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Abstract

The purpose of this study is to investigate the relationship between speed and myoelectric

activity, measured during an incremental 25m shuttle running test, exploring the time-based

variations and assessing muscle group balance within the context of this association.

Twelve male young soccer players (n = 12) aged 18±1.2 years, with an average body mass

of 68.4±5.8kg and average body height of 1.72±0.08m, from a professional Italian youth

team (Italian “Primavera”), volunteered as participants for this study. The speed of each

player during testing was measured using GPS technology, sampling at 50Hz. Myoelectrical

activities of the gluteus, hamstrings, and quadriceps muscles were recorded through wear-

able sEMG devices, sampled at 100Hz. To ensure alignment of the sampling frequencies,

the sEMG data was resampled to 50Hz, matching the GPS data sampling rate. This allowed

for direct comparison and analysis of the data obtained from both measurement systems.

The collected data were then analyzed to determine the relationship between the investi-

gated variables and any potential differences associated with different sides of the body. The

results revealed a robust correlation (r2�0.97) between the speed of the participants (m�s-1)

and their myoelectrical activity (μV) during the test. Factorial ANOVA 2x11 showed no signifi-

cant differences between the sides of the analyzed muscles (p>0.05). The interpolation lines

generated by the association of speed and sEMG exhibit very similar angular coefficients

(0.9 to 0.12) in all six measurements obtained from electromyography of the three investi-

gated muscle groups on each side of the body. In conclusion, the concurrent validity between

the two instruments in this study indicates that GPS and sEMG are valid and consistent in

estimating external load and internal load during incremental shuttle running.

Introduction

Soccer is widely regarded as one of the world’s most popular sports, drawing significant atten-

tion from a scientific research perspective.
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In recent decades, there has been notable progress in tracking technology, which encom-

passes various tools such as heart rate monitors (HRM), Global Positioning System (GPS),

video and multi-camera systems, and Local Position Measurement System (LPMS) [1–4].

The evaluation of athletic performance in soccer players is crucial for optimizing training

programs and enhancing player development. The assessment of both external load (e.g., run-

ning speed) and internal load (e.g., myoelectric activity) provides valuable insights into the

physiological demands of the sport. To accurately measure these parameters during incremen-

tal shuttle running, various measurement tools, such as surface Electromyography (sEMG)

and Global Positioning System (GPS), have been employed in sports science research [5–7].

These technologies have facilitated more precise assessments of both the internal and exter-

nal load experienced by athletes, offering detailed metrics regarding matches and training ses-

sions. This has resulted in improved quantification of player performance and workload [8].

Commonly utilized measures of external load in sports science research include total distance

covered, number of high-speed running events, distance covered in sprinting, and number of

accelerations as shown by Benson et al. [9]. Currently, we are witnessing an increasing integra-

tion of external load data (e.g., provided by GPS) with internal load data (heart rate, session

RPE) to provide a comprehensive representation of the workload of soccer players, as

highlighted by field-based research conducted by Jaspers et al. [10] and Texeira et al. [2].

Some authors demonstrated that the accuracy of these instruments varies depending on the

specific type of action being measured. This inaccuracy can lead to an underestimation of the

workloads during trainings and matches [11, 12].

Fast and explosive movements such as striking or kicking the ball cannot be accurately mea-

sured, despite their significance as an important load that needs to be taken into consideration

like proposed in this research by O’Reilly [13]. One promising research area in measuring

internal load can be represented by surface Electromyography (sEMG). It can be considered as

an effective tool for measuring the internal response in terms of electrical activity during mus-

cle contractions [14–18]. However, one of the major limitations to the use of this technology

in field research is the operational challenge posed by the required instrumentation. Recently,

a new sEMG device has been introduced on the market, featuring textile electrodes embedded

in shorts pants. This innovation offers a more convenient and practical solution for utilizing

sEMG technology in research and field applications. The wearable device with textile elec-

trodes embedded in shorts pants has shown reliability and feasibility in comparison to tradi-

tional sEMG tools, as already demonstrated [19]. This breakthrough has opened up new

possibilities for measuring and detecting muscle activity during training and conditioning ses-

sions. Several studies [20–23] have successfully utilized this technology, establishing it as a

valid and convenient method for on-field testing of muscle contractions across various physi-

cal activities [20–23].

Our study aims to utilize textile sEMG technology, embedded in short pants and GPS tech-

nology, during running activities, specifically tempo-imposed shuttle runs in soccer players, to

verify the degree of concurrent validity of these tools. This study represents an initial step in

investigating the potential use of sEMG as a suitable tool for assessing internal load in high-

intensity motor activities characterized by minimal displacement (e.g. small sided games).

The aim is to explore the feasibility of sEMG as a convenient and effective method for eval-

uating the internal demands of such activities. The hypotheses for this study are as follows:

• Textile sEMG-derived muscle activity exhibits a significant correlation with GPS-derived

speed.

• Incremental shuttle running elicits significant and relevant differences in myoelectric activ-

ity between the left and right sides of each muscle group involved.
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Materials and methods

Participants

Twelve male young soccer players (n = 12) aged 18 ± 1.2 years, with an average body mass of

68.4 ± 5.8 kg and average body height of 1.72 ± 0.08 m, BMI = 23.14 ± 2.01 Kg�m-2 and a CV%

= 8.7% from a professional Italian youth team (Italian “Primavera”), were recruited as partici-

pants for this study. The recruitment started on May 05, 2022, and ended on June 15, 2022.

Goalkeepers were not included in this study.

The players trained four times per week, accumulating approximately 8 hours of soccer

training, and also participated in one competitive game. Sprinting, agility, and repeated sprint-

ing ability (RSA) were regularly incorporated into their training regimen. All participants had

remained injury-free for the eight weeks leading up to the study and had a minimum of one

year (ranging from 1 to 3 years) of professional football experience at this competitive level.

No intensive training sessions were held for any of the participants before the testing days.

Additionally, all players were right-foot dominant. The Institutional Research Board (Univer-

sity of Rome “Tor Vergata”, Faculty of Medicine Ethical Committee) provided clearance for

the procedures before the commencement of this study. Written informed consent was

obtained from all the participants after familiarization and explanation of the benefit and risks

involved in the procedures of the study. All participants were informed that they were free to

withdraw from the study at any time without penalty. All procedures were carried out in accor-

dance with the Declaration of Helsinki of the World Medical Association as regards the con-

duct of clinical research.

Experimental design

In this observational research study, the concurrent validity of two measurement tools, surface

electromyography (sEMG) and Global Positioning System (GPS), was investigated. The focus

was on evaluating the agreement and consistency between these tools in measuring speed

(external load) and muscle electrical activity (internal load) during incremental shuttle run-

ning protocols. We designed a behavioral rhythmic scheme induced by an acoustic signal, in

which participants were expected to perform a motor behavior corresponding to the antici-

pated speed of the sound signal. It is important to underline that the objective of this proce-

dure was not the assessment of the achievable outcome in an exhaustion test (e.g., yo-yo test or

similar), but rather the collection of precise electromyography measurements within a con-

trolled and consistent motor pattern context (speed induced by an audio cue) that gradually

increased in speed demands.

The experimental set was designed to gather data concerning various phases–notable

moments–within the locomotion adopted during shuttle running: 1) the initial positive accel-

eration from a standstill, 2) reaching the cruise speed induced by the acoustic signal, 3) nega-

tive acceleration in preparation for 4) the reversal point, i.e., change of direction.

These four notable moments lend themselves to potential investigation, each presenting

unique characteristics worthy of study. In the context of this article, our focus has been primar-

ily directed towards investigating the relationship between increasing average cruising speed

and electromyographic data. Future articles will address the analysis of the other highlighted

notable moments. Additionally, the study aimed to assess the participants maximum speed

and maximal voluntary muscle activity. The research design did not involve random assign-

ment of participants to different groups, but rather focused on observing and comparing the

measurements obtained from the sEMG and GPS devices in a real-world setting. Since differ-

ences in running biomechanics and muscle activation have been reported in overground and
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treadmill running [24, 25], this study took into account overground running for the sake of

ecological validity [26].

Testing procedures

The study involved a series of chronologically ordered organizational phases leading up to the

testing day (as shown in Fig 1): one week prior to the initial testing session, participants com-

pleted two familiarization sessions for the incremental shuttle runs (25 m) with audio cues and

sprints over a distance of 40 m, with a 48-hour gap between the two sessions.

Fig 1. Data collecting design.

https://doi.org/10.1371/journal.pone.0300117.g001
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On testing day, prior to collecting data, participants engaged in a specific warm-up routine.

This warm-up consisted of an initial 5-minute phase of joint mobility exercises, 5 minutes jog-

ging, followed by a series of N = 8 shuttle runs covering a distance of 25 m each. These shuttle

runs were conducted with progressively increasing speed and included a 20-second rest inter-

val between each run. Subsequently, after a rest of 3 minutes, participants performed N = 4–

25-meter submaximal progressive sprints. Before proceeding with the test, the participants

rested for 5 minutes following the warm-up.

Participants were then provided with a GPS device (K-Sport Montellabate–PU–Italy) that had

a sampling rate of 50 Hz, and sEMG shorts (Myontec LTD—Finland) with a sampling rate of

1000 Hz. Detailed instructions have already been given to participants regarding the appropriate

usage of both the GPS and sEMG devices. To ensure accurate data collection, all GPS devices were

activated 10 minutes prior to usage and were secured to the participants using a designated har-

ness supplied by the manufacturer, positioned between their shoulder blades. The sEMG shorts

were properly fitted and positioned on the athletes, with the sensors for measuring muscle activity

already integrated by the manufacturer. As recommended by Finni et al. [19], a small amount of

water was applied to the electrodes to facilitate proper signal conduction, and participants were

instructed to shave their thighs to optimize the electromyographic conduction. The tests were con-

ducted on a soccer field featuring artificial turf that met the official FIFA regulations.

A specific incremental shuttle run protocol over 25 m was designed. It involved increasing

speeds from 2.22 m�s-1 to 5 m�s-1 (equivalent to 8 up to 18 km�h-1). A standard recovery time

of 10 seconds was incorporated between each shuttle run, with only one trial (50 m) performed

for each speed level. Speed was incremented by 0.28 m�s-1 after each shuttle. The data collec-

tion process was structured to establish precise spatial-temporal coordinates for conducting

shuttle runs at progressively increasing intensities. To achieve this, the authors developed a

custom audio track using R software [27]. This audio track provided distinct rhythms mea-

sured in beats per minute (bpm), effectively representing time, for each shuttle run that partici-

pants were required to follow. The bpm frequency increased for each subsequent shuttle run.

To establish visual-spatial coordinates, cones were placed at the starting point, 12.5 m, and

25 m along the path. Participants were instructed to synchronize their movements with the

rhythm set by the audio track, ensuring they reached each spatial marker precisely at the time

indicated by the audio cues. There were five audio cues (n = 5): at the start, at the midpoint

cone, at the turning point, again at the midpoint, and at the end. After a 10-minute rest period

following the shuttle runs, participants were instructed to perform four sprints over a distance

of 40 m. Two of these sprints were submaximal, and two were maximal. A 90-second recovery

interval was provided between sprints. To minimize the impact of circadian variations, all tri-

als were conducted within the same time period on data collecting days. The average tempera-

ture and humidity during the testing days were 25˚C and 60%, respectively.

Data analysis

During the shuttle runs and sprints, data from both the GPS and sEMG devices were collected

simultaneously. The GPS data providing speed measures (m�s-1), was sampled at a frequency

of 50 Hz, while the sEMG data, providing myoelectrical activity (μV) was sampled at 1000

sample�s-1. To ensure comparability between the two systems, the sEMG data was processed

by first applying a bandpass filter using a second-order Butterworth filter with a frequency

range of 20–500 Hz. Subsequently, the sEMG data was rectified using a moving average (ARV)

with a window length of 200 ms [28]. In order to align the sampling frequencies, the sEMG

data was resampled to 50 sample�s-1, matching the GPS data sampling rate. This allowed for a

direct comparison and analysis of the data obtained from both measurement systems.

PLOS ONE Examining the association between speed and myoelectric activity

PLOS ONE | https://doi.org/10.1371/journal.pone.0300117 March 13, 2024 5 / 12

https://doi.org/10.1371/journal.pone.0300117


Thus, the sEMG data was normalized according to Eq 1.

Normalized sEMG ¼
sEMGi

sEMGmax
ð1Þ

To calculate sEMGi the following procedure was applied: a) Collection of myoelectric activ-

ity data for each stage of the incremental shuttle run. b) Calculation of the mean myoelectric

activity for each stage of the incremental shuttle run.

To calculate sEMGmax the following procedure was applied: a) Identification of the peak

myoelectric activity. b) Collection of myoelectric activity data immediately before and after the

intensity peak within a total time window of two seconds (quite similar to the research con-

ducted by Albertus-Kajee et al. [29]). c) Calculation of the mean values collected around the

myoelectric activity peak.

This normalization process aimed to account for individual variations in muscle activity

and allowed for a comparison of the electrical activity across different participants as proposed

by Besier et al. [30] and [31]. These researchers demonstrated that normalizing the myoelectri-

cal activity to a functional task led to a reduction in intersubject variability in comparison to

normalizing it to a maximum voluntary contraction.

Statistical analysis

The obtained averaged outcome variables are reported as means ± standard deviations, coefficient

of variation (CV = SD / mean *100) and confidence intervals (C.I. 95%). To compare the different

speed thresholds and sEMG activities for the different muscle groups, a factorial ANOVA 2x11

(within–between) has been performed. Tukey post-hoc test was used to test significance.

The assumptions for normality were confirmed using Shapiro-Wilk test and sphericity

using Mauchly’s test. Level of significance was set at p < 0.05. The R and R-Studio software

was used for all statistical calculations (R Core Team, 2014; Rstudio Team 2020, PBC, Boston,

MA URL http://www.rstudio.com/).

Results

Time-based differences and association with speed

Table 1 displays the descriptive analysis of the mean speed and electrical activity for each mea-

sured muscle group. Pearson correlation coefficients were calculated to examine the linear

relationship between muscle activity and shuttle run speed for each muscle group. The result-

ing correlations are illustrated in Fig 1, demonstrating a robust association with r2 values rang-

ing from 0.95 to 0.97 and p-values < 0.001.

Upon observing Fig 2, it becomes evident that the interpolation lines obtained in the corre-

lation between speed and myoelectric activity for each investigated muscle group exhibit a

notable similarity in their slope coefficients (ranging from 0.09 to 0.12).

A repeated measures ANOVA was used to detect potential differences in the myoelectric

activity measured during the incremental shuttle runs. Significant differences in myoelectric

activity have been found: F10,776 = 60.36; p<0.0001; ω2 = 0.43, with a high level of statistical

power (power = 1.00).

Comparison between sides

A mixed factorial ANOVA (2x11) was used to examine potential significant differences con-

sidering the laterality of the muscle groups being evaluated. There were not any significant dif-

ferences in myoelectrical activity between left and right muscle groups at different speeds:
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Table 1. GPS speed and sEMG muscle activity for each muscle group at every shuttle run intensity for all the athletes.

Expected

average shuttle

speeda

Observed average

shuttle speed (m/

s)b

Normalized

sEMG Left

Gluteus

Normalized sEMG

Left Hamstring

Normalized sEMG

Left Quadriceps

Normalized sEMG

Right Gluteus

Normalized sEMG

Right Hamstring

Normalized sEMG

Right Quadriceps

V = 2,22 m�s-1 2.07 ± 0.67 [2.04–

2.09] 32.44

0.19 ± 0.13 [0.18–

0.19] 70.34

0.19 ± 0.07 [0.18–

0.19] 39.51

0.19 ± 0.1 [0.19–

0.19] 50.97

0.18 ± 0.07 [0.18–

0.18] 39.52

0.19 ± 0.07 [0.18–

0.19] 36.32

0.21 ± 0.09 [0.20–

0.21] 42.33

V = 2,50 m�s-1 2.28 ± 0.69 [2.26–

2.31] 30.01

0.18 ± 0.10 [0.17–

0.18] 54.72

0.20 ± 0.08 [0.19–

0.2] 38.5

0.19 ± 0.08 [0.18–

0.19] 43.78

0.20 ± 0.07 [0.20–

0.20] 32.64

0.20 ± 0.08 [0.20–

0.20] 39.57

0.21 ± 0.07 [0.20–

0.21] 35.74

V = 2,78 m�s-1 2.49 ± 0.77 [2.46–

2.52] 30.69

0.20 ± 0.09 [0.2–

0.2] 46.31

0.21 ± 0.08 [0.21–

0.21] 37.19

0.21 ± 0.09 [0.21–

0.21] 43.39

0.21 ± 0.07 [0.21–

0.22] 32.16

0.22 ± 0.08 [0.21–

0.22] 36.98

0.23 ± 0.08 [0.22–

0.23] 36.77

V = 3,06 m�s-1 2.59 ± 0.88 [2.55–

2.63] 34.09

0.21 ± 0.10 [0.21–

0.22] 47.5

0.21 ± 0.08 [0.21–

0.22] 38.11

0.21 ± 0.09 [0.21–

0.22] 43.25

0.22 ± 0.07 [0.22–

0.22] 31.67

0.22 ± 0.08 [0.21–

0.22] 38.46

0.23 ± 0.08 [0.22–

0.23] 36.82

V = 3,33 m�s-1 2.76 ± 0.97 [2.72–

2.8] 34.99

0.23 ± 0.11 [0.23–

0.24] 47.24

0.23 ± 0.08 [0.23–

0.23] 35.9

0.23 ± 0.09 [0.22–

0.23] 40.42

0.24 ± 0.08 [0.24–

0.24] 32.81

0.24 ± 0.09 [0.24–

0.24] 38.49

0.25 ± 0.1 [0.24–

0.25] 39.53

V = 3,61 m�s-1 3.05 ± 1.07 [3.00–

3.09] 35.12

0.26 ± 0.12 [0.26–

0.27] 46.2

0.25 ± 0.09 [0.25–

0.25] 35.11

0.25 ± 0.10 [0.25–

0.26] 38.8

0.26 ± 0.08 [0.26–

0.27] 29.22

0.26 ± 0.08 [0.26–

0.27] 31.95

0.27 ± 0.09 [0.27–

0.27] 33.38

V = 3,89 m�s-1 3.2 ± 1.19 [3.15–

3.25] 37.06

0.28 ± 0.13 [0.28–

0.29] 46.36

0.27 ± 0.10 [0.26–

0.27] 35.64

0.27 ± 0.11 [0.26–

0.27] 39.29

0.28 ± 0.09 [0.28–

0.29] 32.5

0.29 ± 0.10 [0.28–

0.29] 34.72

0.29 ± 0.11 [0.28–

0.29] 36.94

V = 4,17 m�s-1 3.32 ± 1.28 [3.27–

3.38] 38.58

0.30 ± 0.14 [0.29–

0.30] 46.37

0.27 ± 0.10 [0.27–

0.28] 34.60

0.28 ± 0.11 [0.27–

0.28] 38.99

0.29 ± 0.10 [0.29–

0.29] 33.33

0.30 ± 0.11 [0.30–

0.31] 35.48

0.31 ± 0.11 [0.30–

0.31] 36.70

V = 4,44 m�s-1 3.56 ± 1.38 [3.50–

3.62] 38.86

0.33 ± 0.16 [0.32–

0.34] 47.07

0.31 ± 0.11 [0.30–

0.31] 35.17

0.31 ± 0.12 [0.30–

0.32] 37.79

0.3 ± 0.09 [0.30–

0.31] 28.63

0.33 ± 0.11 [0.32–

0.33] 35.09

0.34 ± 0.13 [0.34–

0.35] 38.40

V = 4,72 m�s-1 3.72 ± 1.48 [3.65–

3.80] 39.64

0.37 ± 0.17 [0.37–

0.38] 45.51

0.34 ± 0.12 [0.34–

0.35] 35.18

0.34 ± 0.13 [0.34–

0.35] 37.35

0.35 ± 0.13 [0.34–

0.35] 37.52

0.36 ± 0.13 [0.36–

0.37] 34.37

0.37 ± 0.13 [0.37–

0.38] 36.16

V = 5,00 m�s-1 3.82 ± 1.63 [3.74–

3.90] 42.59

0.38 ± 0.17 [0.37–

0.39] 45.86

0.36 ± 0.14 [0.35–

0.36] 39.05

0.37 ± 0.15 [0.36–

0.37] 42.32

0.37 ± 0.13 [0.36–

0.38] 35.91

0.38 ± 0.15 [0.38–

0.39] 39.54

0.40 ± 0.16 [0.39–

0.41] 40.99

Data are presented as mean ± SD, 95% C.I. (lower and upper bounds) and CV. Normalized sEMG data are presented as ratio between sEMGi / sEMGmax.
a As specified by the shuttle run protocol, at speeds dictated by the audio track, including turns.
bAs measured by GPS, including turns.

https://doi.org/10.1371/journal.pone.0300117.t001

Fig 2. Relationship between shuttle running speed for each shuttle run stage and myoelectric activity for each

muscle group. LQ = Left Quadriceps, RQ = Right Quadriceps, LG = Left Gluteus, RG = Right Gluteus, LH = Left

Hamstring, RH = Right Hamstring.

https://doi.org/10.1371/journal.pone.0300117.g002
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Gluteus: F1,22 = 0.009; p = 0.925; ω2 = 0.00; power = 0.051.

Hamstrings: F1,22 = 0.426; p = 0.521; ω2 = 0.016; power = 0.096.

Quadriceps: F1,22 = 0.672; p = 0.421; ω2 = 0.026; power = 0.123.

Post-hoc tests

Post-hoc tests using the Tukey method were conducted for each muscle group, revealing a

consistent pattern of significant differences in myoelectric activity at different speed incre-

ments. The results indicated significant differences at every three increments of running

speed, starting from the initial velocity of v = 2.07 m�s-1 up to v = 2.59 m�s-1. From v = 2.59

m�s-1, significant differences were observed at every two speed increments. Furthermore, start-

ing from v = 3.56 m�s-1, significant differences were found at each stage. These findings suggest

that as the running speed increased during the shuttle run test, there were significant varia-

tions in myoelectric activity among the different stages. This indicates distinct levels of muscu-

lar effort and activation at different speed intervals, highlighting the dynamic nature of muscle

recruitment and the progressive demands placed on the muscles throughout the test. Upon

closer examination of the data, it becomes evident that the linear relationship is predominantly

observed within the mid-range of speeds. Notably, the lowest and highest speeds deviate from

this linear pattern, displaying distinct behavior that does not conform to the established linear

relationship.

Discussion

In this study, which investigates the correlation between running speed and myoelectric activity,

we have formulated two key hypotheses. First, we postulated that significant variations would

emerge across the repeated measurements, indicating a robust link between speed (m�s-1) and

myoelectric activity (μV). Second, we posited that there would be no noteworthy distinctions

between the muscle groups on either side of the body that were examined. In the following dis-

cussion, we will extensively examine these hypotheses, elucidating their consequences, and ana-

lyzing how they may influence the study’s outcomes.

Time-based differences and association with speed

Based on the obtained results, our initial hypothesis concerning significant differences over

time in repeated measures has been validated, and this association exhibits a large magnitude,

indicating that an increase in speed of movement is correlated with a corresponding increase

in myoelectric activity (r2� 0.97). This observed relationship is likely attributable to the aug-

mented requirement for muscle recruitment and force generation necessary to achieve higher

speeds. It is imperative to delve into the underlying mechanisms of this relationship and con-

sider the potential contributing factors, including the response of the neuromuscular system to

challenges associated with speed [15, 17, 18]. The intriguing uniformity in patterns that we

have visualized and presented in Fig 1, exemplified by the interpolating lines, is particularly

noteworthy.

This linear relationship, as predominantly observed within the mid-range of speeds, raises

significant points of interest. Notably, both the lowest and highest speeds exhibit deviations

from this linear pattern, demonstrating distinctive behaviors that diverge from the established

linear relationship. This suggests that the connection between speed and myoelectric activity is

notably influenced by the speed range, with the mid-range showing the most pronounced lin-

ear pattern. This nonlinear behavior at the extremes of speed warrants further investigation to

uncover the specific factors driving these deviations from linearity. Nilsson et al. [32] observed

the transition from walking to running across a relatively broad speed range, with an average
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speed of approximately 7 km/h for most individuals. In a subsequent study by Cappellini et al.

[33], the distinction between walking and running was investigated using electromyography,

revealing similar activation patterns in the muscle involved during walking and running at 5, 7

and 9 km�h-1. These authors emphasized that, during these phases, there was no apparent dif-

ference in the intensity of the muscle activation. This may, in part, explain the weak correlation

at lower speeds due to individual variances.

While nonlinear patterns emerge at the speed extremes (associating speed and myoelectric

signals), the mid-range exhibits remarkably consistent trends in mean amplitude levels across

various muscle groups in relation to increasing running speeds. This consistency underscores

a relevant aspect of our findings, that is the connection between running speed and myoelec-

tric activity we were able to find across different muscle groups. This observation is consistent

with the findings of the review conducted by Howard et al. and Whiteley et al. [17, 34], where

muscle activity of the muscle under investigation increased with higher running speed.

As presented in Table 1, an observation of the coefficient of variation (CV%) reveals sub-

stantial values. These notable variations can likely be attributed to the specific nature of the

observed movement, shuttle running. Shuttle running encompasses distinctive phases, includ-

ing acceleration, cruising, deceleration, further acceleration, and subsequent cruising, remark-

ing that in our calculations we averaged all the phases included in the shuttle run. These

varying phases within the shuttle run protocol could be significant contributors to the

observed CV% values. This phenomenon should not be surprising, as it represents the inher-

ent intervariability often observed in many studies involving biological systems such as the

human body [35].

Taking into account the limited scientific literature on this subject, several speculations can

be made based on Fig 2. The close-to-perfect association (r2 = 0.97) between running speed in

an incremental test and myoelectrical activity of the muscle groups indicates a robust relation-

ship between these variables. This finding suggests that as running speed increases during the

incremental shuttle running, greater contractile force is required to support the rapid and

powerful movements involved [36]. The recorded myoelectrical activity in the analyzed mus-

cles may reflect the level of muscular effort and activation needed to generate the force and

power necessary to achieve and sustain increasing running speeds. These results provide

insights into the muscular demands involved in incremental shuttle running tasks.

Comparison between sides

Despite the hypotheses we formulated, no significant differences in myoelectric activity

between sides were observed, thus excluding the effects of laterality.

One possible explanation for the absence of laterality effects is the concept of bilateral sym-

metry and functional redundancy in cyclic human movements [37]. It is widely acknowledged

that various activities, such as running, walking, and jumping, necessitate bilateral coordina-

tion and the engagement of muscles on both sides of the body to achieve optimal performance.

Consequently, the absence of significant laterality effects in myoelectric activity may suggest

that the muscles on both sides of the body are recruited in a coordinated and balanced manner

during the submaximal incremental shuttle running activities. This concept, although related

to other motor tasks, has already been explored in prior research [21, 38], and yielded results

consistent with ours.

Moreover, studies have suggested that interlimb differences in muscle activation may vary

depending on the specific task or movement being performed. For example, Martonick et al.

[39], found that interlimb muscle activity differences were more task dependent, involving sin-

gle-leg movements compared to bilateral movements. This suggests that the level of task

PLOS ONE Examining the association between speed and myoelectric activity

PLOS ONE | https://doi.org/10.1371/journal.pone.0300117 March 13, 2024 9 / 12

https://doi.org/10.1371/journal.pone.0300117


complexity and unilateral loading may influence the manifestation of laterality effects in mus-

cle activation [40].

Furthermore, it is important to consider the study limitations, including the sample size

and the specific population under investigation.

Conclusions

In this study, we investigated the relationship between speed and myoelectric activity, during

incremental shuttle running, examining potential differences over time and between the left

and right muscle groups. Our findings confirmed significant differences over time in myoelec-

tric activity, indicating a strong association between speed and muscle activation. The strong

association observed suggests that as speed increases, there is a corresponding increase in myo-

electric activity, reflecting the greater demand for muscle recruitment and force generation

required to achieve higher speeds. Nevertheless, certain disturbances have been noted in the

initial and concluding phases of shuttle running, warranting further investigation. It has been

found that there were no significant differences in myoelectric activity between the left and

right muscle groups, indicating a balanced and coordinated recruitment of muscles on both

sides of the body during the tested activities.

Overall, our findings contribute to our understanding of the relationship between speed

and myoelectric activity, highlighting the intricate nature of muscle activation during incre-

mental shuttle running tasks. From a practical perspective, we can view this study as an initial

step toward broader future investigations aimed at establishing reliable metrics for measuring

sports-specific tasks.

The study provided also valuable insights into the concurrent validity of the measurement

tools used and their potential applications in assessing both external and internal loads during

running exercises.
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