Table 2.
Performance of machine learning models.
| Model | Accuracy | AUC | Recall | Precision | F1 score |
|---|---|---|---|---|---|
| XGBoost classifier | 0.725 | 0.705 | 0.718 | 0.688 | 0.686 |
| Random forest classifier | 0.734 | 0.722 | 0.728 | 0.735 | 0.652 |
| Decision tree classifier | 0.606 | 0.675 | 0.675 | 0.725 | 0.713 |
| CatBoost classifier | 0.732 | 0.752 | 0.725 | 0.703 | 0.695 |
| Support vector classifier | 0.659 | 0.631 | 0.665 | 0.717 | 0.673 |
| Logistics regression | 0.635 | 0.666 | 0.625 | 0.684 | 0.650 |
AUC: receiver operating characteristic curve.