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Brainregion-specific degeneration and somatic expansions of the mutant

Huntingtin (mHTT) CAG tract are key features of Huntington’s disease
(HD).However, the relationships among CAG expansions, death of specific
celltypes and molecular events associated with these processes are not
established. Here, we used fluorescence-activated nuclear sorting (FANS) and
deep molecular profiling to gaininsight into the properties of cell types of the
human striatum and cerebellum in HD and control donors. CAG expansions
arise at mHTTin striatal medium spiny neurons (MSNs), cholinergic
interneurons and cerebellar Purkinje neurons, and at mutant ATXN3in MSNs
from SCA3 donors. CAG expansions in MSNs are associated with higher levels
of MSH2 and MSH3 (forming MutSf3), which can inhibit nucleolytic excision of
CAGsslip-outs by FAN1. Our data support amodel in which CAG expansions are
necessary but may not be sufficient for cell death and identify transcriptional
changes associated with somatic CAG expansions and striatal toxicity.

Huntington’s disease (HD) is a fatal late-onset neurodegenerative
disease caused by an abnormally long CAG tract in exon 1 of the Hun-
tingtingene (HTT)'. HD age at onset is most often defined as the onset
of motor symptoms, which are thought to arise as a consequence
of early degeneration of the caudate nucleus and putamen, primar-
ily due to loss of projection neurons of these structures, known as
medium-sized spiny neurons of the direct and indirect pathways
(dMSNs and iMSNs)% Remarkably, other neuron types within these
samestructures are largely spared from cell death*°. However, HTTis
ubiquitously expressed, and the reason for selective vulnerability of
specific cell types in HD is largely unknown®.

Tissue-specific ongoing CAG repeat expansions of the mutant
allele are a central feature of HD and other repeat expansion disor-
ders”". Expansion of theinherited mHTT allele to very long CAG tracts
has been observed sporadically in various brain structures, including

the caudate nucleus and putamen, but notin the cerebellum™. A causal
role for somatic expansions of the CAG repeat in HD pathogenesis is
supported by findings from agenome-wide association study looking
for genetic modifiers of HD motor symptom onset other than CAG tract
lengthitself". Although analysis of individual cells captured from HD
striatum and cortex by laser-microdissection capture has indicated
that somatic expansion occurs more frequently in neurons”, it is not
knownwhether CAG expansions occur in specific types of neuronal and
glial cells in these regions. Therefore, it is unclear if CAG expansions
are sufficient to explain selective cellular vulnerability in HD and what
cell-specific factors in addition to somatically expanded mHTT CAG
tract are required for toxicity.

To gain further insight into somatic CAG expansion and toxicity
in HD, we developed fluorescence-activated nuclear sorting (FANS)
methods for isolation of large numbers of nuclei from human striatal
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celltypes, and we examined the relationships among selective cellular
vulnerability, somatic CAG expansion and transcriptional responses
in HD. We find that extensive somatic expansion of the mHTT CAG
tract occurs in both medium spiny neuron (MSN) populations that
are selectively vulnerable in HD, as well as in cholinergic interneu-
rons that are not lost in the HD striatum, although we cannot rule out
cell-type-specific somatic CAG expansions beyond the length limit of
our assay. CAG expansion is observed also at the mutant ATXN3locus
inMSN nucleiisolated fromthe post-mortem brains of spinocerebellar
ataxia3 (SCA3) donors, indicating that MSNs are intrinsically prone to
somatic expansion of CAG tracts. We demonstrate that the levels of DNA
mismatch repair (MMR) proteins MSH2 and MSH3 are elevated in MSN
nuclei, suggesting that these proteins may contribute to preferential
somatic CAG expansions in MSNs. We offer mechanistic insight into
how MutSp could be promoting somatic CAG expansions by show-
ing that increased concentrations of MutSp inhibit excision rates of
excess slipped-CAG repeats, putative intermediates of expansion
mutations, by FANI nuclease. Our findings support models in which
somatic expansion of the mHTT CAG tract is a critical first step in HD
pathogenesis'®, and they identify specific genes whose altered expres-
sion may modulate toxicity in HD.

Results

FANS-seq profiling of human striatal cell types

To characterize the expression profile, somatic mutations and chro-
matin accessibility of human striatal cell types, we further developed
the FANS method” (Fig. 1a). Nuclei were purified from samples dis-
sected from human post-mortem caudate nucleus and putamen,
stained with either antibody or RNA-binding probes specific for the
nuclei of cell types of interest and resolved by passage through a
fluorescence-activated cell sorter (Fig. 1a,b and Supplementary Table
1). The specificity of labeling probes and purity of isolated populations
of nucleiwere verified by generating RNA-sequencing (RNA-seq) librar-
iesfromtheir nuclear transcriptomes (FANS-seq) and comparing their
gene expression profile to well-known cell-type markers and previously
published data'®' (Figs. 1c, d and 2, Extended Data Fig. 1and Supple-
mentary Table 2). This approach was used to generate comprehensive
high-quality FANS-seq and ATAC-seq datasets for each neural cell type
present in the human caudate nucleus and putamen (Extended Data
Fig.2 and Supplementary Note 1).

mHTT CAG expands in vulnerable MSNs and resilient CHAT*
INs

Large somatic expansions of the mHTTexon1CAG tractinthestriatum
and cerebral cortex have been demonstrated by small-pool PCR™, and
laser capture studies have suggested that somatic expansion can occur
inbothneuronsandglia, albeit more frequently in neurons”. Toaddress
the specificity of somatic expansion of mHTT CAG tract quantitatively,
and to understand whether it is correlated with cell loss in HD, we iso-
lated nucleiof each striatal cell type by FANS (Supplementary Fig.1), ver-
ified the purity of isolated populations of nuclei by analysis of marker
gene expression in the nuclear transcriptomes (Extended Data Fig.
3a) and measured the length of HTT exon 1 CAG tract in genomic DNA
isolated from these populations by lllumina-sequencing of amplicons
derived from HTTexon1?°. Although the limited length of sequencing

reads prevented the detection of CAG repeat lengths larger than 113
repeat units, reported to be present inasmall minority of striatal cells™,
the deep sequencing coverage over HTT CAG tract this method allows
is expected to capture highly quantitative information from the vast
majority of cells.

Analysis of genomic DNA of different cell types from five HD
donors carrying most prevalent disease-causing CAG tract lengths
(from42to45uninterrupted CAGs; see Extended DataFig.3a) revealed
that mHTT CAG tract was relatively stable in glial cell types and SST*,
TAC3" and PVALB" INs, having expanded by less than 5 repeat units
in great majority of these cells (Fig. 3a-c, Supplementary Table 4,
Supplementary Note 2 and Extended Data Fig. 3b). In contrast, only a
smallfraction of AMSNs and iMSNs had mHTT copies with the original
inherited CAG tract length, and approximately half of these neurons
had CAGtractsthat were expanded by more than 20 repeat units (mean
somatic length gain (MSLG) approximately 22 repeat units, Fig. 3a-c;
Methods, ‘HTT and ATXN3 CAG tract sizing’).

Because the scarcity of tissue available prevented us fromisolating
striatal CHAT" IN nuclei from all but one of these five initially charac-
terized HD donors, we isolated nuclei of this very rare cell type from
three additional HD donors. Analysis of these samples revealed that
mHTTCAG tract undergoes large expansions alsoin CHAT INs (MSLG
approximately 18 repeat units; Fig. 3a,d, Extended Data Fig. 3d and
Supplementary Table 4).

Pairwise comparisons of the two MSN types from donors carry-
ing a wider range of initial repeat lengths revealed that the extent of
repeat expansionwas dependent oninitial repeat length. Although the
comparisonis confoundedby differencesin age at death, more modest
expansion was observed for mHTT alleles with reduced penetrance
(CAG tract lengths <40 repeats) relative to longer, fully penetrant
alleles (Fig. 3e,f). Interestingly, although iMSNs have been reported to
be more vulnerable of the two MSN subtypes®, there was no significant
difference in MSLG between dMSNs and iMSNs (Fig. 3f; P=0.3422 by
ratio paired ¢-test).

Takentogether, these data support the hypothesis that extensive
somatic expansion of the mHTT CAG tract is required for the vulner-
ability of MSNs in HD. However, given previous studies demonstrating
that CHAT' INs in the striatum are not lost in HD**, our results suggest
that expansion of the mHTT CAG tract is not sufficient to cause neu-
ronallossin HD.

Instability of the mHTT CAG tractin the HD cerebellum

The loss of cerebellar Purkinje cells (PCs) in several spinocerebellar
ataxias (SCA1, SCA2,SCA6 and SCA7) where the causal elongated CAG
tracts undergo germline expansion has suggested that, in these disor-
ders, somatic CAG expansion may occur in PCs, but this has not been
documented in the cerebellum of HD donors?. Although the viability
of PCs in HD has been a matter of debate, ataxia is not an uncommon
symptomin HD patients”, and recent stereological studies have dem-
onstrated that PC loss occurs in the cerebellum in HD cases with pre-
dominant motor symptoms>*. Given these data, we measured mHTT
CAG instability in cerebellar cell types in several HD donors (Supple-
mentary Table1). Although the degree of mHTT CAG expansionin PCs
(MSLG approximately 5 repeat units) was relatively modest compared
to MSNs, the tract had expanded more in PCs than in other cerebellar

Fig.1|FANS-based isolation of nuclei of striatal cell types from human
post-mortem caudate nucleus and putamen. a, Schematic representation
ofthe procedure used to extract cell-type-specific genomic DNA and nuclear
RNA from cell nuclei labeled with cell-type-specific probes. Created with
BioRender.com. b, Representative FANS plots showing the labeling of striatal
cell nuclei with PrimeFlow probes specific for dopamine receptor D1-expressing
(DRD1") medium spiny projection neurons of the direct pathway (IMSNs),
dopamine receptor D2-expressing (DRD2*) medium spiny projection neurons
of theindirect pathway (iMSNs), somatostatin-expressing interneurons (SST*

INs, SST* nuclei), fast-spiking interneurons expressing parvalbumin (PVALB*

INs, ETV1* TAC3™ nuclei), primate-specific tachykinin precursor 3-expressing
interneurons (TAC3"INs, ETV1" TAC3" nuclei) and cholinergic interneurons
expressing choline acetyltransferase (CHAT INs, TRPC3* COL6A6" nuclei).

The probe against PPP1R1B labels all MSN nuclei. The detailed strategy used for
sorting is described in Methods. ¢,d, Representative distribution of human FANS-
seq (c) and ATAC-seq (d) reads mapped to genes expressed specifically in each of
the striatal cell types studied. In panel d, arrows mark the position of annotated
transcriptional start sites. The data are from a 41-year-old male control donor.
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celltypes exceptoligodendrocytes (Fig. 4a-c and Supplementary Table
4; P<0.0001 by one-way ANOVA, adjusted P< 0.05 in Holm-Sidak’s
multiple comparisons test in comparisons of PCs to other cell types

except oligodendrocytes [P = 0.0617]). The instability of mHTT CAG
repeat in PCs relative to cerebellar granule cells is similar to that seen
for the mutant ATNI CAG repeat causing dentatorubral pallidoluysian
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Fig. 2| Purity and reproducibility of the isolation of striatal cell-type nuclei
across the two striatal brain regions studied. a, Heatmaps depict log,-
transformed relative expression level of cell-type-specific marker genes in each
cell type, calculated based on the mean of DESeq2-normalized counts from six to
eight control donors. b-e, Principal-component analysis (PCA) of control donor
(n=6-8individuals) FANS-seq datasets from all putamen cell types

P.C.1: 39.3% variance

(b,c) indicated that the first three principal components (P.C.) separated
neuronal datasets from glial ones (P.C. 1), MSN datasets from those of
interneurons (P.C. 2) and datasets of different glial cell types from each other
(P.C.3).For FANS-seq datasets from putamen interneurons (d,e), the major
principal components separated the datasets according to interneuron subtype.

atrophy®?. Our dataindicate that bothinstriatum and cerebellum the
mHTT CAG tract is somatically unstable in selected neuron types and
much more stable in other neuron types and glial cells.

Striatal MSNs are prone to somatic CAG expansion
Preferential somatic expansion of the mHTT CAG tract in selected
striatal neuron types could be due to cell-type-specific properties
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Fig.3|mHTT CAG tract undergoes somatic expansion in selected striatal
neurontypes. a, Length distribution of mHTT CAG tract in studied cell types
of caudate nucleus and putamen of a 54-year-old female donor that carried a
tract of 44 uninterrupted CAG units. Blue bar marks sequencing reads derived
from theinitial unexpanded CAG tract. y axes denote normalized number of
sequencing reads mapped to reference sequences with different CAG tract
lengths (normalized by scaling to 1,000 reads). Reads derived from the normal
HTT allele are not shown. b, Frequency distribution of mHTT copies with different
CAG tractlength increases. Data are shown for striatal cell types of two donors
that carried the most common HD-causing CAG tract lengths. ¢,d, Comparison
of mean somatic length gain (measured in repeat units (RUs)). ¢, Although the
mean somatic length gain of mHTT CAG tract was not different between dMSN
and iMSN, comparison of each of these to any other striatal cell type showed

astatistically significant difference (n = Sindividuals, P < 0.0001 by one-way
analysis of variance (ANOVA), adjusted P < 0.0001in Holm-Sidak’s multiple
comparisons test). d, The mean somatic length gain of mHTT CAG tract was not
different between dMSNs and CHAT+ interneurons, but comparison of each of
these to unsorted nuclei showed a statistically significant difference
(n=4individuals, P=0.0004 by one-way ANOVA, adjusted P < 0.001in Holm-
Sidak’s multiple comparisons test). Different symbols are used for each of the
four donors. e, Length distribution of mHTT CAG tractin MSNs of caudate
nucleus and putamen in donors carrying mHTT alleles of reduced and full
penetrance. Arrowhead indicates the initial unexpanded size of the CAG tract.
f, Comparison of the mean somatic length gain of mHTT CAG tract.n =13
individuals, P=0.3422 between cell types, in ratio paired ¢-test (two sided).
caud., caudate nucleus; put., putamen;y., year-old.

of the HTT locus (that is, MSN and CHAT" IN-specific factors acting
in cis), putative cell-type-specific factors acting in trans (for exam-
ple DNA repair proteins) or a combination of the two. Because the
expansion-promoting effect of putative trans-factors would not nec-
essarily be limited to the mHTT locus, we asked whether MSNs have a
propensity to expand long and pure CAG or CTG tracts at other genomic
loci as well. Because transcription through the repeat seems tobea

prerequisite for somatic expansions”, we chose to analyze the CAG
repeatin ATXN3 gene because, as is the case for HTT, its transcription
isrelatively uniformacross striatal cell types (Supplementary Fig. 2a).

We isolated glial cell and MSN nuclei from striatal tissue of five
donors with spinocerebellar ataxia 3 (SCA3) and striatal interneuron
nuclei from two SCA3 donors, all carrying a long CAG repeat in the
mutant ATXN3 allele (mATXN3) (Supplementary Table 1). Although
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Fig. 4 | Expansion of mHTT CAG tractin cerebellar PCs. a,b, Length distribution
of mHTT CAG tract (a) and cell-type marker gene expression (b) in cerebellar

(Cb) cell nucleiisolated from a 54-year-old female donor that carried a tract of

44 uninterrupted CAG units. Blue bar marks sequencing reads derived from
theinitial, unexpanded CAG tract. Reads derived from the shorter normal HTT
allele are not shown. b, Heatmap depicts log,-transformed relative expression in
eachsample (calculated based on DESeq2-normalized counts). c, Comparison

of the mean somatic length gain of mHTT CAG tractin cerebellar cell types from
four to seven HD donors (n = 4 individuals for PCs, n = 5 for granule cells,n=7

for astrocytes, microglia and oligodendrocytes, and n = 5 for oligodendrocyte
progenitor cells (OPCs)). The table presents adjusted P values as calculated by
Holm-Sidak’s multiple comparisons test following one-way ANOVA (P < 0.0001).
The variability in somatic CAG expansion observed for PC samples from different
donors can most likely be attributed to the rarity of this cell type (<0.01% of all
nuclei), which made it extremely difficult to collect samples entirely free of
contamination with nuclei of ‘non-expanding’ cell types. Alternatively, the extent
of somatic CAG expansion in PCs could be variable in the donors we analyzed,
given the reported variability of PC loss between HD patients®.

there were no clear signs of MSN loss even in the oldest SCA3 donors
analyzed, as judged by the abundance of large NeuN* nuclei in striatal
homogenates (Supplementary Fig. 2b), the mATXN3 CAG tract was
clearlymore unstableinthe MSNs relative to glial cellsand interneurons
(Fig. 5a,b and Supplementary Table 4; MSLG approximately 5 repeat
units in MSNs). These data indicate that MSNs have a propensity to
expand long CAG tracts at other genomic lociand support the hypoth-
esisthat mHTTexon1CAG tractinstability is modulated by rate-limiting
trans-acting factors expressed at different levels in striatal cell types.

Toidentify these trans-acting factors that may explain preferential
CAG expansionin MSNs, we compared the FANS-seq expression profiles
of striatal cell types in control donors. We focused on genes coding

for DNA MMR and base-excision repair (BER) proteins, as several of
these proteins have been shown to affect repeat instability in model
systems?®, and because several MMR genes are represented among
candidate genes identified as age of motor symptom onset modifiers
in HD mutation carriers'**. We found that transcript levels of MSH2
and MSH3, encoding MMR proteins that form the MutSf3 complex,
were more than twofold higher in both dMSNs and iMSNs compared
toother striatal neurons, including CHAT" INs, and this difference was
consistentacross neuron typesinboth putamen and caudate nucleus
(Fig. 5c, Extended Data Fig. 4a-c and Supplementary Note 3).

To determine whether the FANS-seq data accurately reflected
nuclear protein levels for these factorsin abundant striatal cell types,
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we measured MSH2 and MSH3 levels by western blotting of nuclear
lysates from MSNs, microglia, astrocytes and oligodendrocytes (Fig.
5d). The ratio of both MSH2 and MSH3 to chromatin, assessed by
anti-H3 signal, was significantly higher in MSN nuclei compared to
glial cells (Fig. 5d; P < 0.0001by one-way ANOVA, adjusted P < 0.0005
in Tukey’s multiple comparisons testin comparisons involving MSNs). It
iswellestablished that the level of Msh2and Msh3 modulates the extent
of somatic CAG expansions seen in the striatum of HD mouse models
carrying expanded CAG tracts®**. Therefore, our observations suggest
that elevated levels of the two components of MutSf may explain the
enhanced CAG expansions in human MSNs.

MutSp suppresses FANI's excision of excess slipped-CAG DNA
FANI was identified as a modifier of HD disease®, and the nuclease
activity of FAN1 has been shown to suppress CAG expansions in the
central nervous system of HD mice and in cells derived from HD
patients®*°, Unlike the levels of MSH2 and MSH3 transcripts, FANI
transcript levels are not higher in MSNs compared to other striatal
neurontypes (Extended DataFig.4d). We asked whether a higher MutSp3
to FANI1ratio, as predicted based on elevated MSH2 and MSH3 expres-
sion in MSNs, might affect the excision rates of putative expansion
intermediate DNA structure by the FANI nuclease. To answer this, we
used purified recombinant human proteins (Extended Data Fig. 5a)
and slipped-(CAG)20 DNA substrates, previously demonstrated to
be cleaved by both endo- and 5’3’ exonucleolytic activities of FAN1
(detailed in Extended Data Fig. 5b)*°. Addition of increasing concen-
trations of MutSp lead to progressive and substantial inhibition of
endo-nucleolytic excision by FAN1 (Fig. 6a, compare lane 2 with lanes
6-8). In contrast, addition of increasing concentrations of MutSa, a
dimer of MSH2 and MSH6, did not inhibit cleavage significantly (Fig. 6a,
comparelane 2 withlanes 3-5).Slipped-(CTG)20 DNA substrate could
alsobe excised by FAN1, and this was inhibited significantly by MutSp,
but not MutSa (Extended Data Fig. 5c paneli). Next, we tested the effect
of the MutS complexes on FAN1s exo-nucleolytic digestion of slip-out
DNA substrates, where ‘nibbling-like’ cleavage occurred throughout
the repeat tract (Fig. 6b and Extended Data Fig. 5¢ panel ii, compare
lane 1 with lane 2). Exo-nucleolytic cleavage of both slipped-CAG(20)
and slipped-(CTG)20 was inhibited by MutSp, but not MutS« (Fig. 6b
and Extended Data Fig. 5¢ panel ii, compare lane 2 with lanes 6-8 and
lanes 3-5). Thus, unlike MutSa, MutSp inhibits FAN1's exo- and endo-
nucleolytic excision of excess CAG and CTG slip-outs. The inhibition
of FAN1 excision by MutSp was also significant for slip-outsin the con-
textof anchored duplex flanks, and this effect was evident for varying
slip-outsizes, with2,4,8and 14 excess repeats (Supplementary Fig. 4).
Addition of increasing concentrations of FAN1 led to increased
endo- and exonucleolytic digestion of slip-out DNA eveninthe presence
of MutSp (Fig. 6¢,d, compare lane S5with lanes 6 and 7), and excess FAN1
could also overcome inhibition of slip-out DNA cleavage by pre-bound
MutSp in acompetition experiment (Extended Data Fig. 5d, compare
lanes 7-11 with lanes 2-6, in both panels ii and iii). As FAN1 does not
interact with MutSP*®, our results support amodel where CAGand CTG
slip-out DNA excisionrates are determined by competitive binding to

either MutSp or FANL, thereby offering an explanation to how differ-
encesintherelative level of MutSp to FAN1 could resultin CAG expan-
sion or stabilization in different cell types.

Altered gene expression in HD progression

Togain further insightinto the molecular events that may play arolein
somatic expansion or contribute to mHT T toxicity, we sequenced the
nuclear transcriptomes of striatal MSNs and TAC3", SST" and PVALB*
INs from the putamen or caudate nucleus of six or seven HD donors
(Supplementary Tables 1and 2). We limited the comparative analy-
sis of HD and control donors’ (n = 8) FANS-seq data to genes that had
accessible promotersin cell type of interest (asindicated by ATAC-seq),
reasoning that this would allow us to minimize the number of possible
false-positive differences in gene expression that might have resulted
from contaminating ambient transcripts, FACS sorting impurities or
contamination with genomic DNA (Supplementary Note 1and Extended
DataFig. 6a). As expected, disease-associated changes (Fig. 7aand Sup-
plementary Tables 5 and 6) were well correlated between dMSNs and
iMSNs, but the correlation was poor in comparisons involving other
neuron types (Fig. 7b and Extended Data Fig. 6b). This result shows
that the majority of disease-associated transcript-level changes are
not common to all striatal neuron types.

Gene ontology analysis. To identify cellular processes that are
affected by disease-associated gene expression changes that take
place only in MSNs, thereby correlating with the presence of more
toxicmHTT speciesin these neurons, we analyzed which gene ontology
cellular component (GOCC) terms were enriched for genes that were
up- or downregulated in MSNs but did not display these changes in
expressionin any of theinterneuron populations studied. The results
indicated that many genes downregulated specifically in MSNs are
involved in ribosomal biogenesis (GOCC terms ‘cytosolic ribosome’
and ‘nucleolus’), pre-mRNA maturation (GOCC terms ‘nuclear body’
and ‘spliceosomal complex’) and other nuclear functions (Fig. 7c).
Although transcripts of mitochondrial oxidative phosphorylation
pathway genes have been reported to be downregulated in HD MSNs*,
we noticed that this disease-associated change is much more evident
in the nuclear transcriptome of PVALB+ INs (Extended Data Fig. 6¢
and Supplementary Fig. 5a). The full lists of GOCC terms enriched for
MSN-specific changes and overall changes in all neuron types can be
found in Supplementary Tables 7 and 8, respectively.

The GOCC terms enriched for genes that have increased expres-
sion in MSNs in the HD donor data include many terms that indicate
alterations in membrane protein function. ‘Neuron projection’, ‘Syn-
apse’ and ‘Lysosome’ were among GOCC terms enriched for genes
upregulated specifically inboth MSN subtypes (Fig. 7c, Extended Data
Fig. 6c and Supplementary Fig. 5b). We observed also that genes central
totheregulation of lysosomal biogenesis and autophagy were among
the top upregulated genes in MSNs. For example, the transcripts of
transcription factor TFEB, which has been shown to be essential for
regulation of many genes in these pathways*, are strongly elevated
in HD MSNs (Fig. 7d). The observations that TFEB is essential for MSN

Fig.5|MSNs are prone to somatic expansion of mATXN3 CAG tract and

have elevated expression of nuclear MSH2 and MSH3 proteins. a, Length
distribution of mATXN3 CAG tract in cell types of caudate nucleus of an 84-year-
old female donor that carried a tract of 64 uninterrupted CAG units. Size of the
initial unexpanded CAG tract is marked with a blue bar. Reads derived from

the normal ATXN3allele are not shown. b, Comparison of the mean somatic
length gain of mATXN3 CAG tractin striatal cell types from SCA3 donors (n =35
individuals for MSNs, astrocytes, microglia and oligodendrocytes, n =2 TAC3*
INsand PVALB* INs, and n =1for SST* INs). The table presents adjusted P values as
calculated by Holm-Sidak’s multiple comparisons test following one-way ANOVA
(P<0.0001). ¢, Heatmaps depict log,-transformed relative expression of MMR
and BER genes in cell types of putamen, calculated based on DESeq2-normalized

counts from ssix to eight control donors. Genes identified as HD age at onset-
modifying candidates or known to influence CAG tract instability in HD mouse
models are marked with an asterisk or arrowhead, respectively. d, Representative
immunoblots and quantification of anti-MSH3/anti-H3 (left) and anti-MSH2/
anti-H3 signal ratio (right) in unfixed nucleiisolated from the putamen of
control donors. These ratios were higher for MSNs compared to other cell types
analyzed (P < 0.0001by one-way ANOVA, adjusted P < 0.0005 in Tukey’s multiple
comparisons test). For anti-MSH3, n = 4 individuals for MSNs, astrocytes, and
oligodendrocytes, and n = 2 individuals for microglia. For anti-MSH2,n=6
individuals for MSNs, astrocytes and oligodendrocytes and n = 3 individuals for
microglia. Dataare presented as mean + standard error of the mean (s.e.m.). Full-
length blots are provided as Source Data.
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survival in miceinthe presence of mHTT* and canlower striatalmMHTT
levels* point to the relevance of itsinduction for MSN survival. Several
genes encoding proteins essential for autophagy are also induced
in HD, including ATG9B, ATG9A, the gene encoding HTT-interacting
protein ULK1involved in autophagosome formation*’, MAPKSIPI and
MAPKS8IP3, whichencode proteinsinvolvedin retrograde transport of

autophagosomes*®, and SQSTM1, the gene encoding HTT-interacting
autophagy cargo receptor p62 (ref. 45) (Fig. 7d and Supplementary

Note 4).

DNA repair pathways. Given the expansions of mHTT CAG tract in
MSNs, weinvestigated whether there are disease-associated changesin

a 84 y. female, SCA3, 64 CAG, caud. c Control donor FANS-seq: putamen 5
: : 3 @
: MSH2 <« ~
200 : . o
‘Astrocytes MSH3*< I 2 8
: PMS2* <= @
B pPoLps 15
100 LIGT* <« é
‘ RFC5 o 3
RFC3 5
4 0- _ RFC4 g
[ =
8 : g POLD2 o
200 : 2
2 ‘Microglia £ MLH3 < 3
3 : § MSH6 L 8
g g FANT* < g
g 100+ g B FoLe
3 POLD4
g Bl B roLor
E 97 MLHT* <
5 : B rrc2
] 2007 éOligodendrocytés RFCI
Q R N *
: | : = ps1
3 PCNA
3 100 B S o
= PARPT
£ DG
2 0n - LIG3
200 | : 'z OGGT <
MSNs i’; TDP1
: s UNG
@ APEX1
00| | g XRCC1
: : g FENT
sl : N«
0= e ‘ ‘ ) TOP1
60 80 100 1 POLB
No. of uninterrupted CAG units in mATXN3 - HMGB1
S SN N T\ A N N 4
R D S A\ X X
b , Oligodendrocytes = MSN v PVALB' IN NEE \?Q'b V& %@’\ \2\?’.\ ‘\C}OQ ‘oo* «o‘;\
@ Microglia TAC3' IN *SST'IN R N & &,}\b
® Astrocytes <\®°
8
Caud. Put. Put. Caud. Caud. d & &
= & &
= =} ,\0 O
& Q\b @ & @ (\b‘\
£ 6 obe’ & og\ 00* 00* & o‘§ &
) & & & & £ & s
< = - o N N ¥ ¥ Y Y O
Is) -] L ] 130 kDa - was . . —
S 130 kDa s o —
S 4 =t o-MSH3 g o-MSH2
£ = 100kDa @ 100 kDa | @
% [ ) * e c— o-H3 15kDa == a-H3
2 24 @ [ o® ® v 15kDa =~ w-=
g ® L] ® Vie P <0.0001
2 o L L4 P-0.0003 P=0.0003
40 P=0.0005 25 — P=0.0005
0 — ] _ P=0.0002
T T T T T © - g 1
A N S S S 5 ]
F 5 K K o 2 o 2 20 m
& K 2 2 n
> & AV AV¥ A© 2 . z 15 L
20
Microglia Astrocytes MSNs TAC3*IN  PVALB'IN § S 10
| 0.31 0.50 <0.0001 0.014 0.91 Oligodrocytes (:,E, % "
0.91 | <0.0001 | 023 0.91__| Microglia 109 o0 P o
<0.0001 0.16 0.91 Astrocytes E E s .7—53
0.011__| <0.0001 | MSNs o ° oo Sw o P o0 ©
Adj. P< 0.05 016 | TAC3'IN o b . e s e
Adj. P < 0.001 & & & &e & & & @rﬁ
\SO O b&O ,éo ) 6‘0
& N & N &
s 3

Nature Genetics | Volume 56 | March 2024 | 383-394

390


http://www.nature.com/naturegenetics

Article

https://doi.org/10.1038/s41588-024-01653-6

thetranscriptlevels of genes encoding MMR and BER proteins. Notably,
we found that,in HD MSNs, MSH2 and MSH3 expression levels are signifi-
cantly reduced relative to MSNs from control donors, whereas POLDI,
codingforthelarge catalytic subunit of the DNA polymerase deltacom-
plex, undergoes a disease-associated upregulation that is not entirely
specific to MSNs (Fig. 7e). Notably, POLDI was recently identified as a
candidate modifier of HD*. Although further validation will be required
to confirm these changes, our data point to clear distinctions in the
regulation of DNA repair pathwaysin MSNs compared tointerneurons.

Genes required for MSN viability and functionality. To predict which
cellular functions would be affected negatively by HD-associated
transcript-level changes, we identified genes downregulated in HD
MSNs that have also been shown to be required for the viability of MSNs
in mice* (Supplementary Table 10). Analysis of GOCC terms enriched
for these genes revealed that many of the HD-associated expression
changes could be affecting MSN viability through their effect on nuclear
functions and RNA metabolism (Fig. 7f and Supplementary Note 5).
We also noted that the transcript levels of MSN-enriched ANO3 and
PDEI0OA undergo large disease-associated decreases equivalent in
magnitude to complete silencing of these genes in >45% and >60%
of the remaining MSNs, respectively (Supplementary Fig. 7, ANO3
transcript log, fold change -1.35 and —0.86 for dMSNs and iMSNs,
PDEI10OA transcript log, fold change -1.44 and -1.33 for dMSNs and
iMSNs). As missense mutations in ANO3 are known to cause dystonia
(https://omim.org/entry/615034) and PDE10OA mutations are known
to cause childhood-onset hyperkinetic movement disorders (https://
omim.org/entry/616921, in some cases with striatal degeneration:
https://omim.org/entry/616922), itis likely that these transcript-level
changes have a substantial effect on the function of alarge fraction of
remaining MSNs in HD.

Discussion

Here, we have used FANS" toisolate thousands of nuclei of each neural
cell type of human caudate nucleus and putamen to generate deep,
high-resolution, cell-type-specific transcriptionaland HTT CAG repeat
tractlength-measurement data from controland HD donors. Our data
reveal that somatic expansion of mHTT CAG tract occurs in select

Fig. 6 | MutSp and FAN1levels competitively affect FANI’s nuclease excision of
excess slipped-CAG DNAs. (CAG)20-slip-out DNA substrates (schematics) mimic
putative intermediates of expansion mutations*’. Endo- and exonucleolytic
activities can be distinguished by fluorescein amidite (FAM)-labeling at 5’ or
3’ends of the (CAG)20 strand, respectively (indicated by an asterisk); in this
manner, only the labeled strand and its digestion products are tracked.
‘E’iselbow at the dsDNA-ssDNA junction. a,b, MutSp not MutSa inhibits FAN1.
Protein-free undigested slip-out DNA substrate (100 nM), lane 1. Slip-outs

were preincubated with buffer, lane 2, or increasing concentrations of purified
human MutSa (50,100 or 200 nM), lanes 3-5; or MutSf (50,100 or 200 nM),
lanes 6-8. Nuclease digestions were initiated by addition purified human FAN1
(50 nM). Lanes 9 and 10 have slip-out DNA and only MutS«a (50 nM) or only MutSf3
(50 nM), ensuring these purified proteins are nuclease-free. ¢,d, Increasing

FANI concentration can overcome MutSB-mediated inhibition of cleavage.
Protein-free undigested slip-out (100 nM), lane 1. Slip-outs were preincubated
with buffer, lanes 1-4 or with MutSp (200 nM), lanes 5-7. Nuclease digestions
were initiated by adding increasing amounts of FAN1 (50,100 or 200 nM), lanes
2-4and 5-7. Lane 8 has slip-out and only MutSf (50 nM). For gels in panels aand
b, the percentage cleavage for each reaction was normalized to cleavage levels
with FAN1alone (lane 2), and these levels were graphed (GraphPad prism 9.1). For
gelsinpanels cand d, the percentage cleavage for each reaction were graphed.
The vertical schematic to the right of each gel indicates the location of cleavage
sites along the FAM-labeled DNA strand. ‘E’is elbow at the dSDNA-ssDNA junction,
blue arrowheads represent cleavage hotspots. Results of two-sided unpaired
t-test are indicated (versus FAN1alone in panel b, or versus ‘no FANI’ in panels
candd). n=2experiments for panel a, n = 3 experiments for the other panels and
mean * standard deviation (s.d.) are plotted.

striatal neuron types. Our findings are consistent with models of HD
pathogenesis in which somatic CAG expansionis a critical first step in
pathogenesis, followed by asecond step in which the expanded mHTT
allele has atoxic effect that eventually leads to degeneration and death
of the cell'®. In addition, our data indicate that somatic nHTT CAG
expansions alone may not be sufficient to explain cell-type vulnerability
andreveal several cell-type-specific molecular features of the disease.

The most vulnerable cell types in the HD striatum are MSNs?,
Although both dMSNs and iMSNs are progressively lost during the
progression of the disease, iMSNs that express dopamine receptor D2
and enkephalinare most vulnerable in early stages®. Striatal interneu-
rons are relatively spared early in the disease®. In particular, although
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Fig.7|Disease-associated gene expression changes in striatal neuron types. disease-associated changes in transcript levels of selected genes regulating
a,Number of differentially expressed (DE) genes (P, < 0.05 by DESeq2, adjusted autophagosome formation and transport (d), and transcript levels of MMR and
for multiple comparisons) in the comparison of HD (n = 7 individuals for dAMSNs BER genes (e). Statistically significant differences are marked with an asterisk
and iMSNs, n = 6 individuals for all interneuron types) and control donor (n =8 (P,4j< 0.05by DESeq2, adjusted for multiple comparisons). CTRL, control.

individuals) FANS-seq datasets from putamen or caudate nucleus. b, Correlation f, GOCC terms enriched for genes that were identified as essential for MSN

analysis of disease-associated expression changes of genes expressed in all
striatal neuronal types studied. ¢, Selected nonredundant GOCC terms from
enrichment analysis of genes with disease-associated expression changesin

viability in wild-type mice* and are also downregulated in HD dMSNs (440 genes)
oriMSNs (365 genes). GOCC terms enriched with less than 10 downregulated
genes are omitted from the plot. For panels cand f, the significance threshold

iMSN or dMSN (P,; < 0.05 by DESeq_2), but not inany interneuron type (P,; > 0.05 for enrichment analysis was: g value < 0.05, P,; < 0.05, adjusted for multiple

inall HD versus control interneuron comparisons). d,e, Heatmaps depicting

comparisons after hypergeometric test with clusterProfiler.

CHAT' INs are clearly affected, as indicated by reduced CHAT activity is an early step in disease progression that is necessary for the loss of
in histological sections, the persistent expression of acetylcholinest- neurons in HD. Accordingly, the stability of the mHTT CAG tract we
eraseinthese cellsindicates that they do not die during the disease**®.  see in SST*, TAC3* and PVALB" INs can explain their relative resilience

Our data showing somatic mHTT CAG expansion in both MSNs  in HD. However, our data also demonstrate that large expansions of
and cerebellar PCs*****° support the hypothesis that CAG expansion the mHTT CAG tract are not sufficient for loss of CHAT* INs in HD.
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Furthermore, data we collected from dMSN and iMSN nucleiisolated
from HD donors, especially from carriers of reduced-penetrance mHTT
alleles where the loss of MSNs is minor, establish that differences in the
rate of mHTT CAG expansion are an unlikely explanation for thereport-
edly greater vulnerability of iMSNs than dMSNs in this disease?. The
conclusion that substantial somatic expansionis required but may not
be sufficient for neuronalloss inthe HD brainis supported by studies of
the human cerebral cortexin HD, demonstrating that extensive expan-
sion of the mHTT CAG tract occurs in many deep layer pyramidal cell
types despite selective loss of L5a corticostriatal projection neurons®.

Itisimportant to note that the assay we have employed for deter-
mining CAG repeatlengthsis limited toatractlength of 113 CAG repeats
and thus cannot be used to detect the very long CAG expansions that
have been reported to occur in some HD donors’ brains™. It remains
possible, therefore, that cell loss from the HD striatum is due to CAG
repeats that have undergone extremely large somatic expansion, and
that the differential resilience of CHAT" INs relative to MSNs during
HD progression, as well as the resilience of MSNs with somatically
expanded mATXN3 repeat (Supplementary Note 6), is explained by
adifference in the frequency of very long CAG repeats that are unde-
tectable by our assay. A threshold of 115 CAGs has been postulated for
striatal cell loss based on computational models of somatic expansion
thatinclude acceleration of expansionas the length of the CAG repeat
increases®’. Analysis of the genomes of cells that have already died in
the HD brain, for example by recovery of MSN DNA from cerebrospinal
fluid, would provide data directly addressing the threshold of CAG
expansionrequired for cell death.

The preferential expansion of the mATXN3 CAG tract we detect
in MSN nucleiisolated from SCA3 donor samples indicates that these
neurons have a general propensity to expand long CAG tracts, perhaps
asaconsequence of the high level of MutSp (Supplementary Note 7). We
offer mechanistic insight to how elevated MutSf3 could be promoting
somatic CAG expansions by showing that an excess of MutSf3 inhibits
FAN1 nucleolytic excision of excess CAG slip-outs, thereby allowing
slip-outs to be retained as somatic expansions (Supplementary Note 8).

Our data show that HD-associated gene expression changes in
humanMSNs are distinct from those of other striatal neurons and have
only a partial overlap to gene expression changes documented in pub-
lished datasets from HD mouse models**** (Supplementary Note 9). The
large magnitude of HD-associated downregulationseen for many genes
(medianlog,fold change —-0.67 and -0.73 for genes downregulated in
dMSNsandiMSN, respectively) indicates that extensive transcriptional
disturbances occur in the majority of MSNs prior to their demise. The
stronginduction of genesinvolved in autophagic clearance argues that
human MSNs mount animportant defense against the mHTT misfold-
ing and extranuclear aggregation in HD. Other changes may be more
detrimental, including the strong transcriptional downregulation of
genes involved in nuclear functions, perhaps as a direct effect of the
presence of mHTT in the nucleus. Moreover, there are large expres-
sion changes in several genes which have been shown to be required
for MSN viability in mouse models of HD*, and in genes with a clearly
established link to human MSN function (ANO3) and survival (TAFI
and PDE10A).

The data we have reported here strongly support previous pro-
posals' that somatic CAG expansion is a necessary first step in the
pathophysiological cascade that unfolds in HD. Our data suggest also
that striatal MSNs are prone to somatic CAG expansion, perhaps as a
consequence of the high level of MutSp that we have documented in
MSN nuclei. It remains possible that differencesinthe frequency of very
long mHTT repeats in vulnerable and more resilient cell types is suffi-
cientto explaintheir differential deathin the HD brain. However, given
the number and magnitude of MSN-specific transcriptional responses
evidentin the human striatumin HD, precedent from mouse models**,
and the nature of the specific genes dysregulated, we favor the proposal
thatsome of these gene expression changes are anindicator and likely

also a cause of compromised human MSN function well before the
eventualloss of these cellsin HD. We hope that further analyses of the
comprehensive datasets we have provided will stimulate others to
interrogate them in the context of detailed mechanistic studies to
clarify the degree to which these transcriptional changes perturb the
implicated biological processes in human brain, and whether these
changes are detrimental or compensatory.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
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Methods

Human samples

Deidentified tissue samples analyzed in this study were determined to
be exempt from Institutional Review Board review according to 45 CFR
46.102(f). For thiswork, fresh frozen brain samples were obtained from
Miami’s Brain Endowment Bank, University of Washington BioReposi-
tory and Integrated Neuropathology Laboratory, Columbia University
Alzheimer’s Disease Research Center, The University of Michigan Brain
Bank and Netherlands Brain Bank or through the National Institutes of
Health (NIH) NeuroBioBank and sourced fromeither the Harvard Brain
Tissue Resource Center or the NIH Brain & Tissue Repository-California,
Human Brain & Spinal Fluid Resource Center, VA West LA Medical Center
(Los Angeles, CA). Drug addiction and schizophrenia as well as clinical
evidence of brain cancers were reasons for sample exclusion, whereas
samples from donorswithahistory of other non-brain cancers and diabe-
teswereaccepted. Caudate nucleus, putamen and cerebellar vermis were
used forisolation of nuclei. The brainregions used fromeach donorand
their age, race, sex and post-mortem interval are noted in Supplemen-
tary Table 1. The table includes information about the Vonsattel grade,
calculated CAP100 score”, the number of uninterrupted CAG repeats
intheir HTT alleles and the sequence of the CAG tract and the adjacent
CCGtract, as determined from CAG tract length measurement data.

Isolation, labeling and sorting of glial cell nuclei
Nuclei were isolated as described previously”. For the labeling of glial
cellnucleiand cerebellar granule cells, the isolated nuclei were washed
once with homogenization buffer (0.25 M sucrose, 150 mM KCI, 5 mM
MgCl,, 20 mM Tricine pH 7.8, 0.15 mM spermine, 0.5 mM spermidine,
EDTA-free protease inhibitor cocktail, 1 mMDTT, 20 U ml" SUPERase-In
RNase inhibitor (ThermoFisher, #AM2696), 40 U ml™ RNasin ribonu-
clease inhibitor (Promega, #N2515)). Each washing step constituted
of resuspension of nuclei pellet followed by centrifugation (1,000 x
g, 4 min, 4 °C). Resuspended nuclei were fixed in Homogenization
buffer with1% formaldehyde for 8 minat room temperature followed by
quenching with 0.125 M glycine for 5 min. Following centrifugation, the
nuclei were washed once with wash buffer (PBS, 0.05% TritonX-100, 0.5%
BSA,20 Uml™Superase-InRNase Inhibitorand 40 Uml™RNasin ribonu-
cleaseinhibitor) and incubated at room temperature onashakerin wash
buffer for permeabilization and blocking of unspecific binding. Nuclei
were washed twice inwash buffer without TritonX-100 and resuspended
in 100 pl 40% ethanol containing TrueBlack Lipofuscin Autofluores-
cence Quencher (Biotium, #23007) for 40-50 seconds. Nuclei were
washed twice with wash buffer (w/o TritonX-100) and incubated over-
nightat4 °Cwith the following antibodies: Rbx NeuN-Alexa-647 (1:400,
Abcam, #ab190565), Rb x NeuN-Alexa594 (1:400, Abcam, #ab207279),
Mm x EAAT1 (1:2,000, Santa Cruz Biotechnology, #sc-515839), Mm x
IRF8-PE (1:65, ThermoFisher, #12-9852-82) and Goat x Olig2 (1:300,
R&D Systems, #AF2418). After three washes with wash buffer (w/o
TritonX-100), the nucleiwereincubated for 30-45 minat room tempera-
ture with Donkey x Mm-Alexa-488 (1:1,000, ThermoFisher, #A-21202)
and Donkey x Goat-Alexa-647 (1:300, ThermoFisher, # A-21447). After
three washes with wash buffer (w/o TritonX-100), the nuclei were resus-
pended in Sorting buffer (PBS, 0.2% BSA, 40 U mI™ RNasin ribonucle-
ase inhibitor, 0.5 ug ml™ DAPI) and separated with SONY MA900 Cell
Sorter (software ver. 3.0.5). Aggregates of nuclei were excluded based
on higher DAPI signal and the following gating strategies were used:
neuronal nuclei (647+,594+,488-, large), oligodendrocyte nuclei (647+,
594-,488-,small), microglia nuclei (647-,594+,488-, small) and astro-
cyte nuclei (647-, 594-, 488+, small). A separate sorting experiment
was performed for collecting cerebellar granule cell nuclei. For this
purpose, nucleiwere labeled with Rb x NeuN-Alexa594 (1:400, Abcam,
#ab207279) and Mm x ITPR1-Alexa-488 (Santa Cruz Biotechnology,
#sc-271197 AF488), and granule cell nucleiwere collected (488,594 +).
For labeling neuronal nuclei, PrimeFlow labeling kit (Ther-
moFisher, #88-18005-210) was used and fixation and permeabilization

were carried out according to manufacturer’s instructions but with
200 Uml*Superase-In RNase inhibitor and 400 Uml™ RNasin ribonu-
cleaseinhibitor present at every incubation step. For sorting, the nuclei
were resuspended in sorting buffer (PBS, 0.2% BSA, 40 U mI™ RNa-
sin ribonuclease inhibitor, 0.5 pg ml™ DAPI). Probes specific to DRD1
(Alexa-647, #VA1-3002351-PF), DRD2 (Alexa-488, #VA4-3083767-PF)
and PPPIRI1B (Alexa-568, #VA10-3266354-PF) were used to label AMSN
(647+, 568+, 488-, large) and iMSN nuclei (647-, 568+, 488+, large).
In a separate set of experiments, probes specific to TAC3 (Alexa-647,
#VA1-16603-PF), ETV1 (Alexa-488, # VA4-3083818-PF), SST (Alexa-568,
#VA10-3252595-PF) and PPP1R1B (Alexa-568, # VA10-3266354-PF) were
used to label the nuclei of TAC3+ interneurons (647+, 568—, 488+),
PVALB+ interneurons (647-, 568-, 488+), SST+ interneurons (647-,
568+++,488-) and MSNs (647-, 568+, 488-, large). Probes specific
to TRPC3 (Alexa-647, # VA1-3004835-PF), COL6AG6 (Alexa-647, #VAl-
3014134-PF) and PPP1R1B (Alexa-568, # VA10-3266354-PF) were used
in another set of experiments to label cholinergic interneuron nuclei
(647+,568-, large) and MSN nuclei (647-, 568+, large). CA8 probe
(Alexa-647, #VA1-3001892-PF) was used for sorting Purkinje neuron
nuclei (647+,large). Aggregates of nuclei were always excluded based
on higher intensity of DAPIstaining. All PrimeFlow target probes were
used atadilution of 1:40.

ATAC-seq library preparation

For generating ATAC-seq data, the nuclei were treated with Tagment
DNA TDE1Enzyme (Illumina, #15027865) before fixation and labeling.
The exact number of nuclei processed depended on the abundance
of the population labeled and collected. Briefly, 800,000 nuclei were
pelleted by centrifugation (5 minat 950 x g) and resuspended in10 mM
Tris-HCIpH 7.6,10 mM NaCl, 3 mM MgCl,, 0.01% NP-40 followed by cen-
trifugation (500 x g for 10 min at 4 °C). The pellet was resuspended in
200 pl Transposition Mix (1x TD buffer containing 20 Uml™ Superase-In
RNase Inhibitor, 40 U mI™ RNasin ribonuclease inhibitor and 1.25 pl
Illumina Tagment DNA TDE1 Enzyme per every 100,000 nuclei) and
incubated at 37 °C for 30 min. The reaction was stopped and nuclei
fixed by adding 1 ml homogenization buffer with 1 mM EDTA and 1%
formaldehyde. After 8 min of incubation on a shaker, the fixative was
quenched by adding glycine (0.125 M) for 5 min. After washing the
nucleionceinhomogenization buffer and once in wash buffer (without
Triton X-100), the sample was processed like described above, proceed-
ing with the steps that follow permeabilization of nuclei. After sorting,
the collected nuclei were centrifuged at 1,600 x g for 10 min 4 °C and
resuspended in 200 pl RC solution (50 mM Tris-HCI pH 7.6, 200 mM
NaCl, 1mM EDTA, 1% SDS and 5 pg ml™ Proteinase K) and incubated
overnight at 55 °C. Genomic DNA was isolated with using MinElute
Reaction CleanupKit (Qiagen, #28206) and used for PCR amplification
(72°C, 5min; 98 °C, 30 s; 12-14% (98 °C, 10 s; 63 °C, 30 s; 72 °C, 1 min))
with NEBNext High-Fidelity 2X PCR Master Mix (New England Biolabs,
#MO0541S) and barcoded Nextera primers (1.25 uM each)*. Following
double-sided size selection by bead-purification the libraries were
quantified with Qubit dsDNA HS assay kit (ThermoFisher #Q32851) and
pooled for sequencing on NovaSeq6000 (SP 2 x100 bp).

FANS-seq library preparation and sequencing

RNA extraction was carried out with AllPrep DNA/RNA FFPE Kit (Qia-
gen, #80234) with modifications described previously”. RNA-seq
libraries were prepared with Trio RNA-Seq library preparation kit
(Tecan, #0506-A01), quantified with Qubit dsDNA HS assay kit (Ther-
moFisher #Q32851) and pooled for sequencing on NovaSeq6000
(SP2x150 bp).

RNA-seq data processing

Sequence and transcript coordinates for human hg38 UCSC genome
and gene models were retrieved from the BSgenome.Hsapiens.UCSC.
hg38 Bioconductor package (version1.4.1) and TxDb.Haspiens.UCSC.
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hg38.knownGene (version 3.4.0) Bioconductor libraries, respectively.
FANS-seqreads were aligned to the genome using Rsubread’s subjunc
method (version 1.30.6)*” and exported as bigWigs normalized to
reads per million using the rtracklayer package (version1.40.6). Reads
in genes were counted using the featurecounts function within the
Rsubread package against the full gene bodies (Genebody.Counts)
and gene exons (Gene.Counts).

ATAC-seq data processing

The ATAC-seq reads were aligned with the hg38 genome from the
BSgenome.Hsapiens.UCSC.hg38 Bioconductor package (version
1.4.1) with Rsubread’s align method in paired-end mode. Fragments
between 1 and 5,000 bp long were considered correctly paired.
Normalized, fragment signal bigWigs were created with the rtrack-
layer package. Peak calls were made with MACS2 software in BAMPE
mode’**’. For each striatal interneuron type except cholinergic
interneurons, the ATAC-seq consensus peaks were called from four
ATAC-seq datasets generated from four different control donors. For
MSNs, ATAC-seq consensus peaks were called from 8 dAMSNs datasets
from 7 different HD donors, from 9 iMSN datasets from 8 different
HD donors, and 31 dMSNs datasets and 32 iMSN datasets from 8 con-
trol donors (up to four datasets from each donor). High-confidence
consensus peaks were derived by creating a nonredundant peak
set for each cell type and disease state and then filtering down to
peaks that were present in the majority of samples. These were then
annotated to TSS based on proximity using the ChIPseeker package
(version 1.28.3)°°. NCBI Refseq hg38 gene annotation was used (ver-
sion 109.20211119).

Differential gene expression analysis and
principal-component analysis

For comparison of transcript abundance data between different cell
types from control donors, the comparisons of data from caudate
nucleus and putamen were done independently. For control donors
fromwhom there were data available from both posterior and anterior
parts of the same structure, a single table of average raw read counts
per gene was generated for each cell type. For comparison of control
donor datato HD donor data, up to four separate datasets for a given
cell type (anterior putamen, posterior putamen, anterior caudate
nucleus and posterior caudate nucleus) were combined by calculat-
ing the average raw read counts per gene (rounding up to integer),
so that each donor was represented by a single FANS-seq dataset for
each cell type. Principal-component analysis plots for 500 most vari-
ant genes were generated with pcaExplorer® using average raw read
‘Genebody.Counts’ tables as input data (one table for each donor per
celltype). Average raw read ‘Gene.Counts’ tables (that s, derived from
FANS-seq reads mapped to exons), one for each donor per cell type,
were converted into normalized counts by DESeq2, thereby account-
ing for sequencing depth differences, and used for differential gene
expression analysis by DESeq2 (refs. 62,63) (version 1.36.0) (Supple-
mentary Table 5; adjusted P < 0.05 is considered as a significant dif*-
ference). Differential gene expression analysis performed based on
‘Genebody.Counts’ (thatis FANS-seq reads mapped to full gene bodies)
isalso provided (Supplementary Table 6). Differential gene expression
analysis results were filtered to exclude genes for which none of their
annotated TSS positions in NCBI Refseq hg38 (version 109.20211119)
overlapped with ATAC-seq consensus peaks defined separately for the
cell types compared. These lists were augmented with a small num-
ber of genes (<110) for which visual inspection of mapped FANS-seq
and ATAC-seq reads in Integrative Genomics Viewer®* suggested that
these genes were in fact expressed (marked as ‘Visual inspection of
mapped FANS-seq and ATAC-seq reads’ in Supplementary Table 3).
The subset of genesinspected visually was selected based on whether
they were differentially expressed (that is, DEGs) between HD and
control donors, the logic being that the exclusion of genes that have

accessible TSS but are not DEGs would not have any effect on Gene
Ontology analysis results. For the visualization of gene expression
differences across cell types, ‘expressionin cell type A’ was calculated
as the mean of DESeq2-normalized ‘Gene.Counts’ from each donor.
‘Expression in a cell type A’ was then turned into relative expression
(‘relative expressionincell type A’ =‘expressioninacell type A’ divided
by ‘mean of expression in all cell types compared’) and the resulting
values were log,-transformed for visualization by Pheatmap R package
(version 1.0.12). Relative expression was calculated in the same man-
ner when comparing expression across individual samples instead of
celltypes.

Motif analysis and annotation

High-confidence consensus peaks for MSNs were annotated to genes
using the ChlPseeker package® and filtered to remove ‘Distal Inter-
genic’ peaks. The remaining peaks were overlapped with the list of
genes either up- or downregulated in HD dMSNs and iMSNs (Sup-
plementary Table 5) to generate three peak sets for each cell type:
‘peaksin HD-upregulated genes, ‘peaks in HD-downregulated genes,
and ‘peaks in genes with no expression change’. 200-bp wide DNA
sequence at the center of each peak was retrieved using the BioStrings
R package (2.66.0). These DNA sequences were then used as input
for MEA® with the following comparisons: ‘HD-Upregulated vs. No
Expression Change’, ‘HD-Upregulated vs. Randomized GC-content
Matched Background’ and ‘HD-Upregulated vs. HD-Downregulated’
(peaks in HD-Downregulated’ genes were similarly compared to
peaksin‘HD-Upregulated’,‘No expression change’ and ‘Randomized
GC-content Matched Background’ genes). Overrepresentation of
motifsineukaryoteinvivoandinvitro databases was then calculated
using a Fisher’s exact test and average odds score, where matches
must have a log-odds score > 0.25 times the maximum possible
log-odds score. Motifs with E,, . <10 and P,y < 0.005 were consid-
ered to have significant overrepresentation over the sequences in
control peak sets (Supplementary Table 9). The results were visualized
by memes R package (1.6.0, using plot ame_heatmap function), dis-
playing those motifs that were significantly overrepresented across
all three comparisons (either in dMSN or iMSNs), excluding genes
for which none of their annotated TSS positions overlapped with
ATAC-seq consensus peaks.

Pathway enrichment analysis

Thefilteredlists of DEGs (P,4; < 0.05) with accessible TSS regions were
analyzed for overrepresentation of GOCC terms with enrichGO func-
tion of clusterProfiler package®® (version 4.4.4, GOSOURCEDATE: 2022-
03-10). The augmented list of all genes with accessible TSS regions
was used as the ‘background’ list for comparison (‘universe’), and the
following parameters were used: qvalueCutoff = 0.05, minGSSize =5,
maxGSSize =2000. For identifying GOCC pathways overrepresented
among genes that showed disease-associated upregulation or down-
regulationonly indMSNs, the list of DEGs from ‘HD_dMSN vs ctrl_ dMSN’
comparison (P,g < 0.05 with DESeq2) was filtered to exclude genes
that had changed expression (P,g < 0.05 with DESeq2) in the same
direction in any of the three ‘HD_interneuron vs. ctrl_interneuron’
comparisons (TAC3"INs, PVALB* INs or SST* INs). Significance thresh-
old for enrichment analysis: g value < 0.05, P,4; < 0.05, adjusted for
multiple comparisons after hypergeometric test with clusterProfiler.
GOCC term enrichment analysis (with parameters and ‘background’
list specified above) was also performed for genes downregulated in
HD MSNs that are essential for MSN survival in wild-type mice (based
onshRNA screening)®.

HTTand ATXN3 CAG tractsizing

Genomic DNA was purified using AlIPrep DNA/RNA FFPE Kit (Qia-
gen, #80234) and concentrated in a vacuum concentrator if required.
HTT CAG tract sizing was done by next generation sequencing of PCR
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amplicons of HTTexon1using amodified version of a previously pub-
lished protocol®. Up to 10 ng gDNA was amplified in a 20 pl volume
using NEBNext High-Fidelity 2X PCR Master Mix (New England Biolabs,
#MO0541S) supplemented with 5% dimethyl sulfoxide and barcoded
primersspecific to HTTexon1(0.5 uM each)? or ATXN3exon 10 (primer
sequencesinSupplementary Table12):1cycle 96 °C, 5 min; 30x[96 °C,
455s;61°C,455s;72°C,3 min]; 72 °C, 10 min. The number of amplifica-
tion cycles was raised to 32 cycles if the amount of gDNA input was
below 4 ng. After PCR, the samples were combined into small pool
of two to six samples and size selection was carried out by adding
0.55x volume of AMPure XP beads (Beckman Coulter, #A68831). The
concentrations of purified library pools were quantified with Collibri
Library Quantification Kit (ThermoFisher, #A38524100), combined
into asequencing library and sequenced on MiSeq sequencer using a
500 cycle MiSeq Reagent Nano Kit v2 with both index reads, but with
400-ntlongread1andnoread 2. Demultiplexed sequencing read data
was aligned using Burrows-Wheeler Aligner (https://github.com/Ih3/
bwa, using BWA MEM default settings except: -0 6,6 -E 4,4) to a set of
HTTexonlor ATXN3exonlOreference sequences (Supplementary Data
land 2) that differed by the number of CAG repeat units in the repeat
tract. The number of reads uniquely mapped to each of the reference
sequencesinthe set was considered to reflect the distribution of CAG
tractlengthsinthetwo HTTor ATXN3alleles inthe cell population ana-
lyzed. HTT read mapping datafrom each donor was inspected manually
for determining the nucleotide sequence of the adjacent polyproline
tractand the presence/absence of interruptionsin CAG tract. If mHTT
exon 1structure of the donor was atypical, then sequencing reads
were realigned to a set of reference sequences matching that mHTT
exonlstructure. Thelength of CAGrepeat tractsreliably mapped was
limited to 113 repeat units. Uninterrupted CAG tract lengths of progeni-
tor/unexpanded mHTT allele (M repeat units) and normal HTT allele
(N repeat units) were defined from the two modes of mapped read
length-distribution in CAG-sizing datafrom non-expanding cell types
(usually striatal microglia and astrocytes, or, if available, cerebellar
granule cells). Ris the number of reads mapped to areference sequence
with the specified CAG tract length. The ratio of somatic expansions
(ROSE)?° and mean somatic length gain (MSLG, measured in repeat
units (RUs)) were calculated as follows:

Ryi +R +R
normal allele ROSE = W
N

13 .
Ei:M+1 Ri

M

mutant allele ROSE =

m ..
iy Rix D) Y

m .
i=m Ri

Mean somatic length gain (RU) =

Mean somaticlength gainisthe average uninterrupted CAG repeat
lengthin sequencing reads fromwhich the progenitor allele CAG repeat
length (M) hasbeen subtracted. Itisimportant to note that the termis
not meanttoreflect the size of incremental change per mutation event.
Quantification of CAG tract length changes for mATXN3 was done in
the same way. Statistical analysis of differences between cell types was
carried out by comparing their ratio of somatic expansions or mean
somatic length gains with one-way ANOVA, followed by Holm-Sidak’s
multiple comparisons test.

Westernblotting

When isolating nuclei for western blotting the tissue homogeniza-
tion and ultracentrifugation steps were carried out as described by
Xiao et al.”. After washing the nuclei once in homogenization buffer
the nuclei were resuspended in 1 ml 1x PBS, 0.05% Triton X-100, 2%

BSA and incubated at room temperature on a shaker for ~15-20 min.
The nuclei were labeled by adding the following antibodies: Rb x
NeuN-Alexa-647 (1:300, Abcam #ab190565), Rb x NeuN-Alexa594
(1:300, Abcam, #ab207279), Mm x EAAT1-Alexa-488 (1:200, Santa Cruz
Biotechnology, #sc-515839 AF488), Mm x IRF8-PE (1:65, ThermoFisher,
#12-9852-82) and Goat x Olig2 (1:200, R&D Systems, #AF2418). After
two washes with WB wash buffer (1x PBS, 0.05% Triton X-100, 0.2%
BSA), the nuclei were incubated for 30 min at room temperature with
Donkey x Goat-Alexa-647 (1:400, ThermoFisher, # A-21447). Nuclei
were washed twice with WB wash buffer and resuspended in Sorting
buffer (w/o RNase inhibitors). After sorting, the collected nuclei were
centrifuged at 1,600 x g for 10 min 4 °C and the residual volume was
kepttoaminimum. Nucleiwere treated with DNase I (inthe presence of
0.5 mMMgCl,) at 37 °C for 10 min, mixed with NuPAGE Sample Reduc-
ing Agent (ThermoFisher #NP0004) and B-mercaptoethanol (final
concentration 4%, Sigma, #M3148), and heat-denatured at 96 °C for
3 min. Material from 25,000 to 50,000 nuclei were loaded on NuPAGE
4%1t012% Bis-Tris Mini gels (ThermoFisher, #£NP0322BOX), aiming for
equal loading in each well. After blotting the samples onto nitrocel-
lulose membrane and blocking unspecific binding by incubating the
membrane in a 5% solution of non-fat dry milk, the membranes were
probed with Rb x Histone H3 antibody (1:5,000, Abcam, #ab1791) and
Mm x Human MSH2 (1:300 BD Biosciences, #556349) or Mm x Human
MSH3 (1:300 BD Biosciences, #611390) by incubating overnight at 4 °C.
After three washes with TBS-T (1x TBS, 0.1% Tween-20), the membranes
were probed with IRDye 680LT Donkey anti-Rabbit IgG Secondary
Antibody (1:10,000, LICOR, #926-68023) and IRDye 800CW Goat
anti-Mouse IgG Secondary Antibody (1:10,000, LICOR, #926-32210) by
1hatroomtemperature. After three washes with TBS-T, the membranes
were imaged with Odyssey CLx Imaging System.

Protein purification

Recombinant human FANI protein was expressed from a Baculovirus
and purified from Sf9 insect cells as described previously**®”. Recombi-
nant human MutSa (MSH2-MSH6) and MutS (MSH2-MSH3) were gen-
erated from Sf9insect cells using Baculoviruses expressing his-tagged
hMSH2, hMSH3 and hMSH6, and a purification procedure described
previously®s7°,

FANI nuclease assay

FANI nuclease assays were performed as described*’ in nuclease assay
buffer (50 mM Tris-HCI pH 8.0, 25 mM NaCl, 1 mM MnCl,, 1 mM dithi-
othreitol, 200 mgml™BSA) with 100 nM of fluorescently labeled DNA
incubated with 50 nM of recombinant human FAN1 protein. Reac-
tions were initiated by the addition of FAN1 protein, incubated at 37 °C
for 20 min and then stopped with formamide loading buffer (95%
formamide, 10 mM EDTA). Reaction products were electrophoreti-
cally resolved on 6% denaturing sequencing gel for 1h at 2,000 Vand
detected at fluorescence filter in the Typhoon FLA (GE Healthcare).
Nuclease activity quantification compared the densitometric inten-
sity of cleaved versus uncleaved DNA (ImageQuant). In some of the
experiments, differentincubation time and concentration of proteins
are used and are mentioned in respective figure legends. Sequences
of oligonucleotides used to generate slipped-DNA substrates with
anchored flanks can be found in Supplementary Note 10.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All sequencing datasets generated as part of this study are publicly
availablein NCBIGEO under accession GSE227729 (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE227729). Furtherinformation
and requests for resources and reagents should be directed to the
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lead contact, N. Heintz (heintz@rockefeller.edu). Altered expression
of mouse genes in the striatum of BAC-CAG mice** (https://doi.org/
10.1016/j.neuron.2022.01.006), the Str266R gene set” (https://doi.org/
10.1101/2022.02.04.479180), list of genes essential for MSN survival
in wild-type mice*® (https://doi.org/10.1016/j.neuron.2020.01.004)
and TRAP data from zQ175 and R6/2 mice* (GEO dataset GSE152058,
https://doi.org/10.1016/j.neuron.2020.06.021) have been published
before. Sequence and transcript coordinates for human hg38 UCSC
genome and gene models were retrieved from the BSgenome.Hsapiens.
UCSC.hg38 Bioconductor package (version 1.4.1) and TxDb.Haspi-
ens.UCSC.hg38.knownGene (version 3.4.0) Bioconductor libraries
(https://bioconductor.org/packages/release/data/annotation/html/
BSgenome.Hsapiens.UCSC.hg38.html). NCBI Refseq hg38 gene anno-
tation (version109.20211119, https://www.ncbi.nlm.nih.gov/genome/
annotation_euk/Homo_sapiens/109.20211119/) was used for annotating
ATAC-seq consensus peaks to transcriptional start sites. Gene Ontol-
ogy Cellular Compartment (GOCC) terms for enrichment analysis
were derived through enrichGO function of clusterProfiler package
(version 4.4.4, GOSOURCEDATE: 2022-03-10, https://bioconductor.
org/packages/release/bioc/html/clusterProfiler.html). Eukaryote
invivoandinvitro databases were accessed through MEME Suite 5.5.4
(https://meme-suite.org/meme/tools/ame). Source dataare provided
with this paper.

Code availability
Only publicly available tools were used in data analysis. The analysis
parameters used have been described in Methods.
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Extended Data Fig.1| Comparison of interneuron populations collected
using FANS to cell types defined from single-nucleus RNA sequencing of
human striatum. Relative expression in each cell type was calculated based on
DESeq2-normalized counts from 6-8 control donors, and was log,-transformed
for visualization (see Methods). The marker genes specific for each interneuron

subtype were selected based on single-nucleus RNA sequencing (snRNA-seq)
data'. The FANS-isolated ETV1 + TAC3- population of Parvalbumin-expressing
interneuron nuclei most likely captured both the major PVALB+ interneuron
population and the related smaller PVALB + TH+ interneuron population defined
asaseparate subtype in snRNA-seq analysis".
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Extended Data Fig. 2| Characterization of FANS-seq datasets from control having a consensus ATAC-seq peak at the transcriptional start sites (TSS), in
donors. a, Principal-component analysis of FANS-seq data from MSNs of caudate  striatal cell types from control donors. ATAC-seq datasets could not be produced
nucleus and putamen from 8 control donors. The main principal components from CHAT+ INs due to their low abundance in striatal tissue. Genes have been
separated datasets according to MSN subtype (P.C.1) and donor sex (P.C.2). grouped according to average expression level in FANS-seq datasets from the
Notably, none of the top principal components related to the brain region of specified cell type in control donors (n = 6-8 individuals). Excluding genes with
origin (that is caudate nucleus or putamen). b, Number of genes with expression inaccessible promoters removed a large proportion of genes with very low
level above an arbitrary cutoff value of 5 transcripts per million (TPM) in expression levels (<1 TPM) while affecting fewer genes with moderate to high
individual FANS-seq datasets from control donors (mean s plotted). ¢, The expression (>10 TPM). See also Supplementary Note 1.

number of genes with accessible transcriptional start sites (acc.), defined as
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Extended Data Fig. 3 | See next page for caption.

Nature Genetics


http://www.nature.com/naturegenetics

Article

https://doi.org/10.1038/s41588-024-01653-6

Extended Data Fig. 3| Further characterization of samples used for mHTT
CAG repeat tract stability analysis. a, Relative expression level of marker

genes of striatal cell types in the nuclear transcriptome of nuclei collected for
mHTT CAG repeat tract analysis. Heatmap depicts log,-transformed relative
expressionin each sample (calculated based on DESeq2-normalized counts). The
striatal region of originis indicated by colored letters (blue P, putamen; red C,
caudate nucleus). b, Comparison of the calculated ratio of somatic expansions of
mHTTCAG tractin striatal cell types other than MSNs (n = S individual donors).
Thetable presents adjusted P-values as calculated by Holm-Sidak’s multiple
comparisons test post one-way ANOVA (P < 0.0001). See also Supplementary
Note 2. ¢, Ratio of somatic expansions of normal HTT allele CAG tractin striatal

celltypesisolated from n =3 HD donors with 21-25 uninterrupted repeatsin
normal HTT allele. P= 0.599 according to one-way ANOVA. A different symbol
isused for each donor. d, (Left) Relative expression level of MSN and CHAT + IN
marker genes in the nuclear transcriptome of nuclei collected for mHTT CAG
repeat tract analysis (for description see a). (Right) Length distribution of
mHTT CAG tractin CHAT + IN samples. Blue bar marks sequencing reads derived
from the initial unexpanded CAG tract. y axes denote normalized number of
sequencing reads mapped to reference sequences with different CAG tract
lengths (normalized by scaling to 1,000 reads). Reads derived from the normal
HTTallele are not shown.

Nature Genetics


http://www.nature.com/naturegenetics

Article

https://doi.org/10.1038/s41588-024-01653-6

a L .
3 2 41 0 1 2 3

log2-transformed relative expression in caudate nucleus

b ® dMSN Put ® dMSN Caud
® iMSN Put = iMSN Caud

[72]
MSH2< & 400%- MSH2 transcript
MsHFE = P adj. < 1.02e-08 s
P £
PMS2% 3 300% s s
POLD3 3 i M
- LIG1*e 5 [ |
o/
RFC5 g 200%
RFC3 o
T RFC4 % 100%
g - POLD2 g
{j MLH3< E 0% : : : |
o MSH6 ) K KN Q Q&
AN N AN N
5 FANT* & K X &
= \s \s % R
| po.e  C < & R
POLD4 ®
- 1l -POLD7 & 400%- MSHS3 transcript
MLHT% § P adj. < 8.17e-08
_RFCZ % 200%- $ )
RFC1 3 [} i
PMST% = ] s
PCNA -% 200%-
L e EXO1 2
S 1000
PARP1 % 100%
()]
TDG 2
ke 0% T T T T
- LT T S S S
= 0GG1e vd’ Vy q,é Q‘\;&
: s o d s
5 UNG 2 _
k7 APEXT £ 150%~ FAN1 transcript
& ] = P adj. < 0.899
XRCC1 =
8 g ] [}
®© FEN1 © 100% P ®
® S n [ °
NEIL1< o .
2 e o
TOP1 7 ®
[ o
= 50%-
POLB 2
()
HMGB1 o
SR S & S & 0% T T T
@ @ A\ A\ N b N °
s Y F ¥ & ¢ @ ® S S S S
e QQV‘ £ Y ‘?g} O'\\Q o,bx &x éx v§x

Extended Data Fig. 4 | Relative expression level of MMR and BER genes in

cell types of caudate nucleus. a, Heatmaps depict log,-transformed relative
expressionineach cell type, calculated based on the mean of DESeq2-normalized
counts from 7-8 control donors. Genes identified as HD age at onset-modifying
candidates are marked with an asterisk. Genes known to influence CAG tract
instability in HD mouse models are marked with an arrowhead. b-d, Relative
levels of MSH2 (b), MSH3 (c) and FANI (d) transcripts in MSNs compared

tointerneurons, calculated with DESeq2 using cell type-specific FANS-seq
datafrom control donors. The largest Padj. value of all MSN vs. interneuron
comparisons (by DESeq2, Padjusted for multiple comparisons) is indicated for
each gene. For caudate nucleus samples: n = 8 individuals for dMSNs, iMSNs,
TAC3 +IN, PVALB + IN and SST + IN. For putamen samples: n = 8 individuals for
dMSNs, iMSNs, TAC3 +IN, n =7 individuals for PVALB + IN and n = 6 individuals
for SST +IN.
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Extended Data Fig. 5| See next page for caption.
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Extended Data Fig. 5| MSH2, MSH3, MSH6, and FAN1 proteins, nuclease
assay, (CTG)20 digestion. a, A representative Coomassie brilliant blue-stained
SDS-PAGE of purified human MutSa (MSH2-MSH6), MutSf (MSH2-MSH3),
FAN1and nuclease-dead FAN1PP?¢°* (purified in parallel to ensure an absence of
contaminating nuclease activity in preparations), expressed in Sf9 cells using
baculoviral overexpression. Both MutSa and MutSp preparations were free of
nuclease contamination (see ¢ panelsiandii, lanes 9 and 10). Purity and activity
were assessed for ~10 preparations, with consistent results. b, Schematic of
FAN1 exo-nucleolytic and endo-nucleolytic cleavage sites on slipped-(CAG)20
DNA substrates labeled at the 3’ or 5’ ends, respectively. FAN1's exo-nucleolytic
‘nibbling’ of excess repeats parallels the ‘inchworm’ expansions in patient brains,
suggesting arole for FAN1in regulating repeat instability*’. Endo- and exo-
nucleolytic activities can be distinguished by fluorescein amidite (FAM)-labeling
at5’ or 3’ ends of the (CAG)20 strand, respectively (asterisk); in this manner,

only the labeled strand and its digestion products are tracked. ¢, Slipped-
(CTG)20 DNAs are digested by endo- and exo-nucleolytic activities of FANI,
which can be inhibited by MutSp, but not by MutSa. FAM-labelled CTG slip-out
oligonucleotides (schematic, arrowhead indicated center of repeat tract) mimic

putative intermediates of expansion mutations. Exo- and endo-nuclease activities
were determined by labeling either 3’- or 5’-end of (CTG)20 strand, respectively
(asterisk). ‘E’is elbow at the dsDNA-ssDNA junction. Slip-out DNA substrates

(100 nM) were preincubated with increasing amounts of purified human MutSa
or MutSp (0-200 nM), and nuclease digestion was initiated by addition purified
human FAN1 (50 nM). Vertical schematic to the right of each gel indicates
location of cleavage sites along the FAM-labeled DNA strand. Percentage cleavage
(densitometry) for each reaction was then normalized to cleavage levels for FAN1
alone, and these levels were graphed (n = 3 experiments, mean + s.d. plotted).
Results of two-sided unpaired ¢-test are indicated (vs. ‘FAN1 alone’ in panelsiand ii).
d, Excess FAN1 overcomes MutSf-mediated inhibition. (i) Flowchart outlining
the competition experiment. Human MutSp (200 nM), FAN1 (50 nM) and (ii) 5’- or
(i) 3’-FAM-labeled CAG slip-outs (100 nM), that is conditions established to be
completely inhibited by MutSp, were preincubated in non-catalytic conditions
(onice). Reactions were split at the 10-min time point and challenged with 5x BSA,
to control for macromolecular crowding (Ianes 2-6) or an excess (5x) of FAN1
(lanes 7-11). Aliquots were taken for analysis at different timepoints (0, 5,10, 20
and 40 minutes) and cleavage products were quantified (n = 2 experiments).
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Extended DataFig. 6 | Further characterization of HD-associated gene
expression changes instriatal neurons. a, The number of genes with
accessible transcriptional start sites (acc.), defined based on the overlap of
TSS and consensus peaks in ATAC-seq data from HD and control donor MSNs,
and control donor interneurons. Genes have been grouped according to
their average expression level in FANS-seq datasets from HD donors (TPM,
transcripts per million). More than 98% of genes with accessible promoters
in HD MSNs had accessible promoters also in MSNs from control donors. Due
to the low abundance of striatal interneurons and limited amounts of striatal
tissue available from HD donors, ATAC-seq datasets could not be produced
from the interneurons of HD donors. Therefore, striatal interneuron FANS-
seq datasets were filtered to include only those genes that had accessible
promoters in control donors. b, Principal-component analysis of FANS-seq
data from putamen and caudate nucleus MSNs from HD and control donors,
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performed after the exclusion of genes with inaccessible TSSs. The calculated
CAP100 scores are shown for each HD donor. Note that disease status (P.C.1)
and MSN subtype (P.C.2) were the main sources of variance in these datasets.

¢, Selected nonredundant Gene Ontology Cellular Component terms from
enrichment analysis of genes with disease-associated expression changes

(P,4j< 0.05 by DESeq2 after adjusting for multiple comparisons) in each

striatal neuron type HD (n = 7 individuals for HD dMSNs and HD iMSNs, n= 6
individuals for HD interneurons, n = 8 individuals for all cell types from control
donors). Significance threshold for enrichment analysis: g value < 0.05,

P,4; < 0.05, adjusted for multiple comparisons after hypergeometric test with
clusterProfiler. d, Genes essential for MSN viability in the zQ175 and R6/2 mouse
models of HD* that are also downregulated in HD iMSNs or dMSNs by more than
athird (log,FC<-0.6, P,4;< 0.01by DESeq2, adjusted for multiple comparisons).
See also Supplementary Note 5.
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striatum of BAC-CAG mice (from Gu, X., et al, 2022, Neuron 110, 1173-1192 e1177. doi:10.1016/j.neuron.2022.01.006), the Str266R gene set (Obenauer, J. C., et al,
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bioconductor.org/packages/release/data/annotation/html/BSgenome.Hsapiens.UCSC.hg38.html). NCBI Refseq hg38 gene annotation (version 109.20211119,
https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Homo_sapiens/109.20211119/) was used for annotating ATACseq consensus peaks to transcriptional start
sites. Gene Ontology Cellular Compartment (GOCC) terms for enrichment analysis were derived through enrichGO function of clusterProfiler package (version 4.4.4,
GOSOURCEDATE: 2022-03-10, https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html). Eukaryote in vivo and eukaryote in vitro databases were
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Sample size Sample size was not predetermined by any calculations, but was rather determined by tissue availability.

Data exclusions  Rigorous quality control was carried out for all datasets produced in the study and a few datasets were excluded from further analysis if
transcriptome analysis indicated low RNA quality or the presence of impurities introduced in FACS-sorting step of of the procedure.

Replication To reduce the possibility of batch effects, samples from control individuals and carriers of mHTT allele were processed in parallel whenever
possible. For comparing different cell types, we used samples that were derived from the same set of donors. The main gene expression
differences between cell types we have reported were consistent across the two striatal brain regions (processed in independent
experiments) - caudate nucleus and putamen (as documented in the figures). Almost all of the disease-associated changes we have
highlighted were consistent across the two striatal projection neuron subtypes (dMSNs and iMSNs). Statistical analysis was done on data
derived from independent experiments (the number of replicates is described in the figure legends).

Randomization  Samples were allocated into experimental groups based on their clinical diagnosis (control donors, HD donors, SCA3 donors): clinical
symptoms and the presence of causal mutation in HTT or ATXN3 genes. The tissue donors were selected so that inter-group differences in age
and sex would be minimal.

Blinding Blinding was not relevant to the study as Next-Generation Sequencing data analysis was carried out in an automated manner using identical

parameters and settings for all samples. Quantification of band intensities was done using analysis software, making the quantification
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Antibodies used Antibodies and PrimeFlow probes
anti-IRF8-PE Thermo Fisher Scientific Cat# 12-9852-82, RRID:AB_2572742
anti-EAAT1 Santa Cruz Biotechnology Cat# sc-515839
anti-NeuN-Alexa Fluor 594 Abcam Cat# ab207279
anti-NeuN-Alexa Fluor 647 Abcam Cat# ab190565, RRID:AB_2732785
anti-Olig2 R&D systems Cat# AF2418, RRID:AB_2157554
anti-Mouse IgG Alexa Fluor 488 Thermo Fisher Scientific Cat# A-21202, RRID:AB_141607
anti-Goat IgG Alexa Fluor 647 Thermo Fisher Scientific Cat#f A-21447, RRID:AB_141844
anti-ITPR1-Alexa Fluor 488 Santa Cruz Biotechnology Cat# sc-271197, RRID:AB_10610775
anti-Histone H3 Abcam Cat# ab1791, RRID:AB_302613
anti-MSH2 BD Biosciences Cat# 556349, RRID:AB_396378
anti-MSH3 BD Biosciences Cat# 611390, RRID:AB_398912
IRDye 680LT Donkey anti-Rabbit IgG LI-COR Biosciences Cat# 926-68023, RRID:AB_10706167
IRDye 800CW Goat anti-Mouse IgG LI-COR Biosciences Cat# 926-32210, RRID:AB_621842
DRD1 PrimeFlow probe Alexa Fluor 647 Thermo Fisher Scientific Cat#f VA1-3002351-PF
DRD2 PrimeFlow probe Alexa Fluor 488 Thermo Fisher Scientific Cat# VA4-3083767-PF
PPP1R1B PrimeFlow probe Alexa Fluor 568 Thermo Fisher Scientific Cat# VA10-3266354-PF
TAC3 PrimeFlow probe Alexa Fluor 647 Thermo Fisher Scientific Cat# VA1-16603-PF
ETV1 PrimeFlow probe Alexa Fluor 488 Thermo Fisher Scientific Cat# VA4-3083818-PF
SST PrimeFlow probe Alexa Fluor 568 Thermo Fisher Scientific Cat# VA10-3252595-PF
TRPC3 PrimeFlow probe Alexa Fluor 647 Thermo Fisher Scientific Cat# VA1-3004835-PF
COL6A6 PrimeFlow probe Alexa Fluor 647 Thermo Fisher Scientific Cat# VA1-3014134-PF
CA8 PrimeFlow probe Alexa Fluor 647 Thermo Fisher Scientific Cat# VA1-3001892-PF
Validation The specificity of all antibodies and Primeflow probes used to label nuclei was validated by analyzing the nuclear transcriptome of
labeled nuclei and verifying the presence or absence of transcripts of marker genes known to be expressed by only by certain cell
types.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) Sf9 cells were purchased from ATCC.
https://www.atcc.org/products/crl-1711

Authentication The authentication was done by ATCC, and not redone as the cells do look quite different than human cells lines and are
grown in specific media (Grace’s media at 27C).

Mycoplasma contamination There was no mycoplasma contamination.

Commonly misidentified lines  none.
(See ICLAC register)
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