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Machine learning insights 
into thrombo‑ischemic 
risks and bleeding events 
through platelet lysophospholipids 
and acylcarnitine species
Tobias Harm 1, Xiaoqing Fu 2, Moritz Frey 1, Kristina Dittrich 2, Adrian Brun 2, 
Tatsiana Castor 1, Oliver Borst 1, Karin Anne Lydia Müller 1, Tobias Geisler 1, Dominik Rath 1, 
Michael Lämmerhofer 2 & Meinrad Paul Gawaz 1*

Coronary artery disease (CAD) often leads to adverse events resulting in significant disease burdens. 
Underlying risk factors often remain inapparent prior to disease incidence and the cardiovascular 
(CV) risk is not exclusively explained by traditional risk factors. Platelets inherently promote 
atheroprogression and enhanced platelet functions and distinct platelet lipid species are associated 
with disease severity in patients with CAD. Lipidomics data were acquired using mass spectrometry 
and processed alongside clinical data applying machine learning to model estimates of an increased 
CV risk in a consecutive CAD cohort (n = 595). By training machine learning models on CV risk 
measurements, stratification of CAD patients resulted in a phenotyping of risk groups. We found 
that distinct platelet lipids are associated with an increased CV or bleeding risk and independently 
predict adverse events. Notably, the addition of platelet lipids to conventional risk factors resulted 
in an increased diagnostic accuracy of patients with adverse CV events. Thus, patients with aberrant 
platelet lipid signatures and platelet functions are at elevated risk to develop adverse CV events. 
Machine learning combining platelet lipidome data and common clinical parameters demonstrated 
an increased diagnostic value in patients with CAD and might improve early risk discrimination and 
classification for CV events.

Platelet hyperreactivity is an important risk factor for development of acute coronary thrombosis and adverse 
thrombo-ischemic events in patients suffering from coronary artery disease (CAD)1–6. Further, platelet hyper-
responsiveness contributes to atheroprogression in patients with CAD1,7,8. Beyond atherogenic mechanisms 
involved in progression of CAD, sustained platelet activation and thrombo-inflammation are associated with 
adverse thrombo-ischemic events in patients with both chronic coronary syndrome (CCS) and acute coronary 
syndrome (ACS)2.

In patients with diabetes mellitus and dyslipidemia enhanced levels of blood glucose and lipoproteins, such as 
low-density lipoprotein (LDL), trigger thrombo-inflammatory signaling cascades leading to platelet activation9–11. 
Further, platelet lipid cargo including uptake of oxidized LDL promotes platelet hyperreactivity and impacts the 
platelet lipid signature9.

Recent advances in mass spectrometry enabled to characterize changes of the platelet lipidome and to identify 
key lipids essential for platelet function12–18. Recently, significant changes in the platelet lipidome were observed 
between patients with ACS and CCS9,19. In patients with adverse CV events distinct platelet lipid species acceler-
ate disease severity in patients with ACS19,20. Only recently, we depicted that platelet levels of lysophosphatidy-
lethanolamine (LPE) and acylcarnitines (CAR) were independently associated with adverse thrombo-ischemic 
and bleeding events in patients with cardiovascular disease (CVD)20,21.
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The composition of the platelet lipidome correlated with lipid-lowering treatment and lipid subspecies includ-
ing LPE are susceptible to statin treatment21,22. Thus, the platelet lipidome signature may offer the perspective 
to identify patients at risk and to attenuate the burden of adverse clinical events in CAD. In this study we 
performed machine learning models employing platelet lipidomics profiling with mass spectrometry coupled 
to liquid-chromatography in a large (n = 595) cohort study of patients with symptomatic CAD. We stratify the 
cardiovascular risk by analyzing distinct lipid species and platelet function over three years in the prospective 
population-based study.

Results
Determination of sub‑phenotypes in patients with coronary artery disease at elevated cardio‑
vascular risk
In the present study we prospectively analyzed cardiovascular risk factors including platelet lipid signatures in a 
large-scale cohort of patients with CAD utilizing an untargeted UHPLC-ESI-QTOF-MS/MS approach (Fig. 1). 
Patients baseline characteristics including clinical and laboratory parameters of the cohort (n = 595) are sum-
marized in Table 1. Over a median follow-up period of three years, 41 individuals (6.9%) experienced a major 
thrombo-ischemic or major bleeding event (Table 2). Recently, we described a significant association of platelet 
lysophosphatidylethanolamines (LPE) and acylcarnitines (CAR) upregulation with adverse ischemic or bleeding 
events in patients with CAD21.

Initial clustering and identification of sub-phenotypes in CAD patients was done integrating CV risk factors 
(LDL and HDL cholesterol, triglycerides, HbA1c, LVEF, and platelet aggregation) as well as mean platelet LPE 
and CAR concentrations. We could identify six clusters with distinctive patterns of the variables (Fig. 2). Cluster 
characteristics regarding CV risk parameters are depicted in Fig. 2 and Table 3. Patients grouped into cluster 
5 shared a relative high abundance of platelet CAR levels as well as platelet hyperreactivity, cluster 6 was solely 
characterized by critically enhanced LPE concentrations (Fig. 2). Further, the number of patients with impaired 
LVEF was highest in cluster 2, LDL cholesterol was highest in cluster 1, whereas patients in cluster 4 showed high 
levels of HbA1c, elevated triglycerides and low HDL cholesterol (Fig. 2). Of note, in patient clusters 1–5, lipids 
sharing the highest abundance were lysophosphatidylethanolamines LPE18:0/0:0, LPE P-18:0, and LPE 0:0/20:4. 
The latter exhibited highest concentration in patient cluster 6 and was followed by LPE 0:0/22:4 and LPE 0:0/22:5. 
Overall, characteristic LPE with side chain length of 18 carbon atoms showed highest concentrations among all 
patients in this study (Supplementary Figure S2). Important cluster characteristics and subgroup comparisons 

Figure 1.   Machine learning of cardiovascular risk factors including the platelet lipidome facilitates sub-
phenotyping and prediction of adverse events in patients with CAD. Workflow of this large-scale (n = 595) 
prospective study investigating the significance of the platelet lipidome to predict adverse thrombo-ischemic 
and bleeding events in patients with CAD by machine learning. The platelet lipidome in this study was assessed 
though an untargeted UHPLC-MS/MS assay. Alongside reliable risk parameters including platelet functional 
data, platelet lipids significantly contributed to risk prediction of adverse thrombo-ischemic and major bleeding 
events during the three-year clinical follow-up. CAR, acylcarnitines; LPE, lysophosphatidylethanolamines; 
UHPLC-MS/MS, Ultra-high performance liquid chromatography tandem mass spectrometry.
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Table 1.   Baseline characteristics of CAD patient population. Significant values (p < 0.05) are highlighted.

All No adverse events Adverse events p-value

(n = 595) (n = 554; 93.1%) (n = 41; 6.9%)

Female, n (%) 174 (29.2) 166 (30) 8 (19.5) 0.156

Age, years (mean ± SD) 70 (± 11.4) 69.7 (± 11.4) 74 (± 11.4) 0.026

Body mass index (mean ± SD) 27.4 (± 5.1) 27.5 (± 5.1) 26.8 (± 4.3) 0.308

Cardiovascular risk factors

Arterial hypertension, n (%) 532 (89.4) 496 (89.5) 36 (87.8) 0.729

Hyperlipidemia, n (%) 473 (79.5) 440 (79.4) 33 80.5) 0.871

Diabetes mellitus, n (%) 193 (32.4) 178 (32.1) 15 (36.6) 0.557

HbA1c (%) (mean ± SD) 6.3 (± 1.1) 6.3 (± 1.1) 6.4 (± 1.2) 0.736

Current smoking, n (%) 113 (19.1) 108 (19.6) 5 (12.2) 0.246

Ex Smoking > 6 mo, n (%) 129 (21.8) 119 (21.6) 10 (24.4) 0.672

Obesity, n (%) 139 (23.4) 129 (23.3) 10 (24.4) 0.671

Atrial Fibrillation, n (%) 139 (23.4) 126 (22.8) 13 (31.7) 0.195

Previous CABG, n (%) 22 (3.7) 19 (3.4) 3 (7.3) 0.203

Previous MI, n (%) 131 (22) 123 (22.2) 8 (19.5) 0.688

Renal function (GFR) (mean ± SD) 80.2 (± 28.8) 80.4 (± 28.8) 78.1 (± 29.8) 0.638

Medication on admission

Statins, n (%) 497 (83.5) 462 (83.4) 35 (85.4) 0.743

Ezetimibe, n (%) 83 (13.9) 79 (14.3) 4 (9.8) 0.420

Acetylsalicylic acid, n (%) 543 (91.3) 508 (91.7) 35 (85.4) 0.166

Clopidogrel, n (%) 264 (44.4) 249 (45) 15 (36.6) 0.299

Ticagrelor, n (%) 133 (22.4) 124 (22.4) 9 (22) 0.944

Prasugrel, n (%) 112 (18.9) 107 (19.4) 5 (12.2) 0.259

Cangrelor, n (%) 1 (0.2) 1 (0.2) 0 (0) 0.785

Oral anticoagulants, n (%) 130 (21.9) 116 (20.9) 14 (34.2) 0.060

Angiotensin-converting enzyme inhibitors, n (%) 194 (32.6) 182 (32.9) 12 (29.3) 0.637

Angiotensin II receptor antagonists, n (%) 312 (52.4) 292 (52.7) 20 (48.8) 0.627

Aldosterone antagonists, n (%) 152 (25.6) 142 (25.6) 10 (24.4) 0.860

Ca channel antagonists, n (%) 211 (35.5) 196 (35.4) 15 (36.6) 0.876

β-blockers, n (%) 418 (70.3) 386 (69.9) 32 (78.1) 0.258

Diuretics, n (%) 209 (35.2) 194 (35.1) 15 (36.6) 0.846

Lipid profile parameters

LDL-cholesterol (mg/dL) (mean ± SD) 107.5 (± 43.8) 107.5 (± 43.5) 107.4 (± 47.2) 0.988

HDL-cholesterol (mg/dL) (mean ± SD) 45.5 (± 16.2) 45.4 (± 16.3) 46.5 (± 16.2) 0.689

Triglycerides (mg/dL) (mean ± SD) 141.1 (± 87.2) 142.6 (± 88.3) 120.3 (± 68.7) 0.055

Total cholesterol (mg/mL) (mean ± SD) 165.8 (± .45.4) 165.8 (± 44.8) 164. (± 52.7) 0.908

Platelets (mean ± SD) 227.6 (± 65.9) 228.5 (± 65.6) 215.9 (± 68.4) 0.261

Disease

Chronic coronary syndrome, n (%) 227 (38.2) 210 (37.9) 17 (41.5) 0.651

Unstable Angina, n (%) 87 (14.6) 85 (15.3) 2 (4.9) 0.067

NSTEMI, n (%) 210 (35.3) 191 (34.5) 19 (46.3) 0.125

STEMI, n (%) 71 (11.9) 68 (12.3) 3 (7.3) 0.345

Table 2.   Clinical endpoints at three-year follow-up.

36 Months follow-up Ischemic endpoint (n = 25) Bleeding endpoint (n = 16)

Cardiac death, n (%) 7 (28)

Myocardial infarction, n (%) 8 (32)

Stroke, n (%) 10 (40)

Major bleeding, n (%) 16 (100)
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Figure 2.   Machine learning of cardiovascular risk factors including the platelet lipidome facilitates sub-phenotyping of CAD patients. 
(A) Medoid clustering with the corresponding standardized level (z scores) of the feature risk variables (LVEF, left ventricular ejection 
fraction; HDL, high-density lipoprotein; LDL, low-density lipoprotein; triglycerides; HbA1c; LPE, lysophosphatidylethanolamines; 
CAR, acylcarnitines; platelet aggregation). Remarkably, patients summarized in cluster 5 mainly showed aberrant platelet function 
and enhanced platelet CAR concentrations, whereas cluster 6 was exclusively characterized by increased LPE concentrations. (B) 
Number of patients with CAD by cluster according to conventional risk parameter with color indicating cut-off values of individual 
measurements. In addition, alongside median platelet LPE and CAR concentrations, median area under the curve (AUC) from merged 
collagen-, arachidonic acid-, adenosine diphosphate-, and thrombin-induced platelet aggregation was depicted by cluster to identify 
patients with platelet hyperreactivity and aberrant platelet lipid signatures. Error bars were constructed based on interquartile range 
(IQR).
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are shown in Table 3, and in-depth juxtaposition of each cluster is outlined in supplementary Table 2 and sup-
plementary Figures S5 & S6.

In the longitudinal analysis, all participants were screened for major bleeding or ischemic events (Fig. 3). 
We found that bleeding incidence was the highest in cluster 5, followed by cluster 6, whereas the incidence of 
ischemic events was highest in cluster 2, followed by cluster 5. Here, it was noticeable that patients in cluster 
6 with exclusively elevated platelet LPE concentrations showed an increased incidence for both, ischemic and 
bleeding events (Fig. 3). The composite endpoint including both, bleeding and ischemic events revealed high-
est incidences in cluster 2 followed by cluster 5 and 6 (Supplementary Figure S3). Overall-mortality during the 
three-year follow-up was highest in cluster 2 and 5 (Supplementary Figure S3). Of note, adverse events were not 
enriched in patients with ACS (e.g. STEMI, NSTEMI, unstable angina) when compared to patients with CCS 
(Supplementary Figure S4).

To test which parameters independently predict an elevated incidence of both, ischemic and bleeding events, 
respectively, we performed Cox proportional hazard analyses (Table 4). On the one hand, CAR concentration 
(HR 21.89, 95% CI 1.38–346.4, p = 0.029) and LPE/CAR ratio (HR 90.83, 95% CI 2.2–3745.32, p = 0.018) were 
independent predictors of an increased CV risk for adverse ischemic events (Table 4). On the other hand, mean 
platelet CAR concentration (HR 162.35, 95% CI 6.91–3816.13, p = 0.002) was independently associated with 
incident bleeding (Table 4). Same results were replicable in a simplified Cox proportional hazard model using 
only mean platelet LPE and CAR concentrations as well as the corresponding LPE/CAR ratio (Supplementary 
Tables S3 and S4).

Table 3.   Cluster characteristics of the CAD patient cohort. Significant values are in [bold].

Cluster 1 (n = 155) Cluster 2 (n = 111) Cluster 3 (n = 158) Cluster 4 (n = 89) Cluster 5 (n = 58) Cluster 6 (n = 24) p-Value

Female, n (%) 55 (35.5) 28 (25.2) 40 (25.2) 26 (29.2) 15 (25.9) 10 (41.7) 0.215

Age, years (mean ± SD) 69 (± 12.3) 71.8 (± 12.3) 71.4 (± 10.3) 64.7 (± 11.2) 72.7 (± 10.5) 73.4 (± 11) 6.9*10−6

Body mass index (mean ± SD) 26.4 (± 5.4) 27 (± 5.1) 27.3 (± 4.7) 30.3 (± 5) 27.7 (± 4.4) 25.9 (± 3.3) 6.3*10−7

Disease

Chronic coronary syndrome, n (%) 48 (31) 34 (30.6) 80 (50.6) 25 (28.1) 30 (51.7) 10 (41.7) 0.001

Unstable angina, n (%) 22 (14.2) 10 (9) 25 (15.8) 22 (24.7) 8 (13.8) 0 (0) 0.013

NSTEMI, n (%) 64 (41.3) 50 (45.1) 44 (27.9) 27 (30.3) 16 (27.6) 9 (37.5) 0.020

STEMI, n (%) 21 (13.6) 17 (15.3) 9 (5.7) 15 (16.9) 4 (6.9) 5 (20.8) 0.026

Cardiovascular risk factors

Arterial hypertension, n (%) 133 (85.8) 98 (88.3) 145 (91.2) 84 (94.4) 51 (87.5) 21 (89.4) 0.331

Hyperlipidemia, n (%) 132 (85.2) 86 (77.5) 117 (74) 75 (84.3) 42 (72.4) 21 (87.5) 0.070

Diabetes mellitus, n (%) 22 (14.2) 45 (40.54) 43 (27.2) 51 (57.3) 28 (48.3) 4 (16.67) 2.5*10−12

Current smoking, n (%) 31 (20.1) 21 (18.9) 24 (15.3) 26 (29.2) 6 (10.3) 5 (20.8) 0.064

Ex Smoking > 6 mo, n (%) 32 (20.8) 31 (27.9) 28 (17.8) 19 (21.4) 16 (27.6) 3 (12.5) 0.272

Obesity, n (%) 24 (15.5) 19 (17.1) 35 (22.2) 46 (51.7) 13 (22.4) 2 (8.3) 9.3*10−6

Atrial fibrillation, n (%) 28 (18.2) 34 (30.6) 31 (19.8) 12 (13.5) 26 (44.8) 8 (33.3) 4.0*10−5

Previous CABG, n (%) 1 (0.6) 7 (6.3) 5 (3.2) 5 (5.6) 3 (5.2) 1 (4.2) 0.180

Previous MI, n (%) 13 (8.4) 44 (39.6) 34 (21.5) 25 (28.1) 12 (20.7) 3 (12.5) 1.4*10−7

Laboratory parameters

LDL-cholesterol (mg/
dL) (mean ± SD) 153.5 (± 31.3) 96.1 (± 39.7) 77 (± 19.1) 115 (± 38.2) 78.8 (± 26.4) 105.3 2.5*10−80

HDL-cholesterol (mg/
dL) (mean ± SD) 53.1 (± 17.8) 44.3 (± 16) 45.4 (± 15.2) 34.8 (± 7.4) 40.9 (± 12.8) 53.1 (± 17.6) 9.9*10−18

Triglycerides (mg/dL) (mean ± SD) 124.1 (± 52.4) 115.2 (± 51.6) 108 (± 38.7) 278.6 (± 121) 123.5 (± 53.8) 120.6 (± 69.5) 1.44*10−70

Total cholesterol (mg/
mL) (mean ± SD) 210.1 (± 34.1) 151.5 (± 41.8) 136 (± 23.6) 178.6 (± 37.8) 134.3 (± 31.5) 170.1 (± 44.4) 6.2*10−72

HbA1c (%) (mean ± SD) 5.9 (± 0.7) 6.5 (± 1.3) 6.1 (± 0.8) 7 (± 1.5) 6.5 (± 1.1) 6 (± 0.5) 4.1*10−15

Renal function (GFR) (mean ± SD) 83.3 (± 22.1) 72.6 (± 27.8) 80.5 (± 35.9) 82.5 (± 26.8) 80.9 (± 29.6) 83.5 (± 18.9) 0.0663

LVEF (%) (mean ± SD) 57 (± 5.2) 37 (± 6.3) 58.2 (± 4) 57.2 (± 5.4) 56.7 (± 6) 52.8 (± 8.7) 3.6*10−145

Platelets (109/l) (mean ± SD) 235.4 (± 53.3) 230.6 (± 76.8) 211.2 (± 64.3) 235.3 (± 68.4) 226.7 (± 64.2) 245.4 (± 74.4) 0.010

Platelet Aggregation (AUC) 
(mean ± SD) 22.5 (± 10.6) 21.2 (± 11) 19 (± 6.8) 23.3 (± 9.6) 45.3 (± 18.3) 16.4 (± 8.7) 6.3*10−49

Platelet lipidomics

LPE (pmol/109 platelets) (mean ± SD) 43.5 (± 54) 41.1 (± 43.9) 41.3 (± 61.1) 37.5 (± 42) 38.3 (± 56.2) 1988.1 (± 303.3) 9.8*10−11

CAR (pmol/109 platelets) 
(mean ± SD) 6.7 (± 2.9) 8.7 (± 4.1) 5.8 (± 2.5) 7 (± 3) 11 (± 5.6) 3.7 (± 1.5) 7.2*10−27
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Machine learning of important risk factors including platelet lipid signatures to predict an 
increased cardiovascular risk
To derive new lipid species in patients with CAD, being eligible to sufficiently determine the risk of both, adverse 
bleeding, or thrombo-ischemic events, we compared mean absolute errors (MAE) using different regression 
algorithms on molar lipid concentration data in this study. The least absolute shrinkage and selection operator 
(LASSO) model showed a robust goodness of fit to compute the data and was therefore implemented for further 
analyses (Fig. 4A,B). Thus, overfitting of potential risk factors and lipids is minimized and thus, variable selection 
and regularization is optimized leading to an enhanced prediction accuracy. Therefore, cross-validated LASSO 
selection algorithm was performed including cardiovascular risk factors (i.e. LDL-cholesterol, HDL-cholesterol, 
triglycerides, LVEF, HbA1c and platelet function). In the L1-regularised model assessing the risk of adverse 
ischemic events, nine lipids shared nonzero coefficients and thus were related to incident CVD. CAR 5:0, CAR 
10:0, CAR 14:0, CAR 16:0, LPE 0:0/18:0, LPE 18:0/0:0 and LPE 20:1/0:0 were included into the model to predict 
thrombo-ischemic events. LASSO model showed a high prediction accuracy (AUC = 0.9, 95% CI 0.89–0.91, 
p < 0.0001) (Fig. 4C). When assessing the risk of bleeding events in patients with CAD, LASSO algorithm included 
fourteen lipids with a nonzero coefficient. Likewise, the model comprising of CAR 5:0, CAR 8:0, CAR 10:0, CAR 
14:0, CAR 14:1, CAR 16:0, CAR 16:1, LPE 16:0/0:0, LPE 20:0, LPE 20:4, LPE 20:5 and LPE P-16:0 indicated a 
high accuracy to predict bleeding evens (AUC = 0.8, 95% CI 0.77–0.82, p = 0.04) (Fig. 4D).

Platelet lipid species are significantly related and predict clinical characteristics in patients 
with coronary artery disease
As described recently, the platelet lipidome of patients with adverse CV events is characterized by altered LPE and 
CAR concentrations, when compared to patients without incident CVD21. Thus, we hypothesized that changes of 
the platelet lipidome correlate with important clinical parameters and, therefore, we performed comprehensive 

Figure 3.   Patients with coronary artery disease and aberrant platelet lipid signatures are at increased risk 
to develop adverse cardiovascular events. Kaplan–Meier curves showing cluster-specific probability to 
develop adverse ischemic (A; ischemic stroke, myocardial infarction, CV death) or major bleeding events 
(B), respectively. Failure curves were significantly (p < 0.05) divergent between cluster groups. N = 595, mean 
follow-up 36 months, number of adverse ischemic events n = 25 and number of bleeding events n = 16.

Table 4.   Improved assessment of thrombo-ischemic and major bleeding events in patients with CAD 
integrating platelet lipid species. Cox proportional hazard model including platelet lipid signatures. Variables 
significantly (p < 0.05) contributing to the prediction of adverse events during the three-year follow-up are 
highlighted. HR, hazard ratio; CI, confidence interval; LVEF, left ventricular ejection fraction; LDL, low-
density lipoprotein; HDL, high-density lipoprotein; LPE, lysophosphatidylethanolamines; CAR, acylcarnitines.

Variables

Ischemic Endpoint (n = 25) Bleeding Endpoint (n = 16)

HR (95% CI) p-Value HR (95% CI) p-Value

LVEF 0.37 (0.12–1.12) 0.079 2.25 (0.36–14.3) 0.378

HbA1c 5.69 (0.3–107.89) 0.247 0.03 (0.01–15.81) 0.261

Platelet aggregation 2.1 (0.21–21.17) 0.530 4.-6 (0.28–87.6) 0.274

LDL 4.67 (0.67–32.63) 0.120 0.78 (0.05–12.95) 0.865

HDL 4.47 (0.21–94.1) 0.335 0.16 (0.01–21.85) 0.462

Triglycerides 0.43 (0.01–65.25) 0.743 0.01 (9.3e−10–19.98) 0.143

LPE 0.3 (0.01–4.3) 0.377 3.07 (0.33–29.58) 0.332

CAR​ 21.89 (1.38–346.4) 0.029 162.35 (6.91–3816.13) 0.002

LPE/CAR Ratio 90.83 (2.2–3745.32) 0.018 5.93 (0.13–265.18) 0.359
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correlation analysis of important clinical baseline characteristics and platelet lipid species included in the LASSO 
prediction model. We found that individual platelet LPE and CAR lipids significantly (p < 0.05) correlated with 
important laboratory parameters as well as CV risk factors (Fig. 5A). In-depth analysis of important laboratory 
risk parameters unveiled a significant (p < 0.05) inverse correlation of plasma LDL cholesterol with CAR 16:1 
and CAR 18:2 in female patients (Fig. 5B). Further, plasma HDL cholesterol significantly (p < 0.05) inversely cor-
related with CAR 10:0, CAR 14:1, CAR 16:0, CAR 18:2 in female patients, whereas LPE 0:0/18:0, LPE 0:0/18:2, 
LPE 0:0/20:3, LPE 18:1/0:0, LPE 18:2/0:0, LPE 20:3/0:0, LPE 22:5 and LPE 22:6 significantly (p < 0.05) correlated 
with plasma HDL cholesterol in male patients (Fig. 5C). CAR 5:0 significantly (p < 0.05) correlated with elevated 
plasma triglyceride concentrations and LPE 20:1/0:0 was inversely associated with plasma triglycerides in female 
patients (Fig. 5D). Of note, HbA1c levels did not correlate with platelet lipid measurements in this study and 
thus, did not seem to interfere with platelet lipid metabolism (Fig. 5E).

Figure 4.   Machine learning of cardiovascular risk factors including the platelet lipidome in patients with CAD 
enhances the diagnostic accuracy of CV risk prediction. Comparison machine-learning algorithms on platelet 
lipidomics data showing mean absolute error (MAE) of predicting adverse ischemic (A) and major bleeding 
(B) events in patients with CAD. Least absolute shrinkage and selection operator (LASSO) showed a superior 
MAE among regression models and was implemented for further analyses. (C) Receiver operator characteristic 
(ROC) plot of the final LASSO model including platelet lipid subspecies (lysophosphatidylethanolamines (LPE) 
and acylcarnitines (CAR)) to predict adverse ischemic events. (D) ROC plot of the final LASSO model including 
platelet LPE/CAR to predict major bleeding events.
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Figure 5.   Platelet lipid species correlate with clinical parameters in patients with coronary artery disease. (A) 
Comprehensive correlation matrix of clinical parameters alongside platelet lipidomics data. Spearman’s ρ is 
color accordingly and significant values (*p < 0.05, **p < 0.01, ***p < 0.001) are labeled. Platelet lipids belonging 
to the class of lysophosphatidylethanolamines (LPE) or acylcarnitines (CAR) integrated into LASSO models 
are colored accordingly. (B-E) Correlation analyses of platelet LPE and CAR with concentrations of LDL, HDL, 
triglycerides and HbA1c. Pearson correlation coefficients (ρ) and their 95% CI for each sex are shown for lipid 
subspecies. Significant correlations (p < 0.05) are highlighted.
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Implementing platelet lipidomics scores for risk stratification in patients with coronary artery 
disease
To estimate the future CV risk to develop adverse ischemic and bleeding events, all patients enrolled into this 
prospective study were stratified according to the respective predictive value of individual LASSO models 
(Fig. 6A,B). Primarily, to assess a “baseline risk” for developing CVD or major bleeding events, a simple model 
containing age and gender as variables was carried out. We then analyzed for both endpoints whether quan-
tile risk scores correlated with the case rate, implying that increasing risk score quantiles were enriched with 
adverse CV events in contrast to the mean incidence rates. For major bleeding events, no consistent increase in 
case rate with increasing risk score quantile was observed but a heterogenous spreading was depicted (Fig. 6B). 
Contrarily, for adverse ischemic events the 90% to 100% quantile showed a diverging case rate compared to the 
average rate as well as the lower risk score quantiles, respectively (Fig. 6B). In the next step, a model adding CV 
risk factors including LDL-cholesterol, HDL-cholesterol, triglycerides, HbA1c, LVEF and platelet function was 
performed for both endpoints. Risk score quantiles of the 90% to 100% subgroups were enriched with both, 
ischemic (Fig. 6A, case rate 10.2%) and bleeding (Fig. 6B, case rate 6.3%) events respectively, when compared 
to lowest risk score quantiles. Thereafter, we analyzed whether changes in the platelet lipidome might modulate 
the risk for future adverse CV events. Therefore, we included mean platelet LPE and CAR concentrations to the 
predictive models. Risk score quantiles of the lipidomics risk score showed an increasing trend with enriched 
incidence rates for both, ischemic and major bleeding events. For adverse CV events, the highest quantile showed 
a highly contrasting case rate of 13.3% compared to the average case rate (4.2%, 317% increase) as well as for the 
0% to 10% quantile (3.3%, 403% increase) (Fig. 6A). Likewise, this clear contrast between highest and lowest 
lipidomics risk scores was observed for bleeding events, showing a 385% increase and a 495% increase for the 
90% to 100% risk score quantile (case rate 10.4%) compared to the mean case rate (2.7%) and the 0% to 10% 
(case rate 0%) and the 10% to 20% quantile (case rate 2.1%), respectively (Fig. 6B). In the final predictive model, 
we included LPE and CAR lipid subspecies comprising 9 and 14 lipids included in LASSO analysis, respectively 
to estimate the risk of future adverse ischemic and bleeding events (Fig. 6A,B). In contrast to the mean case rate, 
incidences in the 90% to 100% risk score quantile were highest for both, adverse ischemic (case rate 20%, 476% 
increase) and bleeding events (case rate 10.4%, 385% increase) among all the carried-out models. Thus, platelet 
lipidomics risk scores outperformed the baseline model as well as conventional measurements of the CV risk. 
Thus, platelet lipid signatures critically increased the accuracy for CV risk prediction.

To strengthen this hypothesis, the diagnostic value of the platelet lipidomics risk score to predict adverse 
ischemic events was highest for mean LPE and CAR concentrations (AUC = 0.757) and LPE/CAR lipid subspe-
cies (AUC = 0.901) when compared to conventional CV risk factors (AUC = 0.648) or age/gender (AUC = 0.579) 
(Table 5). Likewise, diagnostic performance to predict major bleeding events was best for the model includ-
ing lipid subspecies (AUC = 0.804) and LPE/CAR concentration (AUC = 0.751) in contrast to CV risk factors 
(AUC = 0.633) or age/gender (AUC = 0.525) (Table 5). Subsequently, patients with a high likelihood for adverse 
cardiovascular events based on platelet lipidomics risk profiling, shared a high PARIS risk score (Supplementary 
Figure S7). Ultimately, the predictive model integrating platelet lipidic signatures unveiled a high diagnostic 

Figure 6.   Prediction models of adverse cardiovascular events including platelet lipidomics risk scores 
outperformed conventional risk parameters. (A) Patients with CAD were partitioned into deciles according to 
predictive LASSO models and for each decile the fractional incidence of future CV events during the three-
year follow-up is shown. The risk scores were calculated according to the included predictor variables: age/
gender, CV risk factors (LVEF, LDL, HDL, triglycerides, HbA1c, platelet aggregation), platelet lipidome (mean 
concentrations of lysophosphatidylethanolamines (LPE) and acylcarnitines (CAR), and individual lipid LPE and 
CAR concentrations. The estimated mean incidence rate across the full cohort is indicated by the dotted line. 
(B) Predictive modeling of major bleeding events in patients with CAD employing different LASSO risk scores. 
Likewise, platelet lipids (LPE and CAR) were compared to baseline risk models (age/gender, CV risk factors) to 
assess the future case rates of incident bleeding.
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accuracy to distinguish between patients with adverse thrombo-ischemic (p = 0.001) or major bleeding events 
(p = 0.004) and those without adverse events (Supplementary Figure S8). Thus, addition of platelet lipid sig-
natures including LPE and CAR to established CV risk factors might significantly enhance the three-year risk 
discrimination in patients with CAD.

Discussion
The major findings of the present manuscript are: (1) Machine learning integrating CV risk factors (LDL and 
HDL cholesterol, triglycerides, HbA1c, LVEF, and platelet aggregation) as well as platelet lipids (LPE and CAR 
concentrations) could identify distinct clusters of patients with CAD. (2) Distinct platelet lipid signatures are 
significantly related to disease progression of CAD and addition of platelet lipids (LPE and CAR) to established 
CV risk factors significantly enhances the three-year risk discrimination in patients with CAD.

Our data imply that determination of the platelet lipid profile and machine learning is a valuable strategy 
to identify the individual risk for adverse events (thrombo-ischemic events, bleeding) in patients with CAD. 
Machine learning with integration of platelet lipidome data may help to tailor and to individualize antiplatelet 
therapy (long-term, de-escalation) in order to improve clinical outcome in CAD.

Platelet functions and platelet lipidome signatures have a significant impact on thrombo-ischemic and bleed-
ing events in patients with CAD6,19,21. Current antiplatelet therapies improve clinical outcomes in patients with 
CAD but at the cost of an increased risk of bleeding23,24. The strategies for safe and effective antiplatelet therapy 
need to take into account the thrombotic and bleeding risk of individual patients. In the past, several score-
based strategies have been suggested to provide a guide for treatment duration especially in patients receiving 
dual antiplatelet therapy (DAPT) to minimize both the ischemic and bleeding risk23. Platelet reactivity has been 
shown to define ischemic6,25,26 and bleeding27 events in patients undergoing coronary stenting and treatment 
with DAPT. However, guiding DAPT according to platelet function testing failed to improve clinical outcome 
after coronary stenting28,29.

In the present study we show that machine learning and distinct platelet lipid signatures critically increased 
the accuracy for CV risk prediction in patients with CAD. We identified specific clusters integrating conven-
tional cardiovascular risk factors and platelet lipid signatures with a strong relationship to ischemic and bleeding 
events in the course of CAD. Integration of distinct platelet lipids (lysophosphatidylethanolamines (LPE) and 
acylcarnitines (CAR)) into our model led to a substantial increase of the accuracy for CV risk prediction and 
outperformed the baseline model as well as conventional measurements of the CV risk. We chose to integrate 
platelet LPE and CAR into our strategy since recently we found that both lipid subspecies were associated with 
adverse CV events in patients with CAD21. Most interestingly, the levels of both platelet lipid species improved 
the prediction of future case rates for ischemic and bleeding endpoints remarkably. Platelet LPE promote platelet 
aggregation21,30 and CAR have been associated with antithrombotic activity31. The reactivity of circulating plate-
lets is highly dynamic and changes rapidly over time. Thus, although platelet hyperreactivity is associated with 
clinical prognosis in CAD, ex vivo testing of platelet function is a snapshot of platelet function which alters over 
time. The lipidome is remarkably stable in the context of platelet activation12. Less than 20% of the lipidome is 
altered upon activation12. The platelet lipidome might help to assess a sustained platelet-associated risk of patients 
with lower variability over time. Although it must be shown in upcoming clinical studies, the platelet lipidome 
might be a powerful strategy for cardiovascular risk prediction.

Thus, although we do not provide direct evidence, it is tempting to speculate that distinct platelet lipid 
signatures in combination with machine learning tools may be a valuable and promising strategy to assess the 
individual risk of patients with CAD treated with antiplatelet drugs for future thrombo-ischemic or bleeding 
events. A better and distinct risk profiling of patients may be a powerful tool to individualize and to define the 
duration of antiplatelet therapy to minimize adverse CV events and to improve clinical outcome.

Limitations
The number of adverse events including both, thrombo-ischemic events, and major hemorrhage, was limited 
during the clinical follow-up period. In line with this observation, PARIS risk scores indicated a moderate 
cardiovascular and bleeding risk,  and thus risk prediction including platelet lipid signatures might be suit-
able to stratify patients at modest risk. In addition, the platelet lipidome might vary with disease severity and 
important patient characteristics including antiplatelet or lipid lowering therapy.19,20 Further, severity of CAD 
was significantly varying among patient clusters employed for risk estimation. However, partial least squares 
discriminant analysis (PLS-DA) unveiled a minor impact of co-medication and severity of CAD on platelet 
LPE and CAR used for risk prediction in this study (Supplementary Figure S9). Nonetheless, we acknowledge 
that we cannot entirely preclude an impact of baseline characteristics on the observed results. Lastly, at present 
the underlying molecular pathophysiology of an increased cardiovascular or bleeding risk, and modulation of 

Table 5.   Enhanced diagnostic accuracy of assessing the CV risk by machine learning of the platelet lipidome.

Ischemic Endpoint (AUC) Bleeding (AUC)

Age/Gender 0.579 0.525

 + CV Risk Factors 0.648 0.663

 + LPE/CAR Concentration 0.757 0.751

 + Lipid Subspecies 0.901 0.804
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platelet function following changes in the platelet lipidome remain unexplored. Thus, beyond this hypothesis-
generating observational study, additional research is needed to uncover the interplay of platelet lipids leading 
to the pathophysiology of cardiovascular diseases.

Methods
Study population
Five-hundred and ninety-five (595) patients with symptomatic CAD were enrolled in this consecutive, pro-
spective study. All patients were treated for symptomatic CAD according to current international guidelines 
and underwent catheter-based angiography within 24 h after hospital admission. According to a standardized 
protocol, peripheral venipuncture was performed in patients fasting overnight for at least twelve hours. Isolation 
and preparation of human platelets for mass spectrometry and liquid chromatography analysis was performed 
as described recently19,20. After hospital discharge, a close-meshed clinical follow-up period over three-year was 
performed to screen for a composite thrombo-ischemic (i.e. cardiac death, myocardial infarction, and ischemic 
stroke) and bleeding events. The study was approved by the Ethics Committee at the Medical Faculty of the 
Eberhard Karls University and at the University Hospital of Tübingen (270/2011B01) and all patients gave writ-
ten informed consent. The experiments were performed in accordance with the highest ethical standards as laid 
down in the Declaration of Helsinki.

Platelet lipidomics
Untargeted lipidomics method details utilizing UHPLC-ESI-QTOF-MS/MS can be also found in the supple-
mentary material.

Preparation, pre-processing and lipidomics analyses of platelets by mass spectrometry was performed as 
previously described19,21,32 and outlined comprehensively in the supplementary methods section. In the present 
study, we could verify 19 LPE and 8 CAR lipid subspecies from circulating platelets (Supplementary Table 1) 
and all lipids were included for further analyses of predictive risk estimation.

Platelet function analysis
Platelet impedance aggregometry (Multiplate) was employed to analyze platelet function after stimulation of 
whole blood as described previously2 and defined in the supplementary methods section. Precisely, to define 
platelet hyperreactivity in patients with CAD, median data from collagen-, arachidonic acid-, adenosine diphos-
phate-, and thrombin-induced platelet aggregation was assessed to elucidate enhanced platelet functions inde-
pendent of the external stimulant.

Statistical analysis
Clinical data and prepared platelet lipidomics data were analyzed using JMP® Pro Version 17.1 (SAS Institute, 
Cary, North Carolina, USA) and different software R packages in RStudio (RStudio Inc., Boston, USA). Adjust-
ment for age and gender was performed for all analyses and a comprehensive statistical explanation is outlined 
in the supplementary methods section. Mann–Whitney U test was performed for two group comparisons for 
non-normally distributed continuous variables, and normally distributed continuous variables were compared 
using student’s t-test, categorical parameters were compared using Chi-Square test. Mean data of individual clus-
ters were compared using ANOVA and Tukey´s post-hoc procedure was further adopted to correct significance 
levels. Correlation data is based on Pearson´s product-moment correlation coefficient (r) and Spearman’s rank 
correlation coefficient (R). Non-normally distributed continuous data are presented as median with interquartile 
range (IQR), and normally distributed continuous data are represented as mean with standard deviation (SD).

To aim for a sub-phenotyping of patients with CAD and adverse events, we performed medoid clustering 
analyses integrating important CV risk factors including platelet lipid species. Cox regression analysis was 
performed to evaluate associations of platelet lipid species with adverse CV events and to test whether the 
platelet lipidome independently predicts incident CVD. For analysis of an increased CV or bleeding risk, we 
performed machine learning employing regression models including least absolute shrinkage and selection 
operator (LASSO). All models were trained as described in the supplementary methods section. For derivation 
of the predictive risk using a lipidomics risk score, we performed LASSO with tenfold cross-validation. Graphic 
output was performed with different software packages including RStudio and JMP.

Data availability
The data that support the findings of this study are available on reasonable request from the corresponding author.
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