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ABSTRACT
Anaplastic thyroid carcinoma (ATC) is one of the most aggressive and lethal neoplasms in humans, 
and just limited progresses have been made to extend patient survival and decrease ATC-associated 
mortality. Thus, the identification of novel therapeutic strategies for treating ATC is needed. 
Recently, our group has identified two proteins with oncogenic activity, namely HMGA1 and 
EZH2, with pivotal roles in ATC cancer progression. Therefore, we tested the ability of trabectedin, 
a HMGA1-targeting drug, and GSK126, an inhibitor of EZH2 enzymatic activity, to impair cell viability 
of four ATC-derived cell lines. In the present study, we first confirmed the overexpression of HMGA1 
and EZH2 in all ATC-derived cell lines and tissues compared to the normal primary thyroid cells and 
tissues. Then, treatment of the ATC cell lines with trabectedin and GSK126 resulted in a drastic 
induction of apoptotic cell death, which increased when the ATC cell lines were treated with 
a combination of both drugs. Conversely, normal primary human thyroid cells did not show any 
significant reduction in their viability when exposed to the same drugs. Noteworthy, both drugs 
induced the deregulation of EZH2- and HMGA1-controlled genes. Altogether, these findings propose 
the combination of trabectedin and GSK126 as possible novel strategy for ATC therapy.
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1. Background

Malignant tumors derived from thyroid gland present 
the highest incidence among those originating from 
the endocrine system [1]. Thyroid carcinomas (TCs) 
are classified, following their differentiation grade, in 
well-differentiated (WDTC), poorly differentiated 
(PDTC) and undifferentiated (UTC) ones [2,3].

The WDTCs are represented mainly by the 
papillary thyroid carcinomas (PTCs, about 80% 
of all TCs) and follicular thyroid carcinomas 
(FTCs, about 10% of TCs), while anaplastic thyr-
oid carcinomas (ATCs, 1–2% of TCs) are the most 
characterized UTCs. Indeed, ATCs lose the main 
biological structures and functions of normal thyr-
oid cells, thus acquiring a highly malignant phe-
notype with invariable lethality [4], since the loss 
of the ability to trap iodide, a feature of thyroid 

cells, by ATC cells does not allow the therapy 
based on radioiodide treatment that has a high 
efficacy in the treatment of differentiated TCs [5].

ATC incidence worldwide is very low, repre-
senting just 1–2% of all TCs, and its peak of 
incidence is between the sixth and seventh decades 
of life [6]. In spite of its low incidence, ATC 
accounts for 14–39% of all deaths related to TCs 
with a median survival rate of about 5–6 months 
[7]. Unfortunately, nowadays, no effective thera-
pies are available for ATC treatment, since these 
carcinomas are resistant to chemo- and radiother-
apy, and even innovative therapeutic approaches, 
such as immunotherapy or the treatment with 
tyrosine kinase inhibitors, have given just very 
slight improvements to the survival rate of ATC 
patients [8,9]. Therefore, the search for new 
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approaches that could allow the identification of 
drugs potentially able to improve ATC patient 
outcome is a critical aim of scientific community.

During the last few years, our group has under-
lined the pivotal role of High Mobility Group 
A (HMGA) proteins in ATC carcinogenesis 
[10,11]. HMGA is represented by three different 
proteins, HMGA1 (namely HMGA1a and 
HMGA1b, encoded by alternative splicing) and 
HMGA2. These proteins act as architectural chro-
mosomal factors, able to bind the minor groove of 
DNA, and, by interacting with the transcriptional 
apparatus, can regulate the expression of a number 
of genes in a positive or negative manner [10]. 
HMGA expression is extremely high during 
embryonic development, whereas it is low or 
absent in normal adult tissues. However, they are 
abundantly expressed during carcinogenesis pro-
cess, representing a feature of human malignancies 
[12–14]. HMGA proteins are also highly expressed 
in ATC tissues [15] and cells and their silencing 
leads to death through apoptosis [16,17]. 
Moreover, our group has also reported that the 
block of HMGA expression in rat thyroid cells 
prevents neoplastic transformation induced by 
murine sarcoma retroviruses [10].

More recently, we have identified the role of the 
Enhancer of Zeste Homolog 2 (EZH2) protein, whose 
overexpression contributes to ATC carcinogenesis 
[18]. Indeed, it is the enzymatic subunit of the 
Polycomb Repressive Complex 2 (PRC2), a repressor 
of gene expression mainly acting via the trimethyla-
tion of H3 histone on lysine 27 (H3K27me3) [19,20]. 
EZH2 is usually not active in adult tissues, however it 
can be activated in aggressive carcinomas, resulting in 
abnormal gene expression pattern that promotes can-
cer progression and metastasis [21,22]. Interestingly, 
EZH2 is overexpressed in TC, and in particular ATC, 
contributing to transcriptional silencing of PAX8 
gene, a transcription factor critical for thyroid differ-
entiation [23–25]. Noteworthy, at least two 
microRNAs, namely mir-25 and mir-30d, are drasti-
cally downregulated in ATC and have EZH2 as target 
[24,26]. Moreover, the tumor suppressor of long non- 
coding RNA PAR5 is able to negatively regulate EZH2 
activity in ATC cells [27], supporting the idea that the 
overexpression and the increased activity of EZH2 in 
ATC are also enhanced at epigenetic level. 
Furthermore, we have recently reported that 

HMGA1 is able to transcriptionally enhance EZH2 
gene [28] and that HMGA1 pseudogenes, namely 
HMGA1P6 and HMGA1P7, which are overexpressed 
in ATC, are able to increase EZH2 protein levels by 
a competitive endogenous RNA (ceRNA) mechan-
ism [29].

Recently, we have demonstrated that a novel 
antineoplastic agent, Trabectedin (Ecteinascidin- 
743 or ET-743), is able to interact with the minor 
groove of the DNA, displacing HMGA proteins, 
thus impairing transcriptional machinery and 
inducing cell death [30,31].

In the present study, we first confirmed the 
overexpression of HMGA1 and EZH2 in a set of 
ATC tissues and cells. Then, we treated four ATC 
cell lines (8505c, SW1736, FRO and ACT1) with 
ET-743 and GSK126, an inhibitor of EZH2 activity 
[32], alone or in combination. Both drugs drasti-
cally impaired the viability of the tested ATC cell 
lines, with a synergistic effect when these drugs are 
used in combination. In contrast, the viability of 
a normal primary thyroid culture was not signifi-
cantly affected by these drugs even when they were 
used at high doses.

Therefore, taken together, our findings suggest 
that the use of ET-743 and GSK126 may represent 
a novel therapeutic strategy for ATC.

2. Materials and methods

2.1. Cells and cell culture

In this study, all of the ATC cell lines (8505c, FRO, 
SW1736 and ACT-1) [33,34] were grown in DMEM 
medium (Sigma-Aldrich, Saint Louis, MO), 10% fetal 
calf serum (Sigma-Aldrich, Saint Louis, MO). Cells 
were kept in a humidified environment with 5% CO2 
at 37°C. At the Head and Neck Surgery Unit, 
Department of Anesthesiology, Surgical and 
Emergency Science, University of Campania “Luigi 
Vanvitelli” in Naples, Italy, a sample of a thyroid 
was taken for the primary culture. Prior consent was 
given by the donor before the collection, acquisition 
or use of human tissue. Thyroid tissue was rinsed with 
PBS (Sigma-Aldrich, Saint Louis, MO, USA) contain-
ing 500 U/ml penicillin and 0.5 mg/ml streptomycin 
(Sigma-Aldrich, Saint Louis, MO, USA), and then cut 
into small pieces. The fragments were then broken 
down with 1 mg/mL collagenase (Roche Diagnostics, 
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Indianapolis, USA), 0.02 mg/mL DNAase (Sigma- 
Aldrich, Saint Louis, MO, USA), and 0.01 mg/mL 
hyaluronidase (Sigma-Aldrich, Saint Louis, MO, 
USA) dissolved in PBS, for 16–20 h at room tempera-
ture. The lysates were then grown in 6 H medium 
(modified F-12 M medium, Coon’s modification of 
Ham’s F-12 medium) (Thermo Fisher Scientific, 
Massachusetts, USA), 10% heat-inactivated fetal 
bovine serum (FBS) (Sigma-Aldrich, Saint Louis, 
MO, USA), 2 mM glutamine (Thermo Fisher 
Scientific, Massachusetts, USA), 2.6 g/L NaHCO3 
(Thermo Fisher Scientific, Massachusetts, USA), 5  
μg/mL gentamicin (Thermo Fisher Scientific, 
Massachusetts, USA), 1% NEAA (Sigma-Aldrich, 
Saint Louis, MO, USA), and 10 mIU/mL of thyrotro-
pin (TSH) (Sigma-Aldrich, Saint Louis, MO, USA), 
10 mIU/mL of insulin (Sigma-Aldrich, Saint Louis, 
MO, USA), 1 nM of hydrocortisone (Roche 
Diagnostics, Indianapolis, USA), 2 ng/mL of glycyl- 
histidyl-L-lysine acetate (Sigma-Aldrich, Saint Louis, 
MO, USA), 5 μg/mL of transferrin (Roche 
Diagnostics, Indianapolis, USA), and 10 ng/mL of 
somatostatin (Sigma-Aldrich, Saint Louis, MO, USA).

2.2. Tumor specimens

Normal and anaplastic thyroid tumors (frozen tis-
sue) were collected from Lyon Sud Hospital using 
common standardized operating procedures and 
stored in Biological Resources Center and Tumor 
Bank Platform of Hospices Civils de Lyon 
(BB-0033–00046).

2.3. Reagents

GSK126 and ET-743 were supplied by Selleckchem 
(Planegg, Germany). Dimethyl sulfoxide (DMSO) 
was used to prepare the GSK126 and ET-743 
stocks. After the solubilization, they were stored 
at −80°C with a concentration of 1 mM for ET-743 
and 10 mM for GSK126. The dilution tested were:

GSK126 from 1 μM to 256 μM
ET-743 from 0.006 nM to 1.6 nM

2.4. Cell viability

The antiproliferative and cytotoxic effects of 
GSK126 and ET-743 were first tested using the 
MTT method [3-(4,5-dimethyl-thiazol-2-yl)- 
2,5-diphenyl tetrazolium bromide] (Sigma-Aldrich, 
Saint Louis, MO) as a sign of metabolically active 
cells. Two thousand ATC cells, resuspended in 100  
μL of culture medium, were put into 96-well plates 
and left to grow for 24 h before the test substance 
was added. The cells were treated with these drugs 
for 72 h at 37°C. MTT was added at a maximum 
dose of 0.5 mg/mL. After 3 h, the crystals of for-
mazan were dissolved in DMSO (Sigma-Aldrich, 
Saint Louis, MO, USA). A microplate-photometer 
(Bio-Tek Instruments, Colmar, France) with a test 
wavelength of 570 nm was used to measure how 
well the colored solution absorbed light. GraphPad 
Prism software (GraphPad Software Inc., San 
Diego, CA, USA) was used to figure out the amount 
of material needed to stop growth by 50% (IC50). 
For the trypan blue exclusion methods, the super-
natant was discarded, and cells were trypsinized 
(Sigma-Aldrich, Saint Louis, MO, USA) and then 
resuspended with medium. The cell suspension was 
mixed with trypan blue dye (Sigma-Aldrich, Saint 
Louis, MO, USA), transferred to a hemocytometer, 
and counted under a phase-contrast microscope 
(Carl Zeiss, Oberkochen, Germany).

2.5. Trypan blue exclusion test

5 × 104 cells were cultivated into 6-well plates. 
After 24 h, GSK126 and ET-743 drugs were 
added to cells media. After 72-h treatment, 
cells were collected and dissolved in 50 μL of 
PBS. Next, 10 μL of cell suspension was mixed 
with 10 μL of trypan blue solution (Sigma- 
Aldrich, Saint Louis, MO, USA) and incubated 
for 5 min at room temperature. A total of 10 μL 
of cell – trypan blue solution mixture was 
applied to glass hemocytometer, and viable and 
nonviable cells were counted. Viable cells have 
a clear cytoplasm, whereas nonviable cells have 
a blue cytoplasm.
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2.6. Cell cycle analysis

Fluorescence-activated cell sorting was used to 
examine cell cycle distribution and Cell Quest 
Pro software (BD Biosciences, San Jose, CA, 
USA) was used to interpret the results. 2 × 105 

cells, resuspended in 2 mL of culture medium, 
were plated in 6-well plates, treated for 48 h with 
ET-743 or GSK126, and then trypsinized and cen-
trifuged at 1500 g for 5 min. The cells were subse-
quently fixed with 70% ethanol (Carlo Erba, Milan, 
Italy) overnight at −20°C. The cells were removed 
from the ethanol solution and then given two PBS 
(Sigma-Aldrich, Saint Louis, MO, USA) washes. 
The cells were then treated with 300 μl of 
a solution containing ribonuclease and propidium 
iodide (PI) dye (Thermo Fisher Scientific, 
Massachusetts, USA). Cell Quest Pro software 
was used to evaluate the data, and the results 
were represented as a percentage of cells in each 
stage of the cell cycle.

2.7. Apoptosis

For apoptosis assessment, 1.5 × 105 cells were 
resuspended in 2 mL of culture medium and then 
seeded in 6-well plates. After 24 h, cells were trea-
ted with ET-743 and/or GSK126 for 72 h and 
exposed to FITC-Annexin V and PI according to 
the manufacturer’s protocol (BD Biosciences, San 
Jose, CA, USA). This allows us to distinguish 
Annexin V- positive cells in early apoptosis from 
Annexin V- and PI-positive cells in late apoptosis. 
The results were the sum of early and late apopto-
tic cells. Cells were analyzed by flow cytometry 

using FL1 for Annexin V and FL2 for PI. Flow 
cytometry (FACScan; BD Biosciences) data were 
analyzed with Cell Quest Pro software.

2.8. RNA extraction and quantitative real-time 
PCR (qRT-PCR)

Using the Trizol reagent (Thermo Fisher Scientific, 
Massachusetts, USA), total RNA was isolated from 
cell lines (1×106 cells) and normal or malignant 
thyroid tissues (20–30 mg). The QuantiTect 
Reverse Transcription Kit (Qiagen, Hilden, 
Germany) was used to produce double stranded 
cDNA from 1 μg of total RNA from each sample. 
Quantitative Real-Time PCR (qRT-PCR) experi-
ments were carried out using CFX96 thermocycler 
(Bio-Rad, Hercules, CA, USA). Each PCR reaction 
required 10 μL of 2X SYBR Green (Bio-Rad, CA, 
USA), 200 nM of each primer, and 20 ng of the 
previously produced cDNA. Exon–exon junction- 
covering oligonucleotides for qRT-PCR were cre-
ated using Primer-BLAST software. Comparative 
C(T) method was used to determine the relative 
gene expression, as described elsewhere [35], using 
the primers purchased from Integrated DNA 
Technologies (San Diego, CA, USA) (Table 1).

G6PD gene was used as housekeeping for the 
normalization of data.

2.9. Drug combination assay

In a 96-well plate, 100 μL of culture medium con-
taining 4 × 104 8505c cells were inoculated and 
incubated overnight at 37°C. Different dilutions 

Table 1. Primer list.
HMGA1 Fw5’-aaggggcagacccaaaaa-3’ 

Rev5’-tccagtcccagaaggaagc-3’
EZH2 Fw5’-gctgaccattgggacagtaa-3’ 

Rev5’-cagatggtgccagcaataga-3’
CDKN1A Fw5’-ccgaagtcagttccttgtgg-3’ 

Rev5’-catgggttctgacggacat-3’
E-cadherin(CDH1) Fw5’-gcccagaaaatgaaaaagg-3’ 

Rev5’-gtgtatgtggcaatgcgttc-3’
CyclinB1(CCNB1) Fw5’-acatggtgcactttcctcct-3’ 

Rev5’-gtaatgttgtagagttggtgtcc-3’
BCL2 Fw5’-tacctgaaccggcacctg-3’ 

Rev5’-gccgtacagttccacaaagg-3’
PAX8 Fw5’-cttcagaaggaggagagacacc −3’ 

Rev5’-tttacacctgcatcgtctgg −3’
G6PD Fw5’-acagagtgagcccttcttcaa-3’ 

Rev5’-ataggagttgcgggcaaag-3’
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of ET-743 and GSK126 drugs were then combined 
in all possible drug pairs to generate a 5 × 6 drug 
combination matrix. Then, cells were exposed to 
either single-agent drugs or drug pairs from the 
drug combination matrix, with DMSO serving as 
the negative control (each treatment was con-
ducted in triplicate). After 72 h of incubation at 
37°C, cell viability was determined using MTT 
(Sigma-Aldrich, Saint Louis, MO, USA) at a final 
concentration of 0.5 mg/mL. After 3 h of incuba-
tion, formazan crystals were dissolved in DMSO 
(Sigma-Aldrich, Saint Louis, MO, USA). The 
absorbance of the colored solution was measured 
with a microplate-photometer (Bio-Tek 
Instruments, Colmar, France) at 570 nm. The ET- 
743/GSK126 drug interactions and expected drug 
responses were calculated with the Combenefit 
tool [36], using the Loewe additivity model.

2.10. Western blot

Western blot analyses were performed as pre-
viously described [37–39]. The primary antibodies 
used were as follows: anti-EZH2 (AC22) from Cell 
Signaling, Massachusetts, USA. Antibodies against 
HMGA1 are polyclonal Ab raised against 
a synthetic peptide located in the NH2-terminal 
region. Membranes were blocked with 5% TBS- 
BSA proteins and incubated with the primary anti-
bodies. Immunoblotting experiments were carried 
out according to standard procedures and visua-
lized using the ECL chemiluminescence system 
(Thermo Fisher Scientific, Massachusetts, USA). 
As a control for equal loading of protein lysates, 
blotted proteins were probed with antibodies 
against GAPDH sc-32,233 protein (Santa Cruz 
Biotechnology, Santa Cruz, CA, USA).

2.11. Ethics

The study was conducted according to the criteria 
set by the declaration of Helsinki and each subject 
signed an informed consent before participating in 
the study. Informed consent was obtained from all 
patients. The activity of biological samples conser-
vation was declared under the number DC-2011– 
1437 to the Ministry of Research, to the committee 
of people’s protection of south-east IV and to the 
Health Regional Agency. The activity of biological 

material cession was agreed upon by the Ministry 
of Health under the number AC-2013–1867.

2.12. Statistical analysis

Data are presented as mean ± standard deviation 
(SD). For comparisons between two groups, 
Student’s t test was used to determine differences 
between mean values for normal distribution. All 
data were analyzed for significance using 
GraphPad Prism 6 software (San Diego, CA, 
USA). p values less than 0.05 were considered 
significant.

3. Results

3.1. HMGA1 and EZH2 are overexpressed in 
ATC tissues and cell lines

We first analyzed the expression of HMGA1 and 
EZH2 in a panel of human ATC cell lines, includ-
ing 8505c, SW1736, FRO and ACT1. The results, 
shown in Figures 1(a, b), confirmed HMGA1 and 
EZH2 overexpression, at mRNA (Figure 1(a)) and 
protein level (Figure 1(b)), respectively, in all the 
analyzed ATC cell lines with respect to normal 
human thyroid-derived primary cells. Then, we 
extended this analysis to a panel of surgically 
removed ATC tissues using qRT-PCR. The results 
shown in Figure 1(c) confirmed the overexpres-
sion of both the HMGA1 and EZH2 genes also in 
all the ATC tissues with respect to normal 
thyroids.

3.2. ET-743 and GSK126 induce strong cell death 
in ATC cell lines, but not in normal thyroid 
primary culture

Since the results shown above confirmed the over-
expression in ATC of HMGA1 and EZH2, two 
proteins already reported to have a critical role in 
ATC cancer progression, we analyzed the effects of 
ET-743, a HMGA1-targeting drug, and GSK126, 
an inhibitor of EZH2 enzymatic activity, on the 
viability of the ATC cell lines after the exposure to 
increasing concentrations of ET-743 or GSK126.

Both drugs drastically reduced cell viability of 
the treated ATC cell lines, whereas primary thyr-
oid cells were slightly affected only by very high 
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concentrations of both the tested drugs 
(Figure 2(a)). Indeed, exposure to GSK126 
induced low percentage of death in primary thyr-
oid cells at concentrations 10-fold higher (128 μM) 
than the doses used for ATC-derived models. 
Equally, ET-743 did not affect normal primary 
thyroid cell viability even at the highest concentra-
tion used (1.6 nM), which is about eight-fold 
higher than the doses used for ATC-derived mod-
els. Subsequently, we calculated IC50 values for 
ET-743 and GSK126 in ATC cell lines. ET-743 
induced high cytotoxicity in all of the cell lines, 
with IC50 values ranging from 0.046 nM to 0.15  
nM. GSK126 showed lower cytotoxicity with 

respect to ET-743, with IC50 values ranging from 
9.82 μM to 16.8 μM (Figure 2(b)).

Since exposure to GSK126 and ET-743 robustly 
affected ATC cell line viability, we treated them 
with a combination of both these drugs. 
Interestingly, in all the tested ATC cell lines, the 
mortality was further increased by this combined 
treatment (ACT1 and SW1736 ~80%, FRO ~90%, 
8505c ~60%), and the induction of death was 
higher than that observed when the cells were 
exposed to just one drug (Figures 3(a), 1S). 
Noteworthy, primary thyroid cells were not 
affected at all by the treatment with drug combi-
nation at the same dosage (Figure 3(a)).

Figure 1. EZH2 and HMGA1 expression levels are upregulated in ATC-derived cell lines and tissues. (a) HMGA1 and EZH2 mRNA 
expression levels in a panel of ATC-derived cell lines (ACT1, FRO, 8505c and SW1736). The expression levels of normal human 
thyroid-derived primary cells were set equal to 1. Data are shown as mean ± SD (n = 3) (b) HMGA1 and EZH2 protein expression in 
the same ATC-derived cell lines and in normal human thyroid-derived primary cells. 50 μg of total cellular lysate was loaded per lane 
in reducing conditions. GAPDH was used as protein loading control. NT = normal thyroid tissue. (c) Twelve ATC tissues were analyzed 
for HMGA1 and EZH2 expression with respect to three normal thyroid tissues. The mean of normal samples was set equal to 1. Data 
are shown as mean ± SD (n = 3).
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To evaluate the degree of synergy of the com-
bined drugs, we used the Loewe reference model 
[40] on 8505c cell line after 72-h exposure to 
various combinations of the two agents. 
Interestingly, the combination indices revealed 
that ET-743 and GSK126 act synergistically at 
concentration of 0.2 nM and 16 μM, respectively 
(Figure 3(b)).

Then, we assessed the expression of some genes 
regulated by HMGA1 and EZH2 in the drug- 
treated cells compared to the DMSO treated cells. 
ATC cells treated with ET-743 showed decreased 
expression levels of two HMGA1-regulated genes, 
namely Cyclin B, a master regulator of cell cycle 
progression, and Bcl-2, an anti-apoptotic protein 
[10,30] (Figure 4(a)). Equally, in the GSK126- 
treated ATC cells, the expression levels of 
E-cadherin, an adhesion molecule whose 

expression loss represents a hallmark of epithe-
lial–mesenchymal transition (EMT) and 
CDKN1A, a regulator of cell cycle, two EZH2- 
regulated genes [41,42] were drastically upregu-
lated (Figure 4(b)). Interestingly, also PAX8, 
a pivotal transcription factor for thyroid differen-
tiation, which is repressed by EZH2 [23], has been 
found upregulated in GSK126 treated cells 
(Figure 4(b)).

3.3. ET-743 and GSK126 induce cell cycle arrest 
and apoptosis in ATC cell lines

Subsequently, we investigated the effects of ET-743 
and GSK126 on cell cycle and apoptosis. Figure 5(a) 
shows a strong G2/M accumulation peak after treat-
ment with the ET-743, whereas a G0/G1 accumulation 
peak was observed in 8505c, ACT1, FRO and SW1736 
cell lines treated with GSK126.

Furthermore, we assessed the apoptotic rate 
induced by drug exposure by Annexin V test. 
Interestingly, the apoptotic rate has increased 
after exposure to ET-743 and GSK126 in all the 
analyzed ATC-derived cells (Figures 6(a,b)). 
Consistently, after 48 h of exposure, ET-743 and 
GSK126 combination (0.2 nM of ET-743 and 
15 μM of GSK126) increased the apoptotic rate in 
comparison with the single-drug treatment in 
ATC cell lines (Figure 6(b)).

4. Discussion

In order to propose novel therapeutic approaches 
for ATC, one of the most lethal cancers in man-
kind that lacks an effective therapy, we concentrate 
on the possibility to inhibit the activity of two 
proteins, EZH2 and HMGA, whose overexpression 
plays a critical role in ATC carcinogenesis [10,23].

Then, as an inhibitor of the HMGA function we 
used ET-743, the lead compound of ecteinascidins 
originally isolated from the extracts of the tunicate 
E. turbinate [43,44]. It has shown antineoplastic 
activity in human liposarcoma and leiomyosar-
coma after primary anthracycline exposure and 
has a favorable toxicity profile [45,46]. Moreover, 
ET-743 was associated with substantially pro-
longed progression-free survival (PFS) in patients 
with platinum-sensitive recurrent ovarian cancer 
[47,48]. ET-743 forms adducts in the minor 

Figure 2. ET-743 and GSK126 affect cell viability of ATC-derived 
cell lines but not that of primary thyroid cells. (a) Dose– 
response curves of ACT1, FRO, 8505c, SW1736 ATC cell lines 
and normal primary thyroid cells treated with increasing con-
centrations of ET-743 and GSK126 for 72 h (n = 3). The cells 
were exposed to increasing concentrations of the drugs and 
then tested for viability by MTT assay. (b) ET-743 and GSK126 
IC50 values for ATC cell lines.
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groove of DNA, generating single-strand breaks 
(SSBs) and double-strand breaks (DSBs) and set-
ting off a cascade of events that results in cell cycle 
arrest and apoptosis [49]. Recent studies suggest 
that the anticancer activity of ET-743 may depend, 
at least in part, on the displacement of HMGA 

proteins from the minor groove of DNA, where 
they are bound [30]. Indeed, these chromatinic 
proteins are able to regulate the expression of 
several cancer-related genes by switching on or 
off their transcription [10]. In particular, it has 
been reported that ET-743 has a higher cytotoxic 

Figure 3. ET-743 and GSK126 synergistically induce ATC cell death. (a) effects of combination treatment with ET-743 and GSK126 
on ATC cell viability by the MTT assay 72 h after exposure. (c) Combenefit mapped surface output for the drug combinations 
involving ET-743 and GSK126 using Loewe synergy model. These drugs synergistically inhibit 8505c cell growth. Cells were 
treated with ET-743 and GSK126 in a 5 × 5 concentration grid for 48 h, cell viability was determined by MTT assay. Data are shown 
as mean ± SD (n = 3) *p < 0.0.5; **p < 0.01; ***p < 0.001.
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effect on thyroid and colon carcinoma cells expres-
sing abundant levels of HMGAs in comparison 
with cells not expressing them, enhancing the sen-
sitivity of these cells to Ionising Radiations [30].

During the last few years, several EZH2 inhibi-
tors have been developed [50]. The first developed 
EZH2 inhibitor was 3-deazaneplanocin 
A (DZNep) [51]. DZNep is able to inhibit 
S-adenosyl-L-homocysteine (SAH) hydrolase 
activity, thus indirectly impairing the S-adenosyl- 
L-methionine-dependent histone methyltransfer-
ase activity. In this manner, DZNep is not 
a specific EZH2 inhibitor, but it globally blocks 

histone methylation [51]. Recently, Nakayama 
et al. reported that EZH2 inhibition by DZNep 
on four ATC-cell lines reduces the cell growth 
rate, having an interesting potential for 
a therapeutic approach [52].

Recently, several potent and highly selective 
S-adenosyl-methionine (SAM)-competitive inhibi-
tors of EZH2 methyltransferase activity have been 
developed. GSK126 is a powerful, highly selective, 
SAM-competitive, small-molecule inhibitor of 
EZH2 methyltransferase activity. This inhibitor 
lowers H3K27me3 levels and reactivates the 
repressed PRC2 target genes [53]. It has been 

Figure 4. ET-743 and GSK126 treatment induces deregulation of HMGA1- and EZH2-target genes. (a) CCNB and BCL2 mRNA 
expression levels in 8505c cell treated or not with ET-743. (b) E-cadherin, CDKN1A and PAX8 mRNA expression levels in 8505c cell 
treated or not with GSK126. Data are shown as mean ± SD (n = 3) *p < 0.0.5; **p < 0.01; ***p < 0.001.
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used to efficiently inhibit the proliferation of 
DLBCL cell lines bearing EZH2 mutation. In addi-
tion, animals that had Karpas-422 xenograft 
tumors experienced significant tumor regression 
following treatment with GSK126 [54]. 
Interestingly, Claro de Mello et al. reported that 
the EZH2 silencing in ATC cell models by 
CRISPR/Cas9 and EPZ6438, another SAM- 
competitive small-molecule, resulted in the reduc-
tion of cell growth, migration and invasion in vitro 
and in vivo mouse models [25]. These findings 
underline that the inhibition of HMGA1 and 
EZH2 activity is able to induce a drastic reduction 
of ATC vitality associated with cell cycle arrest and 
increased apoptotic rate.

Subsequently, we hypothesized that the combined 
impairment of these two ATC-master regulator genes 

would synergistically increase the sensitivity to the 
combination of ET-743 and GSK. Indeed, treatment 
with both ET-743 and GSK resulted in a further 
increase in apoptotic cell death of the ATC cell lines, 
whereas no significant effects were achieved after 
treatment with the same drugs of a primary thyroid 
culture where slight cytotoxic effects were observed at 
high doses only with GSK126. Conversely, even treat-
ment with high doses of ET-743 did not result in 
cytotoxic effects on normal thyroid cells.

Furthermore, ATC cells treated with ET-743 
showed decreased expression levels of two HMGA- 
regulated genes: Cyclin B, a master regulator of cell 
cycle progression, and Bcl-2, an anti-apoptotic protein 
deeply involved in the carcinogenesis process. 
Equally, GSK126 exposure, through EZH2 inhibition, 
increased the expression levels of EZH2- 

Figure 5. Effects of ET-743 and GSK126 on cell cycle progression on ATC cell lines. cell-cycle profile after 48 h of treatment with ET-743 
and GSK126 analyzed by PI incorporation and flow cytometry in the ACT1, FRO, 8505c and SW1736 cell lines. Data are shown as 
mean ± SD (n = 3) *p < 0.0.5; **p < 0.01; ***p < 0.001.
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downregulated genes: E-cadherin, a surface protein 
whose loss is pivotal for the EMT, and CDKN1A, 
a potent cell cycle inhibitor, and PAX8, a thyroid- 
specific transcription factor that controls thyroid dif-
ferentiation, whose expression is downregulated in 
ATC by EZH2 action [23].

Therefore, these findings provide valuable 
insights into the potential benefits of combining 

ET-743 and GSK126 in pre-clinical models of 
ATC, and their combination treatment may repre-
sent a promising strategy for ATC therapy as also 
supported by the lack of toxic effects on normal 
thyroid cells. Noteworthy since HMGA and EZH2 
overexpression have been observed in almost all 
human malignancies, and in particular in the most 
aggressive forms [53,55], a therapy based on the 

Figure 6. Effects of ET-743 and GSK126 combination on apoptosis. (a) Annexin V FITC-A vs. PI plots from the gated cells shows the 
populations corresponding to viable and non-apoptotic (annexin V – PI–), early (annexin V + PI–), and late (annexin V + PI+) 
apoptotic cells in SW1736 cell line. (B) Quantification of ACT1, 8505c, FRO and SW1736 apoptotic cells after 72 h of treatment with 
ET-743 and GSK126 alone or combination of the two drugs. Data are shown as mean ± SD (n = 3) *p < 0.05; **p < 0.01; 
***p < 0.001.
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combination of HMGA and EZH2 inhibitors can 
be taken into consideration also for other human 
malignant neoplasms.

The current successful use of both drugs in 
clinical routines for other human malignancies 
further supports the proposal of this novel therapy.
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