auto-
phagy may also confer greater benefit to ICI therapy through 
various other mechanisms, as observed by others [7,69–71]. 
Hence, it would be interesting to test chloroquine derivatives 
that have been refined to be more potent in vivo [72], as a future 
direction with ICIs, beyond our Lys05 observations. This would 
provide a foundation for translational aspects, since we observe 
an interesting association between higher AZI2 expression and 
increased CD8+ T cell infiltration in human breast cancer 
(Figures. 7A, C).

Overall, we have identified a distinct TBK1-IFN pathway 
that is mediated by AZI2 and responds to inhibition of selec-
tive autophagy. This pathway can promote the expression of 
pro-inflammatory chemokines by upregulating DDX3X activ-
ity. The insights gained suggest that autophagy inhibitors such 
as Lys05 could be used to activate this pathway to make cold 
tumors hot and responsive to ICIs.

Materials and methods

Reagents and antibodies

GFP-AZI2 lentiviral constructs were generated by cloning 
mouse AZI2 into pLenti-EFs-eGFP-Blasticidin (Gibco, 
A1113903) pLenti-Tet-RB1CC1-delta CT variants were gener-
ated using Q5 site directed mutagenesis kit (NEB, E0552S) 
according to the manufacturer’s instructions. pLV-ORF3a plas-
mids were a kind gift from Dr. Kefeng Lu [63] (Sichuan 
University, Chengdu, China). For gene silencing experiments, 
siRNAs used were negative control siRNA (Ambion, AM4635), 
human RB1CC1 siRNA (Ambion, ID:138427), human STING1 
siRNA (Dharmacon, M-024333-00-0005), human MAVS 
siRNA (Dharmacon, M-024237-02-0005), human DDX3X 
siRNA (Dharmacon, M-006874-01-0005), non-target shRNA 
control (Sigma, SHC002) and mouse Ddx3x shRNA (Sigma, 
TRCN0000287238 and TRCN0000287239). Immunoblotting 
antibodies used include ACTB (Sigma, A5441), VCL (Sigma, 
V4505), GAPDH (Cell Signaling Technology [CST], 2118), 
PARP1 (CST, 9532), GFP (CST, 2555), HA (CST, 3724), ubi-
quitin (Santa Cruz Biotechnology, SC-8017), RB1CC1 (CST, 
12436), SQSTM1 (CST, 5114), CALCOCO2 (Genetex, 
GTX630396), TAX1BP1 (CST, 5105), NBR1 (Genetex, 
GTX114539), OPTN (Proteintech, 10837–1-AP), MAP1LC3B 
(CST, 2775), ATG5 (CST, 12994), ATG7 (CST, 8558), phos-
pho-TBK1 (CST, 5483), TBK1 (CST, 3504), AZI2 (Proteintech, 
15042–1-AP), IRF3 (CST, 4302), p-IRF3 (CST, 4947), DDX3X 
(Bethyl Labs, A300-474A), p-DDX3X (Affinity Biosciences, 
AF3782), STAT1 (CST, 9172), p-STAT1 (CST, 9167), 
STING1 (CST, 13647), MAVS (CST, 3993), SQSTM1 (Enzo 
life Sciences, BML-PW9860) CD8A (eBioscience, 14-0808-80). 
Lys05 was kindly provided by Dr. Ravi Amaravadi (University 
of Pennsylvania, USA) [57].

Cell culture and treatment

Primary tumor cells and their derivatives were cultured in 
DMEM/F12 (Gibco, 11995–065) supplemented with 10% FBS, 
10 ng/mL EGF (Gibco, PMG8041), 20 mg/mL insulin 
(GeminiBio, 700-112P), and 50 units/mL penicillin-streptomycin. 
The generation of RB1CC1f/f;PyMT;CreER cells (Ctrl) and 
RB1CC1f/KI;PyMT;CreER cells (KI Ctrl) have been described pre-
viously [31,50] and deletion of RB1CC1 was induced by culturing 
with 100 nmol/L 4-hydroxytamoxifen (4-OHT; Selleckchem, 
S7827) for 1 week. Transfection experiments were carried out 
using Lipofectamine 3000 Reagent (Invitrogen, L3000015) for 
cell lines. Production of lentivirus and transduction of cells were 
carried out as described previously [58]. For gene knockouts, 
sgRNA sequences used were as follows: mouse sgRb1cc1: 5’- 
caccgCTCCATTGACCACCAGAACC-3’, mouse sgTbk1: 5’- 
caccgCATAAGCTTCCTTCGCCCAG-3’, mouse sgAzi2: 5’- 
caccgATCTTCTACTAGCGTGTCCA-3’, mouse sgAtg5: 5’- 
caccg AAGAGTCAGCTATTTGACGT-3’ and mouse sgAtg7: 5’- 
caccgTGGACACCAGGGAGAGCCGG-3’. MDA-MB-231 and 
HeLa cells were obtained from ATCC (HTB-26 & CCL-2). 
RB1CC1 and ATG13 KO MDA-MB-231 cells were generated via 
CRISPR-CAS9 as described in our previous study [73]. HeLa 
Penta KO cells were a kind gift from Dr. Richard Youle (NIH) 
[42]. Cell lines were maintained for less than 20 passages after 
collection or thawing. Mycoplasma testing was performed on a 
monthly basis.

Immunoblotting

Lysates were prepared from cells using modified RIPA buffer 
as described previously [58] with the addition of protease and 
phosphatase inhibitors according to manufacturer’s instruc-
tions (Thermo Scientific, PI78425 & PI78428). Protein con-
centrations were then quantified by bicinchoninic acid 
method, subjected to SDS – PAGE and analyzed by immuno-
blotting as described previously [58].

Immunofluorescence, histology and 
immunohistochemistry

Immunofluorescence analysis of cells were performed as 
described previously [74] and analyzed using a Zeiss LSM710 
confocal microscope with a Zeiss AxioObserver Z1 stand. 
Formalin-fixed paraffin-embedded (FFPE) tumors were sectioned 
with a thickness of 5 µm and stained for respective antigens as 
described previously [58]. Antigen retrieval was performed in 
citrate buffer with a pressure cooker. Breast cancer tissue micro-
array slides (TMA BC01) were purchased from Reveal 
Biosciences.

Flow cytometry and imaging cytometry

Single-cell suspensions were prepared from tumor cells as 
described previously [75]. Cells were then sorted using a 
FACSAria instrument (BD Biosciences). Flow cytometry 
data were analyzed using FlowJo software. For imaging cyto-
metry, cells were analyzed using Amnis Image Stream MK II 
imaging flow cytometer (Luminex).
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Liquid chromatography- Mass spectrometry (LC-MS) 
identification of AZI2 interacting proteins

Mass spectrometry experiments for identification of AZI2 inter-
acting proteins were performed by the UC Proteomics Core. 
GFP-AZI2 or GFP were precipitated from respective Ctrl or 
RB1CC1 KO cells using GFP-TRAP magnetic agarose beads 
(Chromotek, GTMA010) according to manufacturer’s instruc-
tions. Immunoprecipitated proteins in 2X Laemmli buffer were 
run into Invitrogen 4–12% BT gels using MOPS buffer for 1.5  
cm. The sample lanes were excised, reduced with DTT, alkylated 
with IAA, and digested overnight with Trypsin. The peptides 
were extracted, dried, and resuspended in 0.1% Formic acid 
(FA). After centrifugation at 10,000 × g to remove particulates, 
the samples were transferred to an autosampler vial where each 
IP sample was analyzed by nano LC-MS/MS (Orbitrap Eclipse). 
The LC-MS/MS results were searched against mouse UniProt 
database (UP000000589) using Proteome Discoverer ver 2.4 and 
the Sequest HT search algorithm (Thermo scientific).

Inhibitor screen for AZI2 puncta inducing compounds

GFP-AZI2 -4OHT cells were seeded in 24-well plates and left 
overnight before treatment with respective inhibitors. Upon treat-
ment, images of cells were acquired every 2 h with an Incucyte 
live-cell imaging system (Essen Bioscience) to monitor GFP-AZI2 
puncta formation. Inhibitor concentrations used in this screen 
were; SB203580, 10 µM (MedChemExpress, HY-10256); 
Tozasertib, 5 µM (MedChemExpress, HY-10161); Chloroquine, 
100 µM (Sigma Aldrich, C6628); GDC0994, 5 µM (Cayman 
Chemical, 21107); Prexasertib, 5 µM (MedChemExpress, HY- 
18174); LTURM34, 10 µM (MedChemExpress, HY-101667); 
GSK650394, 5 uM (MedChemExpress, HY-15192); Amlexanox, 
100 µM (MedChemExpress, HY-B0713); U0126, 10 µM (Cayman 
Chemical, 70970); IRAK 1–4 Inhibitor I, 10 µM (MedC 
hemExpress, HY-13329); SP600125, 25 µM (MedChemExpress, 
HY-12041); SBI0206965, 10 µM (Cayman Chemical, 18477); 
BMS345541, 10 µM (MedChemExpress, HY-10519); Triciribine, 
10 µM (MedChemExpress, HY-15457); Silmitasertib, 10 µM 
(MedChemExpress, HY-50855); PP242, 5 µM (MedChemEx 
press, HY-10474); Lys05, 20 µM (provided by Dr. Ravi 
Amaravadi); Palbociclib, 5 µM (MedChemExpress, HY-50767); 
and D4476, 50 µM (MedChemExpress, HY-10324). The puncta/ 
image at 24 h were quantified and plotted.

Tumor mice and transplants

Mice were housed and handled according to local, state, and 
federal regulations. All experimental procedures were carried 
out according to protocols approved by the Institutional 
Animal Care and Use Committee at University of Cincinnati 
(Cincinnati, OH). For transplantation experiments, 2 × 106 

iKO cells were prepared in PBS:Matrigel at a 1:1 ratio and 
were injected into the fourth mammary gland fat pad. Mice 
with transplanted tumors were randomized into respective 
treatment groups when the diameter of tumors reached ~5  
mm. For Lys05 treatments, mice were treated with 50 mg/kg 
of Lys05 or PBS as vehicle control, intraperitoneally (i.p.), 
once daily for indicated times.

Quantitative PCR

GeneGet RNA Purification Kit (Thermo Scientific, K0731) was 
used to isolate total RNA from cells according to manufacturer’s 
instructions. RNA (equal amounts) were then reverse transcribed 
using iScript cDNA Synthesis Kit (Bio-rad, 1708891). qRT-PCR 
analysis was performed using iTaq Universal SYBR Green 
Supermix (Bio-rad, 1725121), with the respective primers: Ifna- 
Forward; 5’- CCACAGGATCACTGTGTACCTGAGA-3’, Ifna- 
Reverse; 5’- CTGACCACCTCCCAGGCACAG-3’, Ifnb-Forwa 
rd; 5’- AAGAGTTACACTGCCTTTGCCATC-3’, Ifnb-Reverse; 
5’- CACTGTCTGCTGGTGGAGTTCATC-3’, Actb-Forward; 5’- 
GGCTGTATTCCCCTCCATCG-3’, Actb-Reverse; 5’-CCAGTT 
GGTAACAATGCCATGT-3’, Ccl5-Forward; 5’-GCTGCTTTG 
CCTACCTCTCC-3’, Ccl5-Reverse; 5’-TCGAGTGACAAACA 
CGACTGC-3’, Cxcl10-Forward; 5’-CCAAGTGCTGCCGTCAT 
TTTC-3’, Cxcl10-Reverse; 5’-GGCTCGCAGGGATGATTT 
CAA-3’, Cxcl9-Forward; 5’-GGAGTTCGAGGAACCCTAGTG- 
3’, Cxcl9-Reverse; 5’-GGGATTTGTAGTGGATCGTGC.

Statistical analysis

Datapoints were plotted as means with standard error (SEM). 
One-way comparisons were tested using unpaired t-test and 
for multiple comparisons, one-way ANOVA test was per-
formed. For correlation analysis of AZI2 and CD8 scores in 
human breast cancers, Pearson and Spearman tests were per-
formed. The threshold for statistical significance was p < 0.05.
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