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Abstract

Background: Artificial intelligence (AI) could improve accuracy and reproducibility of

echocardiographic measurements in dogs.

Hypothesis: A neural network can be trained to measure echocardiographic left ven-

tricular (LV) linear dimensions in dogs.

Animals: Training dataset: 1398 frames from 461 canine echocardiograms from a sin-

gle specialist center. Validation: 50 additional echocardiograms from the same center.

Methods: Training dataset: a right parasternal 4-chamber long axis frame from each

study, labeled by 1 of 18 echocardiographers, marking anterior and posterior points

of the septum and free wall.

Validation Dataset: End-diastolic and end-systolic frames from 50 studies, annotated

twice (blindly) by 13 experts, producing 26 measurements of each site from each

frame. The neural network also made these measurements. We quantified its accu-

racy as the deviation from the expert consensus, using the individual-expert devia-

tion from consensus as context for acceptable variation. The deviation of the AI

measurement away from the expert consensus was assessed on each individual

frame and compared with the root-mean-square-variation of the individual expert

opinions away from that consensus.

Results: For the septum in end-diastole, individual expert opinions deviated by

0.12 cm from the consensus, while the AI deviated by 0.11 cm (P = .61). For LVD,

the corresponding values were 0.20 cm for experts and 0.13 cm for AI (P = .65); for

the free wall, experts 0.20 cm, AI 0.13 cm (P < .01). In end-systole, there were no dif-

ferences between individual expert and AI performances.

Abbreviations: 2D, 2-dimensional; AI, artificial intelligence; ED, end diastole; ES, end systole; FW, free wall; IVS, interventricular septum; LV, left ventricle; LVD, left ventricular diameter.
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Conclusions and Clinical Importance: An artificial intelligence network can be trained

to adequately measure linear LV dimensions, with performance indistinguishable

from that of experts.
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1 | INTRODUCTION

Artificial intelligence (AI) techniques have been successfully applied to

automate human-led diagnostic imaging analysis tasks. Within veteri-

nary medicine, this research has so far focused on radiology rather

than echocardiography.1,2 Of the 40 peer-reviewed studies since

2015, none used AI to evaluate echocardiographic images.3,4

AI has potential to contribute automatic assistance in the analysis of

echocardiographic images.5 These potential applications could result in

reduced scan times, lower the skill-floor necessary to perform this diag-

nostic, and improve efficiency of repeat measurements, recommended as

a standard of good practice.

However, AI should be assessed objectively, as is the case for any

diagnostic test or expert opinion. Our study seeks to provide this data

in an effort to evaluate the technology for eventual deployment in

mainstream practice.

Measurement of left ventricular (LV) wall thickness and internal

diameter are key measurements. There are not yet published guide-

lines on how these measurements should be performed, and different

veterinarians use different views, such as 2D or M-mode, long-axis or

short-axis.

In canine echocardiography, the right parasternal 4-chamber view

is often the first view acquired and provides an immediate impression

of size and function. In this study, we develop and validate an auto-

mated system for measuring wall thickness and left ventricular inter-

nal diameter.

For human patients, echocardiography is generally performed in a

laboratory where many practitioners perform scans, using a standard

protocol. Laboratories typically perform audits assessing adherence to

acquisition protocols, and reproducibility studies to assess adherence

to measurement protocols.6 Veterinary echocardiography is generally

performed at lower volumes and often by individuals working alone.

To formulate a standard against which the developed system

could be tested, our study therefore had to capture opinions from a

range of experts that could be used as a consensus.

In this article, the term “validation” is used exclusively to refer to

final evaluation of the completed AI model on unseen data. This is in

line with conventional use of this term in medical statistics, and the

TRIPOD-ML guideline.7 AI literature instead uses the word “test” to

refer to this final evaluation, because it uses “validation” to refer to

the internal progress monitoring of model performance during the

development and training process.

During the training process of an AI, typically a small number of

dedicated experts label images, which are then used for training the

network. Inevitably, the performance of the AI on interpreting those

images it has already seen will be high. A more subtle problem, how-

ever, is that if the experts providing the training data have certain

biases, the AI will simply reflect those biases. To properly test the AI's

performance, therefore, the validation must not only (a) use images

that have never been used during training, but also (b) use a suffi-

ciently broad range of experts that any systematic biases the AI has

learned from the trainers will be exposed.

2 | METHODS

Under the categorization laid out by Campbell et al, this study falls

into the “development and validation” stage, rather than a randomized

trial of an intervention.8 Of the 2 guidelines cited, only TRIPOD-ML

has been published.7 The TRIPOD-ML checklist is submitted as

Appendix S2.

The study consisted of 5 phases. First, training images were sys-

tematically extracted from a clinical database. Second, a team of echo-

cardiographers labeled points on images. Third, the AI was trained to

replicate the behavior of the echocardiographers on those training

images. Fourth, a fresh, non-overlapping set of 100 images was

extracted from the clinical database. Finally, a broad team of

13 experts each reviewed all of the 100 images, twice. We used these

opinions to measure the AI's performance on each image separately.

For each image, we defined the gold standard as the mean of the

expert opinions on that particular image. For that image, the deviation

of the AI away from that value was considered the AI error. In parallel,

the deviation of the individual experts away from that same expert

consensus could be considered an individual-expert error. The size of

the AI error on that image could then be examined in the context of the

spectrum of errors from individual experts for that image. If, across all

images, the AI errors were similar in size to the individual-expert errors,

the AI might be considered to be performing adequately.

2.1 | Extraction of the training images

The training images were from all echocardiography examinations of

dogs recorded by the cardiology service at the Royal Veterinary Col-

lege between 1 January 2018 and 31 December 2019. The process

was systematic, with no exclusions on the basis of image quality or

breed. The only ineligible cases were those with no right parasternal

4-chamber view. From each right parasternal 4-chamber video,

STOWELL ET AL. 923

mailto:c.stowell@imperial.ac.uk


random frames were extracted, irrespective of timing within the car-

diac cycle. This was so that the AI would have exposure to the broad-

est range of appearances of the heart throughout the cardiac cycle

and might in future have the potential to track points continuously,

even though the current aim was only to make measurements at the

clinically relevant timepoints. Several thousand images were

extracted, to be more than sufficient for each echocardiographer to

label as many as they desired.

2.2 | Echocardiographer labeling of training images

Veterinary echocardiographers were invited to participate. Using the

Unity Imaging platform (Figure 1), they were asked to label the ante-

rior and posterior points of the septum and free wall. Each echocardi-

ographer was required to label at least 70 images but was allowed to

label more if they wished. This minimum of 70 was chosen from previ-

ous experience and discussion with veterinary experts as an achiev-

able level of commitment to require.9 No upper limit was placed, so

that echocardiographers who were more able to commit time could

contribute more.

Our collaboration of 13 trained veterinary echocardiographers,

and 5 trainees (veterinary students or veterinarians) annotated a total

of 1914 image frames from 461 canine echocardiographic studies.

Each frame was labeled in 4 locations using electronic calipers (see

Figure 1), corresponding to the anterior and posterior borders of the

interventricular septum and the left ventricular (LV) free wall, and

yielding the left ventricular (LV) internal diameter and septal and free

wall thicknesses. Instructions were given to avoid deleting any image

unless the image quality was so poor as to make it impossible to place

a single measurement point.

Unity Imaging is an online application and has been previously

described.9,10 Unity is used to display and obtain annotations from med-

ical images in an engaging, intuitive, and user-friendly way. When a new

project is created, the key measurement points (or landmarks) are speci-

fied, between which measurements are made, as illustrated in Figure 1.

2.3 | Training the AI to replicate
echocardiographer labels

We created 2 canine echocardiographic datasets (Figure 2) of images

of the right parasternal 4-chamber view. They came from distinct cal-

endar periods in the clinical echocardiogram database.

The training dataset of 1914 frames was used for training and moni-

toring of the AI network. Each frame was labeled once, by 1 of 13 veteri-

nary experts (72% of all frames), or 1 of 5 trainees (28% of all frames).

The external validation dataset comprised 100 frames: the manu-

ally selected end-diastole (ED) and end-systole (ES) images from

50 separate echocardiographic scans. Each of the 100 frames was

labeled twice (blindly) by each of the 13 veterinary experts, providing

26 labels for each frame. The validation dataset is referred to as

“external,” meaning none of these images were used in the training

phase.

3 | VALIDATION DATASET

The external validation dataset comprises 100 end-diastolic (ED) and

end-systolic (ES) images from 50 consecutive canine echocardiogra-

phy studies from the Royal Veterinary College during 2018. The vali-

dation dataset was from a distinct non-overlapping calendar period.

Images were presented in random order, and each was labeled

twice by the 13 experts. A dataset was formed of 200 labeled frames

(100 images) per expert. Each expert was blinded to their own and

others' labeling. It was not possible for the experts to delete images

with suboptimal image quality from the dataset: every image had to

be labeled.

This sample size was set in conformance with our previous expe-

rience as providing a representative range of images, which would

cover a spectrum of image qualities. The 200 frames, each labeled

26 times, led to 5200 sets of 3 measurements.

4 | ARTIFICIAL INTELLIGENCE NETWORK
TRAINING

An artificial neural network was trained to infer 4 key points

(as illustrated in Figure 1). Network predictions are in the form of a

heatmap for each key point, with a Gaussian distribution SD of

15 pixels. Cartesian coordinates for each key point were derived by

locating the local maxima from the corresponding predicted heatmap,

examples of which can be found in Figure 3.

F IGURE 1 The Unity application interface provides a web-based
interface to annotate medical images. The 4 adjustable electronic
calipers are highlighted as colored circles with their names and
associated target icons for their exact location. Key points can be
labeled either using a touchscreen interface or a mouse.

924 STOWELL ET AL.



The well-established U-Net architecture was used for the net-

work backbone, with semantic segmentation masks produced for each

training image.11 The code and detailed methods are given at https://

data.unityimaging.net. All images were resized to a uniform dimension

of 320 � 320 pixels, with 3 color channels. Of the entire dataset

(1914 images), 80% were used for network training while 20%

were retained for testing. Random, on-the-fly augmentation,

including affine transformation and random gamma changes, was

applied. Additionally, in an effort to ensure consistency of align-

ment for all 4 measurement points, a biological constraint was

applied in the form of a pseudo line during training, as observed in

Figure 4.

The network was trained for a total of 200 epochs, distributed

across a cluster of 4 Nvidia GeForce RTX 3090 GPUs and using

Pytorch version 1.13 and Python version 3.9. The initial learning

rate was 0.001, using the TAdam optimizer and mean squared

error loss function. The learning rate was reduced by a factor of

5 each time the loss on the testing dataset plateaued for 20 con-

secutive epochs. If an expert was unable to localize the key point

on an image (eg, due to very poor image quality), the training

process did not train on that key point of that image (by weighting

the loss function to 0).

Once the network training was completed, performance was then

analyzed against predictions made on the external validation dataset

(comprising 100 images). A comprehensive overview of AI concepts

and theory, along with a review of the current literature in the field

can be found in the references.2,3

5 | VALIDATION AGAINST EXPERT
CONSENSUS

In this study the 26 expert labels, on each of the 100 validation

frames, were used in 2 ways. First, the mean of the 26 values was

F IGURE 2 There were 2 echocardiographic datasets. Each of the 1914 frames in the training dataset was labeled by 1 of 18 team
members. The external validation dataset comprises 100 frames, each labeled twice by each of the 13 veterinary experts, providing
26 labels for each frame.

STOWELL ET AL. 925

https://data.unityimaging.net
https://data.unityimaging.net


used to define the reference standard for that measurement on that

frame. Second, the spectrum of variation between different expert

opinions was used to define the acceptable range of expert perfor-

mance, against which the AI should be judged.

For each measurement on each image, the consensus value was

defined as the mean of the 26 expert values (13 experts measuring

twice). Using this, the deviation of each expert from this consensus

was calculated, for example, +2 mm if that expert's value was greater

than the consensus, and for example, �3 mm if that expert's value

was smaller than the consensus. While the mean of these deviations

will always be 0, the SD (or root-mean-square) of these individual

deviations is a useful index of dispersion.

This was done for each measured structure (IVS, LVD, FW), sepa-

rately for the end-systolic and end-diastolic frame.

We then similarly calculated for each image and measurement

site, the deviation between the AI assessment and the consensus of

the experts.

Finally, we tested whether the size of the deviations of the AI

assessments (away from the consensus of experts) was different from

the size of the deviations of the individual expert assessments (away

from that same consensus of experts). We did this with the Levene

test using the “Levene” package in SciPy 1.10.1, using Python 3.10.

We also tested whether the AI assessments showed a mean bias away

from the consensus of experts, using the paired t test.

Routine descriptive statistics, such as mean, median and SD, were

calculated using Python 3.10.

6 | RESULTS

The study cohort included purebred and crossbreed dogs, with a mean

weight of 18.6 kg, ranging from 0.72 kg (neonatal Pug) to 108 kg

(Saint Bernard), as shown in Appendix S1.

The 100 frames of the external validation dataset had more elab-

orate measurements, in 2 regards: each study contributed 2 frames

(ED and ES), and each were analyzed 26 times (twice, by each of the

13 experts). For each measurement, the reference standard for was

defined to be the mean of the 26 judgments. The characteristics of

these 50 echo studies are shown in Table 1.

F IGURE 3 Examples of Gaussian heatmaps for expert
annotations (top) and network predictions (bottom). It can be
observed that the image in column 1 generates more favorable
predictions than those in column 2; possibly attributed to lower image
clarity.

F IGURE 4 Examples of a biological constraint in the form of a pseudo line, connecting all 4 key points in a straight line. The top row shows
annotations and the bottom are predictions generated during the training phase. Column 1 represents an accurate prediction, whereas 4 is less
clear. This could be attributed to lower image quality for this particular example.
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TABLE 1 Deviations from expert consensus, of the individual experts and of the AI (end-diastolic frames).

End-diastole deviations from consensus (cm)

P(Comparison of SDs) P(Comparison of means)Measurement

Individual expert deviations
from expert consensus

AI deviations from
expert consensus

Mean SD Median Mean SD Median

IVS 0.00 0.12 0.00 0.05 0.11 0.06 .61 .001

LVD 0.00 0.16 0.00 0.05 0.13 0.06 .65 .02

FW 0.00 0.10 0.00 0.01 0.13 0.00 .004 .36

TABLE 2 Deviations from expert consensus, of the individual experts and of the AI. End-systolic frames.

End-systole deviations from consensus (cm)

P(Comparison of SDs) P(Comparison of means)Measurement

Individual expert deviations
from expert consensus

AI deviations from
expert consensus

Mean SD Median Mean SD Median

IVS 0.00 0.16 0.01 0.05 0.16 0.05 .84 .03

LVD 0.00 0.25 0.00 0.03 0.25 0.02 .96 .39

FW 0.00 0.17 0.00 0.01 0.14 0.03 .44 .54

F IGURE 5 Relationship of AI value (red) to the 26 expert values (gray), for each of 50 end-systolic and 50 end-diastolic frames. The frames
are arranged by the consensus measurement, with the smallest first. The 3 panels display IVS, LVD and FW, respectively.
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Table 1 shows how much the individual expert opinions varied

from the reference standard, for the corresponding case. This is

shown as a root-mean-squared deviation (equivalent to the SD). The

table also shows how much the AI measurement varied from the ref-

erence standard, again, as a root-mean-squared deviation.

For most of the comparisons, there was no significant difference

between the size of the deviations, between AI and experts. For IVS

and LVD, it was smaller for the AI, and for FW it was the same or

larger for the AI (Tables 1 and 2).

The rightmost column shows the test of bias between the AI mea-

surements and the expert consensus. There were small but statistically

significant positive biases for diastolic IVS (mean bias = +0.05 cm, SD

0.16 cm, P < .01); diastolic LVD (mean bias = +0.05 cm, SD 0.13 cm,

P = .02) and systolic IVS (mean bias = +0.05 cm, SD 0.16 cm, P = .03),

compared with the experts.

To gain a visual impression of the performance of the AI against the

performance of experts acting individually, we plotted, for each case, the

26 expert measurements as a series of gray points, with the AI measure-

ment as a red point. For visual convenience, we ordered the cases in each

plot by the expert consensus measurement. As can be seen (Figure 5), the

AI's performance is similar to that of the experts.

Generally, the experts agreed on wall thickness (vertical posi-

tion), but not on the location for measurement within the septum

and free wall (horizontal position). Each expert opinion on a

random selection of validation images is shown in Figure 6, as are

the corresponding AI predictions (a thicker line in white and red).

We note that the AI tends to choose a longitudinal position that is

near the center of the range of positions chosen by different

experts (Figure 1). In no case was the AI's choice more apical or

more basal than all the expert opinions. In the third panel, the AI is

taking an unacceptably diagonal path across the left ventricle. In

the fourth, it might be mis-measuring the thickness of the left ven-

tricle, although there is considerable variation among individual

experts, suggesting that the correct measurement is debatable. In

the 13th panel, the posterior wall is overestimated, and in the

15th, underestimated.

Incidentally, it was noticed that some experts tended to choose

positions more apical or basal than other colleagues. This can be seen

in Figure 7, which no longer attempts to depict the position of individ-

ual fiducial points, but rather, uses color solely to separate the

individual experts. The 2 opinions of an expert are colored identically

and consistently across the cases.

The curated dataset and corresponding expert annotations, used

for training and validation of the AI network, along with the associ-

ated code files, have been made freely available for the benefit of the

research community. For access, please visit the project website.10

Ethical approval was obtained from the Social Science Ethics Review

Board at the Royal Veterinary College (URN: SR2022-0060).

F IGURE 6 A selection of images from the external validation dataset. Expert labels are represented by the gray lines with white tips, with the
network prediction bold white with red tips.
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7 | DISCUSSION

This study shows that expert clinicians working in different countries

can collaborate to train a neural network to perform core echocardio-

graphic measurements. Second, it shows how the performance of this

network can be judged in a separate study of validation cases, against the

consensus of multiple experts. Third, the resulting system performs simi-

larly to human experts but is not perfect: we show examples of errors

made, because these will stimulate further developments. A process such

as this could be useful in the construction of future clinical guidelines, and

validation data assembled in this way might be useful in training future

clinicians.

Online collaboration enabled individuals who could otherwise not

be easily brought together, to cooperate on a shared project. Expert

echocardiographers in different countries were able to collaborate

effectively in the training and validation process.

Our validation data was demanding on the experts, because each

of the 13 experts had to perform 200 image labelings, but this

approach provides 2 benefits.

First, the consensus of expert opinion becomes far more consis-

tent when a large number of experts are combined, and further

enhanced when each expert makes the assessment more than once.

This is important because, if the reference standard contains noise,

that will put a floor on how closely the AI can match the reference

standard. The greater the number of expert opinions combined, the

more reliable the consensus, and therefore the greater the opportu-

nity to detect high performance from the AI.

Second, it has been unclear how strong a performance should be

demanded from an AI measurement system. Having systematically

collected expert opinions provides a trustworthy scale against

which the performance of the AI can be judged. One might prespecify

that it needs to agree with the consensus at least as well as the

worst-performing expert, or no worse than the median-performing

expert, or any other such target. Setting standards in this way auto-

matically allows the AI to be held to a stricter absolute standard on

easy images, and a looser standard on difficult images where experts

themselves disagree.

It is important to note there is currently no consensus in veteri-

nary echocardiography on how to measure left ventricular wall thick-

ness or internal diameter, and this might be a reason why there was

variation even among experts on sites chosen for measurement. The

methodology used in this study could be useful for capturing expert

opinion, and establishing a consensus, for the creation of future guide-

lines. Equally, repeating this study once guidelines are published could

yield different results.

The utility of a training set of images and expert labels is so great that

it might be considered a good way for specialist societies to guide

learners on how measurements should be made. This approach avoids

F IGURE 7 Examples of expert annotations for the external validation dataset (100 images). Each of the 13 human experts annotated each
image twice, therefore a random color assignment is applied for the purpose of visualizing those labels made by individuals.
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the difficulty of articulating annotation points unambiguously in words. If

the guidance is the form of multiple independent expert opinions, it also

has the advantage of demonstrating to learners where variation is accept-

able, and where it is not. Finally, such datasets have the potential to be

used not only by trainees, but also by AI research workers aiming to

deliver systems that meet that standard.

We chose the right parasternal 4 chamber view, although most

vets do not routinely measure wall thickness or left ventricular inter-

nal diameter from this view, with the short axis being preferred

(whether in 2D or M-mode). It could potentially be that both intra-

and inter-operator measurement variability would be lower in more

familiar views. However, this does not change the overall conclusions

of this study, as the challenges faced by human experts applied

equally to the AI that was originally trained by them.

Although the AIs performed similarly to individual experts, in

terms of its deviation away from the expert consensus, it did show a

small bias toward reporting larger measurements, by about 0.5 mm,

which was statistically significant when pooled across 50 echocardio-

grams. Although this does not mean the AI is invalid (since this level

of deviation from expert consensus is acceptable for individual

experts), it does underline the need for careful testing of automated

systems in realistic cohorts of images, with an expert panel to form a

reference standard.

Expert echocardiographers working at different locations can col-

laborate online to train an AI to perform as well as they do. We rec-

ommend that using a multi-expert consensus is best practice for

defining a reference standard against which to test an AI.

Systems using AI have the potential to streamline the workflow of

experts, and to improve uniformity of practice standards. For such sys-

tems to become routinely adopted, their full methodology should be pub-

licly accessible and amenable to improvement, and their validation

process should be open and explicit, under the aegis of named experts.
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