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Evaluation metrics and statistical 
tests for machine learning
Oona Rainio  *, Jarmo Teuho   & Riku Klén 

Research on different machine learning (ML) has become incredibly popular during the past few 
decades. However, for some researchers not familiar with statistics, it might be difficult to understand 
how to evaluate the performance of ML models and compare them with each other. Here, we 
introduce the most common evaluation metrics used for the typical supervised ML tasks including 
binary, multi-class, and multi-label classification, regression, image segmentation, object detection, 
and information retrieval. We explain how to choose a suitable statistical test for comparing models, 
how to obtain enough values of the metric for testing, and how to perform the test and interpret its 
results. We also present a few practical examples about comparing convolutional neural networks 
used to classify X-rays with different lung infections and detect cancer tumors in positron emission 
tomography images.
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Due to our developed technology and access to huge amounts of digitized data, the number of different appli-
cations using machine learning (ML) has increased dramatically during the past few decades1. Whereas ML 
techniques initially included only statistical methods and simple algorithms2, ML is currently used for different 
purposes across the fields of engineering, medicine, public health, finance, politics, and natural sciences, both 
in academia and industry3. However, because of this immerse interdisciplinary interest, some of the new ML 
researchers might not have a good grasp of basic statistical concepts. This prompts need for ongoing education 
about the proper use of statistics and appropriate metrics for evaluation of performance of ML algorithms.

When new ML models are created, it is necessary to compare their performance to the already existing ones4. 
Evaluation serves two purposes: methods that do not perform well can be discarded, and the ones that seem 
promising can be further optimized. Also, especially in medicine, it is often useful to know whether an ML 
model outperforms an educated professional or not5–7. In supervised ML, we first divide our data for training 
and test sets, use the training data for training and validation of the model, predict all the instances of the test 
data, and compare the obtained predictions to the corresponding ground-truth values of the test set8. In this 
way, we can estimate whether the predictions of a new ML model are better than the predictions of a human or 
existing models in our test set.

Despite complexity of final applications, ML models typically consists of relatively simple sub-tasks, such as 
binary or multi-class classification and regression. In addition, a special image processing ML technique called 
a convolutional neural network (CNN) can be used to perform image segmentation9 and object detectors are 
used to find desired targets in images or video footage10. Depending on the task in question, there are certain 
choices of evaluation metrics that can be used to assess the performance of supervised ML models11. There are 
also established statistical testing practices, especially for metrics used in binary classification8,12. Nonetheless, 
the misuse of certain well-known tests, such as the paired t-test, is common4, and the required assumptions of 
the tests are often ignored11.

Our aim here is to introduce the most common metrics for binary and multi-class classification, regression, 
image segmentation, and object detection. We explain the basics of statistical testing and what tests should be 
used in different situations related to supervised ML. At the end, we also give three examples about comparing 
the performance of CNNs for classifying X-rays related to lung infections and performing image segmentation 
for positron emission tomography (PET) images.

Different machine learning tasks
Binary classification
In a binary classification task, the instances of data are typically predicted to be either positive or negative so 
that a positive label is interpreted as presence of illness, abnormality, or some other deviation while a negative 
instance does not differ from the baseline in this respect. Each predicted binary label has therefore four possible 
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designations: a true positive (TP) is a correctly predicted positive outcome, a true negative (TN) is a correctly 
predicted negative outcome, a false positive (FP) is a negative instance predicted to be positive, and a false nega-
tive (FN) is a positive instance predicted to be negative13. A confusion matrix, here a 2× 2-matrix containing the 
counts of TP, TN, FP, and FN observations like Table 1, can be used to compute several metrics for the evaluation 
of the binary classifier.

The most commonly used evaluation metrics for binary classification are accuracy, sensitivity, specificity, and 
precision, which express the percentage of correctly classified instances in the set of all the instances, the truly 
positive instances, the truly negative instances, or the instances classified as positive, respectively. Sensitivity is 
commonly referred as recall14. They have the formulas

where TP, TN, FP, and FN refer to the numbers of the predictions with these designations13–16. Especially in 
diagnostics, sensitivity or recall is also known as true positive rate14, specificity as true negative rate16, and pre-
cision as positive predictive value17. With the exception of accuracy, the aforementioned metrics are often used 
as pairs, such as precision and recall or sensitivity and specificity. It is noteworthy that sensitivity and specificity 
reveal more about the model than accuracy especially if the number of real positive and negative instances is 
very imbalanced.

There are also several other evaluation metrics like accuracy that depend on all the values of the confusion 
matrix: Youden’s index18, defined as Sen.+ Spe.− 115, gives an equal weight to the accuracies within the positive 
and the negative instances, regardless of their numbers. The F1-score, defined as

is a harmonic mean of precision and recall19. Cohen’s kappa ( κ ), defined as

compares how well the binary classifier performs compared to the randomized accuracy pe19. It was originally 
introduced as a measurement for the degree of agreement between two observers in psychology20 but it can be 
applied to measure the agreement between the predicted and the real classes. Furthermore, Matthews’ correla-
tion coefficient (MCC), defined as

measures the correlation between the real and the predicted values of the instances21. This definition of MCC 
follows directly from that of Pearson’s correlation coefficient22.

To compute the values of the metrics above, the predictions of the test set by the model must be converted 
with some threshold if they are not already binary labels. The value of this threshold is often the default choice 
of 0.5 or the cut-point that gives highest accuracy or Youden’s index for the predictions of the training set. The 
threshold should be always chosen based on the predictions of the training set only because using the threshold 
that maximizes the accuracy of the predictions of the test set produces unrealistically good results.

However, if the numeric predictions before their conversion into binary are available, we can consider the 
receiver operating characteristic (ROC) curve. It is obtained by plotting sensitivity against the false positive rate 
(equal to 1 minus specificity) at all possible threshold values. As can be seen from Fig. 1, it follows that a ROC 
curve is always monotonically increasing function inside the unit square tied to the points (0, 0) and (1, 1) so 
that closer the ROC curve is to (0, 1) the better the predictions are23. The area under the ROC curve (AUC) is 
another possible evaluation metric with values in [0, 1] but, unlike for the metrics, its value does not depend on 
the choice of the threshold at all.

Alternatively, if we have n predictions qi ∈ (0, 1] for binary labels pi ∈ {0, 1} , we can also compute their 
cross-entropy loss defined as

(1)
Acc. = TP+ TN

TP+ TN+ FP+ FN
∈ [0, 1], Sen. = Rec. = TP

TP+ FN
∈ [0, 1],

Spe. = TN

TN+ FP
∈ [0, 1], Pre. = TP

TP+ FP
∈ [0, 1],

F1 = 2 · Pre. · Rec.
Pre.+ Rec.

∈ [0, 1],

(2)κ = Acc.− pe

1− pe
∈ (−∞, 1] with pe =

(TP+ FN)(TP+ FP)+ (TN+ FP)(TN+ FN)

(TP+ TN+ FP+ FN)2

(3)MCC = TN · TP− FN · FP√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

∈ [−1, 1],

Table 1.   The confusion matrix of a modified U-Net CNN whose task was to classify 300 chest X-rays with 
COVID-19 in the test set as positive (pos.) and 300 X-rays from healthy patients as negative (neg.). The 
resulting values of different evaluation metrics can be found in Table 4.

Predicted\True class Pos. Neg.

Pos. TP = 261 FP = 107

Neg. FN = 39 TN = 193
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The cross-entropy loss is often used for training ML models as its values decrease as the differences between the 
predictions and the real binary labels diminish24.

Multi‑class classification
If the classification task is separating n instances between k ≥ 3 different classes, we can present the results of 
the classifier by using a k × k confusion matrix as in Table 2. Its element nij at the intersection of the ith and the 
jth column for i, j = 1, . . . , k is the number of instances from the ith classified to the jth class. The evaluation of 
this matrix uses same metrics that we introduced for binary classification.

Firstly, there are two simple ways to obtain the values for all the evaluation metrics except AUC introduced 
with the previous section. We need to create a unique 2× 2 confusion matrix for each of the k classes:

In a process called macro-averaging, we calculate the value of the metric separately for each class i = 1, . . . , k 
by using the numbers TPi , TNi , FNi , and FPi defined as above and then consider the mean value of the k result-
ing values of the metric. Alternatively, in micro-averaging, we compute the value of the evaluation metric from 
the sums 

∑k
i=1 TPi , 

∑k
i=1 TNi , 

∑k
i=1 FNi , and 

∑k
i=1 FPi . Out of these procedures, macro-averaging gives equal 

weight to each class regardless of their size whereas micro-averaging gives equal weight to each instance and 
is therefore easily dominated by larger classes25. However, if each class should contain equally many instances 

H(p, q) = −
n

∑

i=1

pi log(qi).

TPi = nii, TNi =
∑

j�=i

∑

h �=i

njh, FNi =
∑

j�=i

nij, FPi =
∑

j�=i

nji, i = 1, . . . , k.
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Figure 1.   ROC curves computed from the binary predictions of a test set containing 300 chest X-rays with 
COVID-19 and 300 X-rays from healthy patients by the modified U-Net (in blue) and InceptionV3 (in gray), 
accompanied by a straight line equal to the theoretic ROC curve of a random binary classifier. The x-axis here 
uses sensitivity instead of the false positive rate but, since its values range from 1 to 0, the end result is a typical 
plot, not its reflection. The AUC values are 0.845 for the modified U-Net and 0.821 for InceptionV3. The values 
of other evaluation metrics are in Table 4.

Table 2.   The confusion matrix of a modified U-Net CNN whose task was to separate 2800 chest X-rays of the 
set as into four different classes: negative (class 1), COVID-19 (class 2), pneumonia (class 3), or tuberculosis 
(class 4). We see, for instance, that the CNN classified most X-rays showing tuberculosis as COVID-19. Based 
on this confusion matrix, the CNN has accuracy of 0.847, sensitivity of 0.695, specificity of 0.898, macro-
average precision of 0.744, micro-average precision of 0.695, Youden’s index of 0.593, macro-average F1-score 
of 0.677, micro-average F1-score of 0.695, κ of 0.598, and MCC of 0.616.

True\Predicted class 1 2 3 4 Sum

1 120 7 9 4 n1· = 140

2 15 116 3 6 n2· = 140

3 12 13 115 0 n3· = 140

4 2 96 4 38 n4· = 140

Sum n·1 = 149 n·2 = 232 n·3 = 131 n·4 = 48 n = 560
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as in the situation of in Table 2, both micro- and macro-averaging yield same values for accuracy, sensitivity, 
specificity, and Youden’s index.

Cohen’s κ and MCC have also own definitions specially designed for the multi-class classification: Cohen’s 
κ can be written as

where ni· =
∑k

j=1 nij , n·i =
∑k

j=1 nji , and n =
∑k

i=1

∑k
j=1 nij

26. Similarly, MCC can be computed from a general 
k × k confusion matrix with the formula27

In the special case k = 2 , we obtain the same formulas for Cohen’s κ and MCC as in (2) and (3)22.

Multi‑label classification
Multi-label classification is a generalized version of multi-class classification with nonexclusive class labels. 
Instead of dividing the data instances between several classes, the aim is to find all the class labels that apply 
out of k ≥ 2 possible labels. For each n instances, the model returns a binary vector y(i) , i = 1, . . . , n , whose jth 
element is 1 if the jth label is present and otherwise 0 for all j = 1, . . . , k . A possible metric for evaluation is the 
Hamming loss, defined as

where x(i)j  is the real value of the jth element in the binary vector of the ith data instance and y(i)j  is the cor-
responding predicted value. The smaller the Hamming loss is, the better the model is. Alternatively, we can 
compute for instance the micro- or macro-average accuracy, precision, or recall for the vectors y(i) , i = 1, . . . , n28.

Regression
In a regression problem, a model is used predict instances whose values are real numbers rather than categori-
cal. This is the case when predicting, for instance, height, stock prices, voter turnout, or rainfall amount. Here, 
we denote the real value of the ith instance in a test set of n instances by xi and its predicted value by yi for 
i = 1, . . . , n.

One way to evaluate the model is to measure correlation between the real and the predicted values12. The 
most well-known method for this is Pearson’s correlation coefficient, defined as

where x and y denote the mean values of the vectors (x1, . . . , xn) and (y1, . . . , yn) , respectively29. However, Pear-
son’s correlation coefficient is designed for measuring correlation between variables whose marginal distributions 
are assumed to be normal. Because of this, Spearman’s correlation coefficient rs might be a better evaluation 
metric when the real values xi are not even approximately normally distributed. Spearman’s correlation coeffi-
cient is obtained by first converting the observations xi and yi , i = 1, . . . , n , into their ranks and then computing 
Pearson’s correlation coefficient of these ranks29.

Another way to evaluate the model is to use some error measurement, such as mean absolute error (MAE) 
∑n

i=1 |xi − yi| or mean squared error (MSE) 
∑n

i=1(xi − yi)
212. The difference between MSE and MAE is that MSE 

punishes more for large errors12. Naturally, the smaller the error measurement is, the better the model performs.

Image segmentation
Image segmentation is a process of dividing images into regions of pixels or, in case of three-dimensional (3D) 
images, voxels, so that different objects and their boundaries can be located. In practice, this means converting a 
matrix of the same size as an image into a segmentation mask whose each point tells the class of the correspond-
ing point in the image. In binary image segmentation, the desired output is a binary mask with positive elements 
coded as 1s and negative elements as 0s but we can also perform multiclass image segmentation called semantic 
segmentation by using more integers to signify different classes. An example of binary tumor segmentation can 
be seen in Fig. 2.

One of the possible evaluation metric for an image segmentation masks is accuracy. In case of binary seg-
mentation, we could simply count the number of TP, TN, FN, and FP pixels and calculate the accuracy as in (1). 
However, the issue with this approach is that the number of positive pixels is typically very small compared to 
the number of negative pixels: For instance, if we try perform tumor segmentation for medical images of the 
body, the positive targets, while incredibly important, have minimal volume compared to the background and 
they might not even be present in some images. Because of this, the value of accuracy can be very high even in 
the cases where the model does not find the positive object as long as the majority of negative pixels is correct.

κ = p0 − pe

1− pe
with p0 =

1

n

k
∑

i=1

nii , pe =
1

n2

k
∑

i=1

ni·n·i ,

MMC = n
∑k

i=1 nii −
∑k

i=1 ni·n·i
√

(n2 −
∑k

i=1 n
2
i·)(n

2 −
∑k

i=1 n
2
·i)
.

1

nk

n
∑

i=1

k
∑

j=1

|x(i)j − y
(i)
j | ∈ [0, 1],

(4)r =
∑n

i=1(xi − x)(yi − y)
√
∑n

i=1(xi − x)2
∑n

i=1(yi − y)2
∈ [−1, 1],
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Consequently, the results of binary segmentation are often evaluated with a metric that ignores the TN points. 
Instead, we concentrate on evaluating the similarity of the predicted positive segment given by a CNN and the 
ground-truth positive segment annotated by a human. For this purpose, we can use the Sørensen–Dice similarity 
coefficient30,31, also known as the Dice score, defined for two sets X and Y as

where |S| denotes the number of pixels or voxels in the set S32. This definition can be equivalently written as

by using the elements of the confusion matrix from the binary predictions of the points32. A very similar alterna-
tive to Dice score is the Jaccard similarity coefficient33, which is also known as the Jaccard index or Intersection 
over Union (IoU), and defined as

for the sets X and Y, and

for the elements of the confusion matrix32. The equality IoU = D/(2− D) holds trivially between the IoU and 
the Dice score32.

There are also metrics specially designed for 3D segmentation, as this is common task for medical tomography 
images. The surface of the point set X, denoted by ∂X , is the set of all voxels in X for which at least one of the 18 
or the 26 neighbour voxels is does not belong in X. As an alternative to the typical Dice score, the surface Dice 
similarity coefficient (SDSC) can be computed by replacing X and Y with their surfaces ∂X and ∂Y  in (5). Let 
d(x, y) be the Euclidean distance between two voxels x and y, and define d(x,Y) = miny∈∂Y d(x, y) for the set Y. 
The average symmetric surface distance (ASD) between sets X and Y can now be defined as

The Hausdorff distance is hd(X, Y) = maxx∈X d(x, Y) and its symmetric version, also known as the maximum 
symmetric surface distance, is HD(X, Y) = max{hd(X, Y), hd(Y, X)} . The symmetric volume difference (SVD) is 
a Dice-based error metric defined as SVD = 1− D and the volumetric overlap error (VOE) is the corresponding 
error measure derived from IoU, VOE = 1− IoU . The model performance is considered better with smaller 
surface distances and errors terms34.

The results of multi-class semantic segmentation are typically evaluated by using mean Dice or IoU values, 
either as the mean of all within-class scores in a single image or the class-specific means of several images. The 
similarity of two semantic segmentation masks or any two can be also evaluated with structural similarity index 

(5)D = 2|X ∩ Y |
|X| + |Y | ∈ [0, 1],

D = 2 · TP
2 · TP+ FP+ FN

∈ [0, 1]

IoU = |X ∩ Y|
|X ∪ Y| ∈ [0, 1]

(6)IoU = TP

TP+ FP+ FN
∈ [0, 1]

ASD = 1

|X| + |Y|





�

x∈∂X
d(x, Y)+

�

y∈∂Y
d(y, X)



.

Figure 2.   The binary tumor mask predicted by U-Net CNN with maximum dimensionality of 128 (in blue) and 
the ground-truth tumor mask drawn by a physician (in white) for one transaxial slice from a PET image of a 
head and neck cancer patient. The image is 128 × 128 pixels and the predicted segmentation mask contains 181 
TP pixels, 16156 TN pixels, 17 FP pixels, and 30 FN pixels. This gives us Dice of 0.885, IoU of 0.794, and overall 
pixel accuracy of 0.997.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6086  | https://doi.org/10.1038/s41598-024-56706-x

www.nature.com/scientificreports/

measure (SSIM). If u and v are two image matrices with means u and v , variances su and sv , and covariance su,v , 
then we have

for constants c1 and c2 depending on pixel values35. The SSIM is typically computed by using the formula above 
within several kernels or windows of the images. The values of SSIM are interpreted as those correlation: 1 for 
perfect similarity, 0 for no association, and −1 for perfect opposites.

Object detection
Another similar tasks related to image processing is object detection, in which we find bounding boxes around 
each object in the image and classify them into different classes. A good object detector is capable of finding 
all the objects in an image without producing any false observations, placing the bounding boxes as close their 
correct locations as possible, and also classifying all the found objects correctly. Due to the diversity in these 
subtasks, evaluation of object detectors is slightly more complicated than it is for the other models introduced.

To evaluate the results of object detection, we must start by counting how many objects of a specific class 
were found. This quickly leads to the question how to decide how close a predicted bounding box needs to be 
a ground-truth box so that we can interpret the object as found. The common criteria here is IoU defined as in 
(6): The prediction is only considered a match of a ground-truth box if the IoU value of the two boxes exceeds 
a certain threshold value, often 0.5. If there are several predicted boxes producing an IoU high enough with the 
same ground-truth box, only the best one in terms of IoU is considered a match to the ground-truth box while 
all the others are FP observations. Namely, FP is here the number of predicted boxes without a matching ground-
truth box while TP is the number of the predictions that match a ground-truth box of the same class and FN is 
the number of ground-truth boxes without a matching prediction10.

With the TP, FP, and FN numbers of the specific class, we can compute precision and recall as in (1). Since an 
object detector outputs a confidence for every bounding box expressing how confident the model is about the 
prediction, we can remove the predictions below a threshold of confidence. Changing this threshold affects TP, 
FP, and FN numbers and therefore also precision and recall. The precision-recall curve (PRC) can be obtained 
by plotting precision against recall at all possible thresholds of confidence. After that, we can compute average 
precision (AP) as the area under the PRC. The whole model is evaluated by computing mean average precision 
(mAP) as the mean value of the APs in all the different classes. We often consider mAP@0.5 which is computed 
by using the IoU threshold 0.5 to define a match but just as well we could compute mAP@0.75 or mAP@0.9, or 
mAP@[0.5:0.95] which is the the mean value of mAP@0.5, mAP@0.55, . . . , mAP@0.95. The metric mAP@0.9 
is more strict than mAP@0.5 given it requires greater overlap for the potential matches and is therefore suitable 
for situations where the predicted bounding box locations need to be very exact10.

Information retrieval
Information search and retrieval is a significant task in ML research. The ability to retrieve only relevant results 
from large image- or text-based databases is crucial for these databases to be actually useful. Search engines and 
other information retrievals models can be evaluated by using precision and recall to describe the percentage 
of relevant retrieved documents among either search results or all the relevant documents. If we have K results 
d1, . . . , dK ordered by estimated relevance from the database D and each document d is either relevant ( rel(d) = 1 ) 
or not ( rel(d) = 0 ), we can compute precision of the first k retrieved documents as P@k =

∑k
i=1 rel(di)/k , for 

k = 1, . . . ,K and then define AP as36

The mAP is obtained by a mean value of AP across different topics or search queries36. If results have more 
classes than just relevant and non-relevant, discounted cumulative gain (DCG) of k first results can be defined as

where G(i) is a numerical value presenting the gain of the ith result37. For instance, the values 10, 7, 3, 0.5, and 0 
are often used for perfect, excellent, good, fair, and bad results, respectively37. If there are several search queries 
to be evaluated, mean DCG can be used.

Statistical tests
The motivation behind statistical tests is often to find out whether there is a significant difference between two 
different populations within respect of some specific property. We can collect smaller data sets from the popula-
tions and use them to compute values of the numeric quantity representing the feature of interest. Since there 
is nearly always at least slight difference between these values, the relevant question is whether this difference is 
great enough to be considered as an actual evidence of an underlying dissimilarity between the populations or 
if it is just a result of random variation.

The process of statistical testing is relatively simple: We formulate a null hypothesis H0 according to which 
there is no real difference, choose some level of significance α ∈ (0, 1) , and define a suitable test statistic Z with a 

SSIM(u, v) = 2uv + c1

u2 + u2 + c1

2susv + c2

s2u + s2v + c2
∈ [−1, 1]

AP =
∑K

k=1 rel(dk) · P@k
∑

d∈D rel(d)
.

DCG =
k

∑

i=1

G(i)

log2(i + 1)
,
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known probability distribution P(Z|H0) under the null hypothesis. We then use this distribution to compute the 
probability of obtaining at least as extreme value for the statistic Z than the one value z already observed. If the 
resulting probability p = 2min{P(Z ≤ z|H0),P(Z ≥ z|H0)} , called p value, is less than α , then the null hypoth-
esis is rejected and the difference is considered statistically significant. We make a type I error when rejecting a 
true null hypothesis, and a type II error is accepting a false null hypothesis. We can control the probability of a 
type I error as its is equal to α . We could also use α to compute the critical values for the statistic for accepting or 
rejecting the null hypothesis instead of using a p value. However, in this paper, all the test functions in Python38 
and R39 mentioned return a p value. We use α = 0.05 as the level of significance in our examples.

When comparing performance of two or more models, it is often necessary to perform the tests for multiple 
times depending on the evaluation metric and the statistical test used. For instance, while we can compute 
Dice score of every predicted segmentation mask in the test set, we only obtain one value of accuracy from the 
predictions of the whole test set after binary classification and as well as one value of MSE after regression. If we 
want to compare regression models, we can test squared errors instead of their mean and, in case of binary clas-
sification, there are tests that are based on the predictions of a single test set. In other cases, we have to evaluate 
our models on several test sets to obtain enough values from other evaluation metrics for statistical testing. The 
required values of an evaluation metric for a certain statistical test are summarized in the flowchart of Fig. 3.

While the test sets should ideally come from fully different data sets, sometimes our only option is to use a 
resampling procedure to create multiple test sets from the same data. In practice, we must re-initialize, train, 
and test the models for several times and save the values of the evaluation metrics from the predictions of the 
test set on each iteration round. We should use same training and test set for all the models on the same itera-
tion round but vary them between the rounds because, otherwise, our conclusions about a potential difference 
between the models might be misled by some unknown factor in these specific data sets. Researchers commonly 

Binary
classification

Sensitivity,
specificity

Binary
predictions
of a single
test set

Does one
model

outperform
the other?

McNemar’s
test

AUC

Numeric
predictions
of a single
test set

Is there a
significant
difference in
the AUCs of
two models?

DeLong
test

Accuracy,
precision,

F1,
Youden

Values of the
evaluation
metric from

several
test sets

Is there
significant
differences...

...between
two

models?

Wilcoxon
signed-
rank test

...between
several
models?

Friedman’s
test

...in the
variances?

e.g.
Levene’s

test

Cohen’s
κ, MCC

Multi-class
classification

Micro/
macro-
average
accu-
racy,
etc.

Object
detection

mAP

Information
retrieval

DCG

Squared/
absolute
errors in a

single test set

Regression

Corre-
lation,
MSE,
MAE

Values in
a single

test set or
their means
over several
test sets

Multi-label
classification

Image seg-
mentation

Ham-
ming
loss

Dice,
IoU,
etc.

Task of the models

Evaluation
metric

Compute
for testing

Question to
be tested

Test

Figure 3.   The possible tasks for a model, their evaluation metrics, the values of the evaluation metric that must 
be computed for each model before statistical testing, the potential questions a statistical test could answer in the 
situation, and the suitable test.
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use here k-fold cross-validation, in which the data is divided into k similarly sized folds and, during k iteration 
rounds, each fold is the test set exactly once while the other k − 1 form the training data12. Alternatively, we can 
perform repeated cross-validation that has a few re-runs of each potential test set12. However, it should be taken 
into account that resampling methods do not produce independent values for the evaluation metrics and might 
lead to underestimating the variance of the test statistic, causing biased results12.

Testing for a significant difference in any evaluation metric
Regardless of whether the values of the evaluation metric come from a single test set or several test sets on differ-
ent iteration rounds, the values of the metric for the two models are based on the same instances and therefore 
paired. Many researchers therefore check which of the models gives a higher mean and then use a paired t-test 
to test if the difference in the mean is significant4. The null hypothesis of the paired t-test is that the mean of the 
differences in the matched pairs is equal to 040, and this test can be performed with the function ttest_rel 
in the package scipy.stats41 in Python or t.test(x,y,paired=TRUE) in the base package stats in R. There 
are also such newer variations of the t-test that are specially designed to repeated cross-validation11. However, 
the t-test is not recommended for this situation because it is strongly affected by outliers4 and not valid when 
resampled test sets are used12.

Another possible test is a sign test. If two models are evaluated by using N test sets and there is no difference 
between them, then each of them should produce a better value for the evaluation metric N/2 times4. Thus, the 
number of times where the first model is better than the second follows a binomial distribution and, for a greater 
number of N, a normal distribution with a mean N/2 and standard deviation 

√
N/211. We can therefore apply the 

sign test to test whether one of the models outperforms the other with respect to the chosen evaluation metric in 
a statistically significant way. However, the sign test has a very weak power for detecting significant differences4.

The best alternative for this situation is the Wilcoxon signed-rank test instead4. It is a non-parametric test 
for the null hypothesis that the median of the differences in the matched pairs is equal to 042. This test has the 
test statistic

and rank(|di|) , i = 1, . . . , n , denote the differences di in the n matched pairs ranked by their absolute values43. The 
T-statistic can be examined directly by using its own critical values or, for large values of n, utilizing the statistic

which follows the normal distribution under the null hypothesis4. The Wilcoxon signed-rank test can be per-
formed with wilcoxon in scipy.stats in Python or wilcox.test(x,y, paired=TRUE) in stats in R.

Test for comparing several models
As explained above, we can use Wilcoxon signed-rank test to estimate whether the differences between two 
models are significant with respect to any evaluation metric, but this test is not ideal when comparing several 
models. Namely, while we can repeat Wilcoxon tests between each pair of models, the risk of type I error increases 
with multiple comparisons. Adjusting the level of significance by Bonferroni correction has been suggested as 
a solution44 but it is overly radical4.

Instead, the better approach in a situation where we have K models evaluated in J data sets is to perform 
Friedman’s test4. The average rank of the kth model, k = 1, . . . ,K , is Rk =

∑J
j=1 r

j
k/J where rjk is the rank of the 

jth value of the evaluation metric for the kth model4. The test statistic can be now written as

or, as noted by Iman and Davenport45, as4

Out of the two statistics, χ2
F is overly conservative and FID is therefore recommended4. Under the null hypothesis, 

χ2
F follows the χ2-distribution with K − 1 degrees of freedom and FID follows the F-distribution with K − 1 and 

(K − 1)(J − 1) degrees of freedom4. Friedman’s test can be performed with friedmanchisquare in scipy.
stats in Python or friedman.test in stats in R, but both of these functions are based on the statistic χ2

F and 
therefore are not reliable for small values of J. However, if J is small, we can use a few separate Wilcoxon signed-
rank tests instead.

Tests for binary classification of a single test set
There are also such tests for comparison of two classifiers which only require their predictions from a single itera-
tion round. McNemar’s test is a common non-parametric test that only requires two numbers and is typically used 
to compare either sensitivity or specificity of two classifiers46. To find out whether there is a significant difference 
in the sensitivity of the classifiers, let b be the number of positive instances in the test set misclassified as FN by 
the first classifier but not by the second classifier and c similarly the number of positive instances misclassified 

T = min{R+,R−}, where R+ =
∑

di>0

rank(|di|), R− =
∑

di<0

rank(|di|),

z = T − n(n+ 1)/4√
n(n+ 1)(2n+ 1)/24

,

χ2
F = 12J

K(K + 1)

(

K
∑

k=1

R
2
k −

K(K + 1)2

4

)

FID = (J − 1)χ2
F

J(K − 1)− χ2
F

.
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as FN by the second classifier but not by the first classifier. To study specificity, count the numbers b and c by 
using FP misclassifications among the negative instances. Comparing accuracy by counting errors among both 
positive and negative sets is not recommended47. If there is no significant difference in the performance of the 
two classifiers, the test statistic

follows the χ2-distribution with 1 degree of freedom for b+ c ≥ 20 and a binomial distribution otherwise11. 
This test can be performed with mcnemar in statsmodels.stats.contingency_tables48 in Python or mcnemar.
test in stats in R.

We can also use the DeLong test to see whether there is a statistically significant different between the AUCs of 
two binary classifiers. Namely, DeLong et al.49 noticed that the Mann-Whitney statistic can be used as an estimate 
of an AUC and the theory of generalized U-statistic can be applied to compare two AUCs. The Mann-Whitney 
two-sample statistic for AUC can be written as

where m is the number of truly positive instances, n is the number of the number of truly negative instances, Yi1 
is the numeric prediction of the ith positive instance before it was converted into binary and, similarly, Yj0 is the 
numeric prediction of the jth negative instance50. Let θ̂1 be the estimate above for the AUC of the first classifier 
and θ̂2 the same for the second classifier. The DeLong test estimates their variance and covariance (see e.g.51 for 
the exact formulas) and then uses the statistic

which follows the normal distribution under the null hypothesis due to the properties of the known U-statistic51. 
The DeLong test can be performed with roc.test(x,y,method= ’delong’) in the package pROC52 
in R.

Tests for comparing variance
Another important factor when comparing the performance of models is the amount of variance they produce. A 
model that consistently obtains high values in some evaluation metric is better than a model whose performance 
varies greatly on different iteration rounds. However, it must be taken into careful consideration here how the 
multiple values of the evaluation metric are obtained before considering their variance. For instance, if we use 
repeated cross-validation, we will not obtain a realistic estimate how the performance of a model would vary 
over different data sets.

We can use the F-test of equality of variances to test the null hypothesis according to which two populations 
have equal variances. The test statistic is F = S21/S

2
2 where S21 and S22 are the sample variations in the values pro-

duced by the two models for the evaluation metric, and this F-statistic follows the F-distribution with n− 1 and 
n− 1 degrees of freedom under the null hypothesis53.

However, the use of the F-test is not recommend for non-normally distributed values and this is often the 
case when comparing evaluation metrics: For instance, if the model has a median accuracy of 90% but a high 
amount of variation between different test sets, it is likely that the distribution of accuracy is left-skewed as the 
accuracy is limited on [0, 1] by its definition. The normality can be tested here with the Shapiro–Wilk test54 
(shapiro in the package scipy.stats and shapiro.test in the package stats in R). If the data is not normally 
distributed, the possible alternatives for the F-test include Barlett’s test55 (bartlett in scipy.stats in Python 
and bartlett.test in stats in R) and Levene’s test56 (levene in scipy.stats in Python and leveneTest 
in the package car57 in R).

Comparison to a human
In ML research, it is often of interest if a specific ML model performs better than a human. Especially, in a medical 
field, it is useful to estimate the difference between the tumor masks predicted by a CNN differ and those drawn 
by a physician by taking into account how much difference there would be if the same masks were drawn by two 
different physicians. For this purpose, we can use statistical testing to compare the results of an ML model and a 
human in terms of a relevant evaluation metric as we would compare the performance of two models. However, 
there might be some cases where this comparison is not possible: A human is not able to go through very large 
amounts of data, at least not fast, and, while we can always re-initialize the model between different rounds of 
repeated cross-validation, a human will not forget their earlier decisions. Because of this, statistical comparison 
between an ML model and a human is often limited to using McNemar’s test or the DeLong test to compare 
classifications in a single test set or the Wilcoxon signed-rank test to compare segmentation masks in terms of 
Dice and IoU values for a reasonable number of images.

(|b− c| − 1)2

b+ c

θ̂ = 1

mn

m
�

i=1

n
�

j=1

�(Yi1,Yj0) with �(Yi1,Yj0) =







1 if Yi1 > Yj0,
1/2 if Yi1 = Yj0,
0 if Yi1 < Yj0,

ZD = θ̂1 − θ̂2
√
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Examples
Software requirements
The CNNs were coded in Python (version: 3.9.9)38 with packages TensorFlow (version: 2.7.0)58 and Keras (ver-
sion: 2.7.0)59. Most of the test were preformed in Python with scipy (version: 1.7.3)41 or statsmodels (version: 
0.14.0)48. The DeLong test was performed and Fig. 1 was plotted with pROC (version: 1.18.5)52 in R (version: 
3.4.1)39. The images of the third data set had been studied with Carimas (version: 2.10)60, which was also used 
to draw their binary masks.

Data
We use three data sets consisting of two-dimensional grayscale images converted into the size of 128 × 128 pixels. 
The first data set contains 3000 chest X-rays of COVID-19 patients and 3000 chest X-rays of healthy patients 
chosen from COVID-19 Radiography Database61,62. The second data set has 700 chest X-rays of healthy patients 
and 700 chest X-rays of COVID-19 patients from COVID-19 Radiography Database, 700 chest X-rays of patients 
with pneumonia from Chest X-Ray Images (Pneumonia)63, and 700 chest X-rays of tuberculosis patients from 
Tuberculosis (TB) Chest X-ray Database64. The third data set has a total of 962 two-dimensional transaxial image 
slices from the PET images of 89 head and neck squamous cell carcinoma patients. The patients were imaged with 
18F-fluorodeoxyglucose tracer in Turku PET Centre, Turku, Finland, during years 2014–2022. More details about 
the imaging can be found in65,66. Each of the slices has also a ground-truth binary segmentation mask showing 
pixels depicting cancerous tissue as positive and the rest as negative, and they were chosen so that they have at 
least 6 positive pixels. All the cancer patients were at least 18 years of age, gave informed consent to the research 
use of their data, and the research from their data was approved by Ethics Committee of the Hospital District of 
Southwest Finland. All research was performed in accordance with the Declaration of Helsinki.

Convolutional neural networks
In both binary and multi-class classification, we use a CNN that has U-Net architecture by Ronneberger et al.67 
modified for classification65 and a ready-built CNN called InceptionV3 available in Keras. For binary segmen-
tation, we use two U-Nets, a shallower of which has 64 as maximum dimensionality of a Conv2D layer and a 
deeper of which has 128. They were also used in66,68. We use stochastic gradient descent as an optimizer for the 
classification CNN and Adam for the segmentation CNNs. The classification CNNs are trained on 10 epochs and 
the segmentation CNNs on 50. The learning rate of 0.001 and, during training, 30% of the training data is used 
for validation. After training the CNNs for binary classification, we predict both training and test sets and use 
the threshold giving the maximal Youden’s index in the training set as a threshold for converting the numeric 
predictions of the test set into binary labels. We similarly convert the output after binary segmentation by using 
the threshold that produces the highest median Dice in the training set. For the multi-class classification, we 
obtain directly class labels by using the maximum elements of one-hot encoding.

Our experiments
We first compare the performance of the modified U-Net and InceptionV3 in binary classification by using our 
first data set of COVID-19 and negative X-rays with fivefold cross-validation. We compute all the possible evalu-
ation metrics from our single test set and use McNemar’s test for sensitivity and specificity and DeLong test for 
AUC. Then we compare the modified U-Net and InceptionV3 in multi-class classification with repeated fivefold 
cross-validation (5 re-runs of each test set). We save the values of micro- and macro-average evaluation metrics 
after each round and use the Wilcoxon signed-rank test to estimate whether the differences in the resulting 25 
values of each metric are significant or not. Even though the paired t-test should not be used for this, we perform 
it to see if its p values would be different from those of the Wilcoxon test. Finally, we divide our third data set 
patient-wise into train and test sets so that the test set has 191 slices (19.9% of the total data), and compare the 
two U-Nets for binary segmentation. We use the Shapiro–Wilk test to test the normality of Dice and IoU values 
of different segmentation masks, t-test and Wilcoxon test to estimate their differences, and F-test, Bartlett’s test 
and Levene’s test to check if there are significant differences in variances.

Results
The results of the binary classification task are summarized in the contingency table of Table 3 and the resulting 
values of the evaluation metrics are in Table 4. According two McNemar’s test computed from Table 3 separately 
for sensitivity among COVID-19 patients and specificity negative patients, the modified U-Net produced sig-
nificantly higher sensitivity (p value < 5.07e−5) but significantly lower specificity (p value < 0.0207). The ROC 

Table 3.   The contingency tables for comparing the performance of the modified U-Net and InceptionV3 in 
binary classification among both COVID-19 and negative X-rays separately.

COVID-19 Neg.

U-Net\InceptionV3 Pos. Neg. Pos. Neg.

Pos. 207 54 63 44

Neg. 19 20 24 169
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curves of the modified U-Net and InceptionV3 can be seen from Fig. 1 and, according the DeLong test, there is 
no significant difference in their AUC (p value = 0.137).

The median values of the evaluation metrics are in Table 5 for the multi-class classification task. According 
to t-tests and Wilcoxon tests, the modified U-Net is significantly better than InceptionV3, regardless of which 
metric is used. The p value of the t-test for macro-average F1-score is 6.47e−4 and less than 2.38e−5 for all the 
other metrics and, similarly, the p value of the Wilcoxon test for macro-average F1-score is 0.00116 and less than 
6.37e−5 for all the other metrics.

The median and standard deviation of Dice and IoU values computed for the two U-Nets in the segmentation 
task are in Table 6, as are the p values of Shapiro–Wilk tests, t-tests, Wilcoxon tests, F-tests, Bartlett’s tests, and 
Levene’s tests. Based on these p values, neither Dice nor IoU values are normally distributed, the deeper U-Net 
is significantly better in terms of both Dice and IoU values, and, while the deeper U-Net had higher standard 
deviation, this difference is only significant according to Levene’s test performed for the IoU values.

Discussion
In our first experiment, we used both McNemar’s test and the DeLong test to study two CNNs used for binary 
classification. Our results show that the choice of the threshold was not ideal for the modified U-Net as we 
obtained high sensitivity on the cost of the specificity. This also reveals one issue with McNemar’s test: It does 
not tell us which classifier is better if one of them has a significantly higher sensitivity but a significantly lower 
specificity. We would need to use some other thresholds to convert the output of the CNN into binary labels and 
then repeat McNemar’s tests in order to find out if the significant differences are caused by specific threshold 
choices or not. In this respect, the DeLong test is more useful as its results do not depend on the threshold choices. 
However, to obtain more trustworthy results, it would still be necessary to use cross-validation and compare the 
AUCs of different test sets with the Wilcoxon signed-rank test.

In our second and third experiments, we used the t-test for comparing the values of evaluation metrics, 
even though it is not recommend for this, especially not when combined with repeated cross-validation. Its p 
values were relatively close to those of the Wilcoxon tests and, regardless of which test was used, we obtained 
the same conclusions about the significant differences. Since the misuse of the t-test is rather common, as noted 
by Demšar4, it is good to know that the results obtained in earlier research are not necessary wrong. Similarly, 
even though the F-test is not designed for non-normally distributed data, its p values were very close to those 
of Bartlett’s tests. However, both the t-test and the F-test are sensitive to the error caused by potential outliers so 
their use can lead incorrect results.

Table 4.   The evaluation metrics computed for the modified U-Net and InceptionV3 from Table 3.

CNN\Metric Acc. Sen. Spe. Pre. Youden F1 κ MCC AUC​

U-Net 0.757 0.870 0.643 0.709 0.513 0.781 0.513 0.527 0.845

InceptionV3 0.732 0.753 0.710 0.722 0.463 0.463 0.464 0.737 0.821

Table 5.   The median values of the evaluation metrics computed for the modified U-Net and InceptionV3 
during the rounds of the multi-class classification task with repeated fivefold cross-validation. The results 
obtained with micro-averaging (Mic.) and macro-averaging (Mac.) are here separately for precision and 
F1-score but both these methods give the same values for accuracy, sensitivity, specificity, and Youden’s index.

CNN\Metric Acc. Sen. Spe.

Pre.

Youden

F1

κ MCCMac. Mic. Mac. Mic.

U-Net 0.857 0.714 0.905 0.760 0.714 0.619 0.693 0.714 0.619 0.641

InceptionV3 0.801 0.602 0.867 0.589 0.602 0.469 0.591 0.602 0.469 0.473

Table 6.   Median and standard deviation of Dice and IoU values computed from the binary segmentation 
masks predicted by two U-Nets for 191 image slices of the test set. The U-Nets with different depths are 
distinguished here according to whether the maximum dimensionality of a Conv2D layer is 64 or 128. 
The table also contains the p values of Shapiro–Wilk tests for testing the normality separately for Dice and 
IoU values of each U-Net, and p values of t-tests, Wilcoxon tests, F-tests, Bartlett’s tests, and Levene’s tests 
comparing the two U-Nets.

U-Net Metric Median Std Shapiro t-test Wilcoxon F-test Bartlett Levene

64 Dice 0.484 0.300 1.11e−8 9.20e−5 1.52e−5 0.490 0.490 0.437

128 Dice 0.574 0.315 3.91e−10

64 IoU 0.320 0.259 1.38e−7 1.42e−5 6.44e−5 0.182 0.182 0.0337

128 IoU 0.403 0.285 1.90e−8
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It should be noted here that aim of our experiments was to give examples of the use of the evaluation met-
rics and the related tests. To find out how often the t-test or some other test produces false conclusions when 
improperly used, more research is needed. Similarly, one possible topic for future research is also how many the 
number of the test sets affects the trustworthiness of the conclusions.

Conclusion
In this paper, we introduced several evaluation metrics for common ML tasks including binary and multi-class 
classification, regression, image segmentation, and object detection. Statistical testing can be used to estimate 
whether the different values in these metrics between two or more models are caused by actual differences 
between the models. The choice of the exact test depends the task of the models, the evaluation metric used, and 
the number of test sets available. As some metrics produce only one value from a single test set and there might 
be only one data set, some type of resampling, such as repeated cross-validation, is often necessary. Because 
of this, the well-known tests such the paired t-test underestimate variance and do not produce reliable results. 
Instead, the use of non-parametric tests such as the Wilcoxon signed-rank test or Friedman’s test is recommend.

Data availability
The X-ray data sets analyzed during the current study are available in the repositories: COVID-19 Radiog-
raphy Database61,62 https://​www.​kaggle.​com/​datas​ets/​tawsi​furra​hman/​covid​19-​radio​graphy-​datab​ase, Chest 
X-Ray Images (Pneumonia)63 https://​www.​kaggle.​com/​datas​ets/​pault​imoth​ymoon​ey/​chest-​xray-​pneum​onia, 
and Tuberculosis (TB) Chest X-ray Database64 https://​www.​kaggle.​com/​datas​ets/​tawsi​furra​hman/​tuber​culos​
is-​tb-​chest-​xray-​datas​et.

Code availability
Available at github.com/rklen/statistical_tests_for_CNNs.
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