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Abstract
Learning how multicellular organs are developed from single cells to different cell types is a fundamental problem in biol-
ogy. With the high-throughput scRNA-seq technology, computational methods have been developed to reveal the temporal 
dynamics of single cells from transcriptomic data, from phenomena on cell trajectories to the underlying mechanism that 
formed the trajectory. There are several distinct families of computational methods including Trajectory Inference (TI), 
Lineage Tracing (LT), and Gene Regulatory Network (GRN) Inference which are involved in such studies. This review sum-
marizes these computational approaches which use scRNA-seq data to study cell differentiation and cell fate specification 
as well as the advantages and limitations of different methods. We further discuss how GRNs can potentially affect cell fate 
decisions and trajectory structures.
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Introduction

Single-cell multi-omics measurements have opened up tre-
mendous opportunities to study the temporal dynamics of 
cells. Sequencing experiments, such as scRNA-seq, pro-
vide a “snapshot" of cells’ transcriptomic profiles. These 
snapshots can potentially contain cells at different devel-
opmental stages, allowing us to characterize the entire 
cellular dynamic process. Computational algorithms have 
been developed to uncover biological artifacts of cells, such 
as cell type, state transitions, and lineages, as well as of 
genes, such as differential expressions and gene regulatory 
networks (GRNs). The unprecedented diversity and resolu-
tion of single-cell multi-omics analysis have revolutionized 
modern computational biology, and the field continues to 
evolve with new technologies and algorithms.

Various downstream analyses have been widely studied, 
centered around scRNA-seq technology. With the assump-
tion that the sequenced samples contain cells from all dif-
ferent developmental stages, scRNA-seq data allows us to 
infer the so-called developmental trajectory of the cells, 

which ideally records the changes in cell states. This tra-
jectory represents how cells’ overall transcriptomic profiles 
shift throughout cell differentiation, without uncovering the 
details of the lineage of each cell (Wagner and Klein 2020), 
or the interactions between specific genes. Specific regula-
tory interactions between genes can be inferred from the 
data as well to create a GRN, where each node represents 
a gene and the edges between nodes represent gene regula-
tions. Meanwhile, the cells’ lineage history can be recorded 
using sequencing-based lineage tracing technologies that 
generate barcodes with unique marks denoting cells’ clonal 
information.

This review focuses on three major aspects of studying 
temporal dynamics from single-cell multi-omics sequenc-
ing technologies: Trajectory Inference (TI), Lineage Tracing 
(LT), and Gene Regulatory Network (GRN) Inference. TI 
and LT methods aim to learn cell temporal changes along 
either a “pseudotime” or real time, whereas GRN methods 
aim to learn the underlying mechanisms that govern the 
observed gene expression profiles and their dynamics. Both 
TI and GRN inference can be performed with only scRNA-
seq datasets, while the reconstruction of the cell lineage is 
usually performed based on lineage barcodes. We discuss 
the assumptions and biological interpretations of each infer-
ence task, various computational approaches to solve the 
problem, and their advantages and limitations. A summary 
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of these three computational tasks is in Table S1. Moreover, 
we specially discuss efforts to jointly model multiple aspects 
of temporal dynamics, which are often solved independently 
for the state-of-the-art. We aim to provide an overview of the 
commonalities and differences between different approaches 
and to highlight future directions for the integration of the 
three analyses and the comprehensive understanding of 
cells’ temporal dynamics.

Learning cell developmental trajectories 
using TI methods

Trajectory inference (TI) methods are commonly used to 
learn the cell differentiation or developmental trajectories 
from scRNA-seq data (Fig. 1a). TI methods aim to find the 
trajectory backbone representing the major cell states and 
the dynamic paths between the states, and then “sort” the 
cells onto the backbone structure into a temporal ordering, 
and each cell is assigned a pseudotime. The trajectories rep-
resent how different cell states are connected. The inferred 

cell trajectories from the TI methods can vary in topology: 
linear, tree-shaped, and more complex ones such as cyclic 
and disconnected graphs. Numerous TI methods have been 
developed, with most methods focusing on inferring a spe-
cific type of topology. However, more recent methods aim 
to infer different types of topology using a single model 
without restricting the inferred trajectory’s topology. These 
methods tend to use more than one scRNA-seq dataset or 
incorporate other modalities besides transcriptomes (Hao 
et al. 2021; Lange et al. 2022; Welch et al. 2017; Zhang et al. 
2022b; Zhang and Zhang 2021).

The majority of trajectory inference methods are not 
applied directly to the input cell by the observed gene count 
matrix. Dimensionality reduction methods, such as princi-
ple component analysis (PCA) and independent component 
analysis (ICA), are applied to reduce the number of dimen-
sions before learning the trajectory of cells. On the reduced 
dimensions of the dataset, some methods aim to infer an 
accurate pseudotime ordering of cells, which can, in turn, 
be translated to a linear trajectory (Saelens et al. 2019), such 
as scShaper (Smolander et al. 2021), SCORPIUS (Cannoodt 

Fig. 1  Inferring developmental trajectories from single-cell omics 
data. a Trajectory inference using a single batch of scRNA-seq data. 
b Trajectory inference using RNA velocity information. With the 
input of both single-cell spliced and unspliced RNA counts, RNA 
velocity can be calculated and can be used to infer the developmental 
trajectory. c Trajectory inference using scRNA-seq time series data. 
Given cell-by-gene matrices measured at different time points, the 

developmental trajectory of cells covering more developmental stages 
is inferred. d Trajectory inference using single-cell multimodal data 
such as scRNA-seq and scATAC-seq data. With multiple cell-by-
feature (gene expression, chromatin accessibility, protein abundance, 
etc.) matrices, a joint developmental trajectory that combines the dif-
ferent modalities is inferred
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et al. 2016) and MATCHER (Welch et al. 2017). Some other 
methods, including Slingshot (Street et al. 2018) and PAGA-
Tree (Wolf et al. 2019), are able to infer tree-shaped trajecto-
ries where specific cell states can develop into multiple pos-
sible states. However, such methods do not take into account 
cyclic trajectories (cell cycle) and instead connect all cell 
states under a single tree graph. Some methods sought to 
resolve cell cycles from the single cell transcriptomic data 
such as reCAT (Liu et al. 2017). A few methods are able to 
detect most of the trajectory types, i.e. PAGA (Wolf et al. 
2019) and StemID (Grün et al. 2016), but their performance 
can be inconsistent for different topology structures. Com-
prehensive comparisons of these methods (Saelens et al. 
2019) indicate that there is no universal superior method 
for trajectory inference on all scRNA-seq datasets, due to the 
diversity and complexity of the underlying developmental 
trajectory. However, they provide a detailed method selec-
tion guide called dynguidelines to help select the best meth-
ods for different types of topologies. For example, PAGA 
and slingshot are two of the best-performing methods for 
tree topologies while SCORPIUS is better for lineage topol-
ogies. The authors also claimed that new methods should 
focus on improving the unbiased inference of trees, cyclic 
graphs, and disconnected topologies, which would allow the 
TI methods to perform well on experimental datasets with 
unknown developmental trajectories.

Recent developments in trajectory inference methods 
have expanded beyond the traditional deterministic modeling 
of the developmental trajectory. Probabilistic methods such 
as Palantir (Setty et al. 2019) and CSHMM (Lin and Bar-
Joseph 2019) introduce uncertainty about the pseudotime of 
cells or their belonging to certain branches of the trajectory. 
In these models, each cell’s pseudotime can be drawn from a 
random variable, and different probabilistic models, such as 
the hidden Markov model, are used to represent the develop-
mental trajectory of the cells. Meanwhile, some methods aim 
to use data types in addition to the mRNA counts in scRNA-
seq data to build cell trajectories (Fig. 1b-d). First, with the 
abundance of unspliced and spliced mRNAs, the change in 
mRNA abundance, termed RNA velocity, can be inferred 
(Bergen et al. 2020; Manno et al. 2018). RNA velocity of all 
genes in a cell provides insights into the future state of the 
cell. Methods like CellRank (Lange et al. 2022) and CellPath 
(Zhang and Zhang 2021) utilize RNA velocity information 
to infer the developmental trajectories (Fig. 1b). CellRank is 
able to infer the developmental trajectory as well as cell fate 
specification probabilities. On the other hand, CellPath is 
able to infer multiple disconnected trajectories. A common 
advantage of methods that use RNA velocity is that they can 
learn the direction of the trajectories, compared to methods 
using only the spliced mRNA counts. However, RNA veloc-
ity inference methods also suffer from the high technical 
noise in scRNA-seq data (especially in unspliced counts) 

and model violations (Bergen et al. 2021). Recent methods, 
such as UniTVelo (Gao et al. 2022) and CellDancer (Li et al. 
2023a), were developed with more realistic model assump-
tions, aiming to infer cell-specific, or temporal-regulated 
RNA velocity. Another type of approach to learning the 
directions of trajectories is to use time-series scRNA-seq 
data (Fig. 1c). By sequencing cells at different time points, 
multiple cell-by-gene matrices can be obtained to cover 
states of different developmental stages. Tempora (Tran and 
Bader 2020) and CSHMM (Lin and Bar-Joseph 2019) are 
methods developed for time-series data.

Single-cell multi-omics data, such as jointly profiled 
transcriptome and epigenome data, or jointly profiled tran-
scriptome and proteome data, have been used to infer shared 
cell trajectories across modalities (Fig. 1d). Methods such 
as MATCHER (Welch et al. 2017) attempt to use manifold 
alignment to integrate different modalities, while other 
methods such as scDART (Zhang et al. 2022b) and Seurat 
v4 (Hao et al. 2021), learn a common embedding of the data 
and other TI methods can be applied to obtain the devel-
opmental trajectory. MultiVelo (Li et al. 2022) uses paired 
scRNA-seq and scATAC-seq data to infer RNA velocity as 
well as the temporal relationships between chromatin states 
changes and transcription kinetics. These methods have the 
potential to build a more accurate and comprehensive devel-
opmental trajectory by utilizing multimodal information.

Inferring the underlying developmental trajectory from 
a scRNA-seq dataset remains a challenging task, and suc-
cessful trajectory inference relies on several assumptions: 
(1) The biological differentiation process must be dynamic, 
with gradual changes in gene expression during cell differ-
entiation; (2) the dataset must contain enough cells with 
sufficient sampling depth to capture all transient states along 
the developmental trajectory. Furthermore, many trajectory 
methods require prior information, such as starting cells or 
clusters, to determine the directionality of the trajectory. 
With the increase of methods that use multi-modal data to 
perform TI, benchmarking studies are needed to compare the 
performance of such methods using different types of infor-
mation with methods that use only mRNA counts. It is also 
important to explore the connection between cells’ pseu-
dotime and other dynamic processes, such as cell divisions 
and gene regulatory programs, as these areas of research 
continue to develop.

Tracing lineage barcodes with scRNA‑seq 
using CRISPR/Cas9 gene editing

Different from trajectory inference methods, which use 
the assumption of pseudotime, and require the datasets to 
contain cells at all developmental stages, lineage tracing 
techniques directly record cellsâ€™ true temporal orderings: 
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the cell division histories. While traditional lineage tracing 
technologies can only measure a limited number of cells 
with low resolution, recent high-throughput single-cell 
sequencing technologies can jointly profile the transcrip-
tomes and lineage information of cells at the same time. 
CRISPR/Cas9 is one well-known system for inducing guided 
genetic mutations on the target genome. By designing a tar-
get sequence and guide RNAs that bind the target sequence 
while attaching the Cas9 protein, the Cas9 protein can cut 
the target sequence at specific sites (Fig. 2 Step A). Then, 
the cell’s own DNA repair machinery will add or delete 
pieces of genetic material and these insertions or deletions 
are termed CRISPR/Cas9-induced mutations. The lineage 
tracing starts with injecting the target sequences, Cas9 pro-
teins, and guide RNAs into the root cell, and the CRISPR/
Cas9-induced mutations will occur during cell divisions. 
The induced genetic mutations can be passed down and 
accumulate during generations of cell divisions (Fig. 2 Step 
B). The mutated target sequence, or so-called lineage bar-
codes, can be sequenced together with the transcriptome 
using scRNA-seq technology. This framework allows us to 
obtain paired gene expression and clonal information on a 
single-cell level. It is worth mentioning some recent work 
on single-cell lineage tracing using endogenous mutations 
such as mitochondrial mutation variants (Lareau et al. 2020; 

Miller et al. 2022; Xu et al. 2019). However, such endog-
enous mutations are relatively noisy and uncontrollable. In 
comparison to the inferred lineages using CRISPR/Cas9 
genetic barcodes, the inferred lineages from endogenous 
mutations tend to have much fewer internal nodes and worse 
resolution. Therefore, in this review, we will mainly focus on 
lineage tracing techniques based on CRISPR/Cas9-induced 
mutations.

Works have been done to engineer the target sequence and 
other experimental setups to perform lineage tracing on vari-
ous systems using CRISPR/Cas9-based lineage barcodes. 
scGESTALT (Raj et al. 2018) (single-cell Genome Editing 
of Synthetic Target Arrays for Lineage Tracing) uses multi-
ple contiguous CRISPR/Cas9 targeting arrays to record the 
lineage of zebra fish and its brain development. scarTrace 
(Alemany et al. 2018), targets transgenic tandem fluores-
cent proteins and traces the lineages of different systems of 
zebrafish, while at the same time evaluating the efficiency 
of barcode generation using fluorescence intensity. CRISPR/
Cas9 lineage tracing is also applied to other species such as 
mice (embryo (Chan et al. 2019), pancreatic cancer (Sime-
onov et al. 2021), etc.). With the joint profiles of lineage 
barcodes and gene expressions, a comprehensive cell fate 
map can be established by overlapping cell types onto the 
cell lineage tree.

Fig. 2  Lineage reconstruction from CRISPR/Cas9 induced barcodes. 
Step A The lineage tracing system uses Cas9 proteins to generate 
double-stranded breaks that result in heritable insertions or deletions 
(mutations) after repair. Indels are induced at specific target sites of 
the barcode. Step B At the root, an unedited barcode, together with 
the Cas9 proteins and guide RNAs, is injected into the starting cell. 

Throughout generations of cell divisions, the Cas9 protein can bind 
to the designed barcode and induce mutations that are inherited and 
accumulated. Step C With the scRNA-seq experiment, the mutated 
barcodes of the present-time cells (leaf cells on the lineage tree) are 
sequenced. Step D Inferring the hidden lineage tree topology given 
the mutated barcodes of the leaf cells using computational methods
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The CRISPR/Cas9 lineage tracing system can potentially 
trace the lineage and transcriptomes of millions of single 
cells. Theoretically, the number of target sites and the num-
ber of mutations for each target site provide sufficient diver-
sity to uniquely label every cell division in a lineage tree of 
thousands of leaves. However, in practice, perfectly tracing 
every cell division on the cell lineage tree is extremely chal-
lenging, due to the dynamic and uneven speed of cell divi-
sions. Even under the assumption of a constant cell division 
rate, tuning the mutation rate of the CRISPR/Cas9 lineage 
tracing system to optimally generates a unique mutation 
pattern for every cell division is not realistic with current 
protocols. Other drawbacks of the CRISPR/Cas9 lineage 
tracing system (Salvador-Martínez et al. 2019), including 
excision dropouts (target deletion when two or more Cas9 
proteins bind to neighboring target sites), biased distribu-
tion of mutated states, the limited capture efficiency of the 
sequencing experiment (which also causes dropout in the 
barcode data), etc., further add to the difficulties of inferring 
the correct lineage tree from the barcodes.

The lineage barcode of a cell can be represented compu-
tationally as a character vector of length equal to the num-
ber of target sites as designed by the CRISPR/Cas9 lineage 
recorder. Each character represents a state of the target 
site, which can be a mutated state, an unmutated state, or 
a dropout state. Therefore, the lineage barcode data can be 
represented as a cell-by-character matrix (Fig. 2 Step C). 
The objective is to infer the correct lineage tree that gener-
ates the barcode data observed at the leaf cells (Fig. 2 Step 
D). Different computational algorithms have been devel-
oped to infer the correct lineage tree from the CRISPR/
Cas9-induced barcode data. Recently, a DREAM challenge 
was held to gather the community effort to compare the 
state-of-the-art lineage tree inference methods (Gong et al. 
2021). DCLEAR (Gong et al. 2022) is a distance-based 
method that first calculates the pairwise distance between 
cells and then reconstructs the cell lineage using bottom-
up (agglomerative) algorithms such as Neighbor-Join-
ing (NJ) (Saitou and Nei 1987) or FastME (Lefort et al. 
2015). Cassiopeia (Jones et al. 2020) is a parsimony-based 
method that aims at minimizing the number of mutations 
occurred on the reconstructed lineage tree. These methods 
were tested on both experimental and simulated datasets in 
the DREAM challenge and achieved the best performance 
benchmarked using Robinson-Foulds distance(Robinson 
and Foulds 1981) and Triplet distance, as described in 
Gong et al. (2021). More recently, integrated methods 
that combine lineage barcode and gene expression data 
are emerging, aiming to further improve the accuracy of 
cell lineage reconstruction. LinTIMaT (Zafar et al. 2020) 
develops a combined likelihood function and uses a local 
search framework to search for the tree with the maximum 
likelihood. LinRace (Pan et al. 2023) is another integrated 

method that first builds the lineage backbone using lineage 
barcode data and then refines subtrees using gene expres-
sion data and a likelihood-based local search program.

Using simulation tools and limited real datasets, we 
can compare how the integrated methods perform with the 
state-of-the-art barcode-based methods (Pan et al. 2022). 
These results showed the hypothetical optimal mutation 
rate to generate the barcode data and achieve the high-
est reconstruction accuracy. Even under ideal settings of 
mutation rate, barcode length, and other factors, the line-
age reconstruction methods are still far from fully recon-
structing the true lineages, mainly due to the large search 
space of possible tree structures with thousands of leaves 
(single cells). Meanwhile, although current methods can 
not reconstruct trees with high accuracy, the reconstructed 
trees are able to reflect the distributions of cell states under 
various subtrees.

Applying the CRISPR/Cas9-based lineage tracing sys-
tems to multiple species and resolving the gene expres-
sion distribution on the lineage tree led to the observation 
that in the reconstructed lineage tree, although a propor-
tion of cells with the same cell type located in the same 
subtree, some cells of the same cell type are located in 
different subtrees, and the same subtree can have mul-
tiple cell types (Chan et al. 2019; Raj et al. 2018). This 
phenomenon, the partial consistency between transcrip-
tome similarity and lineage similarity, is also observed in 
lineage-resolved species such as C. elegans (Tintori et al. 
2016). Such inconsistency can be explained by asymmet-
ric divisions of multipotent cells that develop into two 
daughter cells with different cell fates. Besides asym-
metric divisions, varying differentiation speeds can also 
lead to diverse cell type distributions on the lineage tree.

The theoretical relationships between the pseudotime 
from TI methods and the lineage, however, are rarely 
discussed (Wagner and Klein 2020). A fully resolved 
lineage tree of C. elegans (Packer et al. 2019) demon-
strates that the lineage and the transcriptomic trajectory 
can diverge and then converge at different developmental 
stages. Some methods have attempted to computationally 
model how cell state changes on the lineage tree, and uti-
lize this model for various computational tasks, such as 
LinRace (Pan et al. 2023) (reconstructing cell division 
tree), CoSpar (Wang et al. 2022c) (learning cell transition 
map and predicting cell fate) and PhyloVelo (Wang et al. 
2022a) (learning the phylogenetic velocity field which 
shows cell state trajectories). Moreover, LineageOT (For-
row and Schiebinger 2021) provides a unified framework 
of lineage and trajectory using optimal transport meth-
ods, but it is difficult to validate the model biologically. 
Overall, there is still much to uncover regarding different 
scenarios of coupling between cell divisions and transcrip-
tomic trajectories.
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Understanding temporal dynamics 
at molecular levels using GRNs

The developmental trajectories inferred from scRNA-seq 
or single-cell multi-omics data provide an understand-
ing on cell state transitions, and the lineage trees inferred 
from lineage tracing barcodes show clonal relationships 
between cells from various cell states. Neither of these two 
explains the underlying molecular determinants of these 
dynamics, that is, what are the factors that regulate cell 
state transitions and determine the cell trajectories. It is 
commonly understood that the gene regulatory networks 
(GRNs) which represent relationships between genes are 
key to interpreting biological processes at molecular lev-
els, and GRNs play a crucial role in forming cell states 
and cell trajectories (Guillemin and Stumpf 2020; Moris 
et al. 2016). It is also considered that these networks have 
dynamic interactions which regulate gene expression of 
different cell types in different developmental stages in a 
spatiotemporal manner (Cvekl and Zhang 2017; Kim et al. 
2012), where GRNs can also vary depending on the spatial 
location of cells.

However, it is very difficult and time-consuming to exper-
imentally measure GRNs, therefore, computational methods 
have been developed to infer GRNs from gene expression 
data, assuming that the regulatory dynamics can be observed 
through the changes in the gene expressions. With single-
cell sequencing data quantifying the expression level of 
every gene in every cell, ideally, GRNs can be reconstructed 
on a whole-genome level. However, due to the complexity 
of the computational problem, all GRN inference methods 
start with a gene filtering step, to consider only a subset of 
genes of interest, or to remove genes that are hardly or lowly 
expressed in most of the cells. Then with the input of the 
filtered cell by gene matrix, GRN methods return a graph 
of directed or undirected connections between transcription 
factors and genes. GRN inference methods can be sum-
marized into a few major categories (Nguyen et al. 2020): 
Boolean models (Hamey et al. 2017; Lim et al. 2016; Wood-
house et al. 2018) that model gene regulations as logical 
operations. These methods tend to use certain thresholds to 
binarize the gene expression levels, therefore require fewer 
parameters and can potentially avoid overfitting; Differen-
tial equation-based methods (Matsumoto et al. 2017; Ocone 
et al. 2015) that describe a gene’s expression as a function 
of other genes, and usually utilize pseudotime inferred by TI 
methods or time-series data, to characterize the causal rela-
tionships between genes; Correlation-based methods (Aibar 
et al. 2017; Chan et al. 2018; Liu et al. 2016) that calculates 
pairwise correlation metrics for the genes and build edges 
based on the rankings of each pair; and correlation ensem-
bles with pseudotime (Deshpande et al. 2022; Gao et al. 

2017; Specht and Li 2016; Xu et al. 2022) that calculates 
correlation scores in small windows of the pseudotime to 
take into account the temporal changes of the GRNs, and 
then combine the correlation matrices using ensemble strate-
gies. More recently, methods have been developed to infer 
different GRNs for different cell types (Wang et al. 2022b; 
Zhang et al. 2023) or single cells (Zhang et al. 2022a).

Due to the lack of well-established and commonly 
acknowledged ground truth of GRNs, simulators were 
developed to generate simulated single-cell gene expres-
sion data with ground truth GRNs (Cannoodt et al. 2021; 
Dibaeinia and Sinha 2020; Li et al. 2022). The develop-
ment of simulators enabled supervised learning methods 
to infer GRNs with models trained with simulated data 
(Shrivastava et al. 2022). Previous benchmarking works 
(Pratapa et al. 2020) used simulated datasets in addition 
to real datasets to compare the GRN inference methods in 
terms of accuracy, stability, and consistency for different 
runs. The benchmarking results suggest that for different 
kinds of datasets, the best-performing algorithms can be 
different, while the best overall performing methods are 
PIDC, GENIE3 and GRNBoost2 at the moment. However, 
even the top-performing methods have low accuracy, indi-
cating that GRN inference is a challenging problem.

With the availability of single-cell multi-omics data, 
researchers are able to consider additional layers of the 
regulatory mechanisms besides transcription factors, such 
as epigenomics, translation, cell–cell interactions, and 
so on. There have been methods designed to infer GRNs 
from single-cell multi-omics data, especially scRNA-seq 
and scATAC-seq data. CellOracle (Kamimoto et al. 2023) 
infers a base network based on regulatory candidate genes 
by scanning for TF binding motifs within the regulatory 
DNA sequences (promoter/enhancers) of open chromatin 
sites, and then use the transcriptome profiles to further infer 
the actual GRN. Other methods such as scMEGA (Li et al. 
2023b), FigR (Kartha et al. 2022), and Pando (Fleck et al. 
2022) apply a similar strategy that first identifies candidate 
regulatory regions and then infers the relations between 
target genes, TF expression, and binding-site accessibil-
ity. In Velorama (Singh et al. 2022), RNA velocity is used 
instead of cell pseudotime to help improve GRN inference, 
especially for complex developmental trajectories. With 
the growing abundance of single-cell multimodal data, it 
is expected that more and more multimodal GRN inference 
methods will be developed in the near future.

GRN inference has been considered a separate com-
putational task from trajectory inference and lineage tree 
reconstructions. Although some GRN inference methods 
use pseudotime information from TI methods as input, it is 
rarely studied how GRNs can affect trajectories. We discuss 
this aspect in the next section.
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Outlook: towards a comprehensive 
understanding of cells’ temporal dynamics

In this section, we discuss how GRNs explain the observed 
gene expression data and potentially determine cell trajec-
tories. The consistencies between gene expressions and the 
GRNs in specific systems have been discussed in existing 
work. For example, Laslo et al. (Laslo et al. 2008) reviewed 
how GRNs control the differentiation of myeloid and lym-
phoid cell fates within the immune system, which involves 
both intrinsic interactions between genes in the GRN as well 
as extrinsic signal inputs. More recently, Larsen et al. (Larsen 
et  al. 2018) showed that there are moderate connections 
between E. coli static GRN and the gene expression profiles. 
In a recent study on Corynebacterium glutamicum (Parise et al. 
2021), it is discussed that the GRN alone cannot fully explain 
the gene expression data. It is possible that such inconsisten-
cies are caused by the inaccuracy of computationally inferred 
GRNs or even the GRNs obtained from databases. Existing 
experimental and theoretical research on the role of GRNs 
in determine cell trajectories are limited to specific TFs or 
very small GRN structures. Furthermore, it is likely that there 
exist other intrinsic and extrinsic factors that determine cell 
fates and the developmental trajectories together with GRNs. 
Therefore, further research is needed to investigate how GRNs 
control gene expression profiles of cells in a temporal process.

Along the developmental trajectory of cells, understand-
ing how GRN controls the cells to take on specific branches 
of the trajectory, or cell fates, is of great interest. Existing 
efforts on studying how GRNs determine cell fates tend to 
only focus on one or a few key regulators, and try to under-
stand their specific regulatory programs. For example, Naka-
jima et al. (Nakajima 2011) studied the differentiation and 
reprogramming of hematopoietic cells and identified the 
regulations of lineage-specific transcription factors such as 
C/EBP � , PU.1, and GATA-1. Another study (Wang et al. 
2014) that aims to dissect a regulator’s influence on rod and 
bipolar cell fate decisions in the vertebrate retina involves 
a detailed examination of key regulators’ enhancers and 
upstream transcription factors. These studies require the 
system of interest to be relatively easy to manipulate and 
observe the changes of regulator expressions and cell fates. 
The GRNs built from these works, despite involving only a 
few genes, can help determine the driving regulatory pro-
grams that influence the cells’ fate specifications.

Theoretically, it is possible to identify certain GRN struc-
tures and associated parameters that give rise to single-cell 
gene expression data with a specific trajectory topology (lin-
ear, tree, cyclic, etc.). In dyngen (Cannoodt et al. 2021), the 
authors defined “module networks" to model the regulatory 
cascades and feedback loops that lead to progressive changes 
in expression and cell fate decisions. These module networks 

tend to have only a few nodes and edges and are mapped 
to different kinds of trajectory topology. The actual GRN 
is generated from the module network by generating key 
transcription factors and adding target genes. With the sev-
eral GRN-to-trajectory mappings provided, dyngen provides 
initial ideas on how the GRNs can control gene expression. 
In dyngen’s simulation framework, the key idea is to model 
the gene expression and developmental trajectory together 
with the GRN. In order to do that, the connections between 
target genes and upstream regulators are incorporated in cal-
culating the expression changes for individual genes. Using 
the formula of the expected value of the total expression per 
unit time of a gene given the GRN, the expected develop-
mental trajectory can be generated. For theoretical verifica-
tion, we illustrate the ODE (ordinary differential equation) 
solutions of two GRNs, which are discussed in dyngen, that 
lead to the divergence (Fig. 3a) and convergence (Fig. 3b) 
of a bifurcating trajectory (Fig. 3). With a simple structure 
of two key genes down-regulating each other, we are able to 
generate two mutually exclusive cell fates while incorporat-
ing upstream or downstream genes that cause divergence or 
convergence. Although a full GRN contains a large number 
of genes and interactions, it is considered that at bifurcating 
points, the number of regulators that dominate cell fates is 
often very small. This is consistent with previous biological 
studies (Greulich et al. 2020).

While the toy GRN examples shown in Fig. 3 can theo-
retically lead to certain trajectory structures using differ-
ential equation models, when the network gets larger and 
more complex, it remains challenging to validate the con-
sistency between the GRN and the observed cell trajectory. 
Indeed, GRNs may not be the only factor that determines 
gene expression and cell trajectories. Cell–cell interactions 
(CCIs) are considered to play a role in cell fate decisions 
(Greenwald and Rubin 1992; Kirouac et al. 2009). There 
exist methods that consider GRNs and cell–cell communi-
cations together to interpret cell fate decisions or cell–cell 
variations (Rommelfanger and MacLean 2021; Smith and 
Grima 2018) at the scale of small networks. For example, 
Rommelfanger and MacLean used a multiscale method to 
model GRNs using ODEs and the intercellular signal by 
Poisson processes (Rommelfanger and MacLean 2021). 
Future research is needed to expand these studies to larger 
GRN and CCI networks. Although it is challenging to study 
the effect the GRNs on cell trajectories for complex GRNs, it 
can be beneficial for current computational tasks to consider 
the relationship between the two tasks, GRN inference and 
TI. For example, some GRN inference methods have used 
the pseudotime from the TI methods, but the topology of 
the trajectories is not considered in GRN inference methods. 
Selecting the GRNs that can generate the observed trajectory 
topology can potentially yield more accurate GRNs.
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Conclusions

Indeed, the integration of different models to jointly 
model single-cell temporal dynamics on a genome scale 
has the potential to greatly enhance our understanding of 
the underlying biological processes. As the technology 
continues to advance, we expect that more comprehen-
sive models that can simultaneously account for gene 
expression changes, cell lineage, and gene regulatory 
networks will be developed. This will require not only 
more sophisticated computational algorithms but also a 
deeper biological understanding and knowledge of the 

systems being studied. Ultimately, we believe that these 
integrative models will provide powerful tools for devel-
opmental biologists to uncover the key events in cell 
differentiation and cell fate specifications, and shed light 
on the fundamental mechanisms that underlie develop-
ment and disease.
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Fig. 3  Theoretical analysis of connections between GRN, develop-
mental trajectory, and gene expression. In the GRNs, each node rep-
resents a gene (gene names are A, B, C) and the edges denote up-
regulation (arrow) and down-regulation (block). For each gene, we 
use a total expression DE (differential equation) to model the changes 
of the gene expression, while also considering the regulation effects 
of promoters based on the GRN. We use a two-phase framework: an 
initial warm-up Burn Phase that only part of the network is active; a 
Transcription Phase that all network components are active. From the 

DE solution of the equations, discrete states can be defined. a A GRN 
that generates a bifurcation trajectory. Three cell states are defined 
from the DE solution: S

1
 where only gene A is highly expressed; S

2
 

where gene A, B are highly expressed and S
3
 where gene A, C are 

highly expressed. b A GRN that generates a bifurcation conver-
gence trajectory. Three cell states are defined from the DE solution: 
S
1
 where only gene A is highly expressed; S

2
 where gene B is highly 

expressed and S
3
 where gene C is highly expressed
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