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Abstract 
Motivation: Cryo-electron microscopy (cryo-EM) is a powerful technique for determining the structures of large protein complexes. Picking 
single protein particles from cryo-EM micrographs (images) is a crucial step in reconstructing protein structures from them. However, the widely 
used template-based particle picking process requires some manual particle picking and is labor-intensive and time-consuming. Though 
machine learning and artificial intelligence (AI) can potentially automate particle picking, the current AI methods pick particles with low precision 
or low recall. The erroneously picked particles can severely reduce the quality of reconstructed protein structures, especially for the micrographs 
with low signal-to-noise ratio.
Results: To address these shortcomings, we devised CryoTransformer based on transformers, residual networks, and image processing techni
ques to accurately pick protein particles from cryo-EM micrographs. CryoTransformer was trained and tested on the largest labeled cryo-EM 
protein particle dataset—CryoPPP. It outperforms the current state-of-the-art machine learning methods of particle picking in terms of 
the resolution of 3D density maps reconstructed from the picked particles as well as F1-score, and is poised to facilitate the automation of the 
cryo-EM protein particle picking.
Availability and implementation: The source code and data for CryoTransformer are openly available at: https://github.com/jianlin-cheng/ 
CryoTransformer.

1 Introduction
Cryo-electron microscopy (cryo-EM) is a modern biophysical 
technique used to reconstruct 3D structures from 2D images 
of biological macromolecules, such as proteins and viruses at 
cryogenic temperature (Glaeser 2013, Gyawali et al. 2023). 
These 2D images are stored in various formats (like mrc, tiff, 
tbz, eer, etc.), which are also called micrographs. Given the 
inherent challenges of ascertaining the orientations of the 
particles and the low signal-to-noise ratio (SNR) of micro
graphs, hundreds of thousands of protein particles are often 
required to determine a high-resolution 3D structure of the 
protein. These 3D structures of proteins are important for un
derstanding their biological functions and their interactions 
with ligands (Dhakal et al. 2022, Giri and Cheng 2023) facili
tate structure-based drug discovery (Dhakal et al. 2022, 
Dhakal et al. 2023c). Since the SNR of micrographs is gener
ally low, thousands of micrographs need to be collected to 
obtain a high-resolution structure for a protein, from which 
as many as millions of protein particles are picked. Precise 
identification of true particles is important, as the presence of 
false positive particles complicates the down-stream 3D pro
tein reconstruction process. The particle picking task is inher
ently challenging due to several factors, including high noise 
levels caused by ice and contamination, low contrast of 

particle images, heterogenous conformations of particles, and 
variation in the orientation of particles.

This manual particle picking process by human is labori
ous, tedious, and time-consuming, which cannot be applied 
to pick millions of particles from thousands of micrographs. 
Therefore, substantial efforts have been put to develop semi- 
automated or fully automated methods to pick protein 
particles, which can be classified into two categories: 
(i) template-based particle picking and (ii) machine learning 
particle picking. In template-based particle picking, particle 
identification relies on comparing potential particles to pre
defined reference templates. However, due to noise in micro
graphs this method is often unable to detect particles of 
unusual shape and suffers from high false-positive rates. 
Machine learning particle picking consists of both unsuper
vised learning (clustering) methods (Al-Azzawi et al. 2019) 
and supervised methods (Mallick et al. 2004, Langlois et al. 
2014, Heimowitz et al. 2018, Al-Azzawi et al. 2020). Recent 
advancements in deep learning, including XMIPP (Marabini 
et al. 1996), DeepPicker (Wang et al. 2016), DeepEM (Zhu 
et al. 2017), Xiao et al.’s method (Xiao and Yang 2017), 
Warp (Tegunov and Cramer 2019), HydraPicker 
(Masoumzadeh and Brubaker 2020), McSweeney et al.’s 
method (McSweeney et al. 2020), DRPnet (Nguyen et al. 
2021), CrYOLO (Wagner et al. 2019), and Topaz (Bepler 
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et al. 2019) have automated protein particle picking. Among 
them, CrYOLO and Topaz, based on convolutional neural 
networks, are widely used. However, they have been trained 
with limited particle data. CrYOLO and Topaz were trained 
on 840 and 2296 micrographs respectively, which is 83.7% 
and 55.6% less than 5172 micrographs employed to train 
CryoTransformer in this work. The limited amount of train
ing data makes it difficult for them to generalize to new pro
tein types or shapes.

Topaz and CrYOLO both are based on traditional CNN 
architectures. Specifically, Topaz follows a positive unlabeled 
(PU) Learning approach of training with a limited number of 
sparsely labeled particles and an absence of labeled negatives, 
while CrYOLO employs the YOLO architecture for the iden
tification of protein particles in cryo-EM micrographs. Topaz 
uses a sliding window classification of micrographs and 
extracts the protein particles by using non-maximum sup
pression technique. CrYOLO applies 22 convolutional and 5 
max-pooling layers for feature extraction. It includes a pass
through layer positioned between the 13th and 21st layer to 
leverage fine-grain features. Following this, the network is 
concluded with a 1�1 convolutional layer for particle detec
tion. For instance, CrYOLO usually overlooks many true 
protein particles, while Topaz often picks false positives such 
as ice contaminants and false particles in carbon areas.

To overcome these obstacles, we devised a transformer- 
based particle picking approach and trained it on the largest, 
diverse, manually labeled CryoPPP protein particle dataset 
(Dhakal et al. 2023a, b). Inspired by Meta’s Detection 
Transformer (DETR) (Carion et al. 2020) for detecting small 
objects, we designed the end-to-end detection transformer 
named as CryoTransformer. Briefly, it has an initial step of 
reducing noise in micrographs, followed by the feature ex
traction through a ResNet-152 architecture. Subsequently, a 
transformer model is used for detecting protein particles. 
This is succeeded by the feed-forward networks to predict 
particles, which are followed by the post-processing proce
dures. Refer to Supplementary Fig. S1 for the overview of the 
pipeline. The output includes particle markings on the micro
graphs and the particles coordinates in .star files, which can 
be directly used for the subsequent stages of 3D protein struc
ture reconstruction. We conducted a rigorous evaluation of 
CryoTransformer and it outperforms the two popular deep 
learning methods: CrYOLO and Topaz. The source code and 
data for CryoTransformer are openly available at: https:// 
github.com/jianlin-cheng/CryoTransformer.

2 Materials and methods
2.1 Dataset
2.1.1 Dataset acquisition
We utilized the largest comprehensive CryoPPP dataset 
(Dhakal et al. 2023a, b) curated from Electron Microscopy 
Public Image Archive (EMPIAR) (Iudin et al. 2023), to train, 
validate, and test CryoTransformer. The micrographs of 22 
proteins (EMPIAR IDs) from the CryoPPP dataset were used, 
with the data of each EMPIAR ID split according to an 80%- 
10%-10% ratio for training, validation, and internal test. 
Moreover, we used the data of six distinct EMPIAR IDs in 
CryoPPP dataset different from the 22 proteins above as well 
as the four complete micrograph datasets from EMPIAR 

repository (Iudin et al. 2023) as the independent test dataset 
to compare CryoTransformer with the external methods.

The selection of training and test data considered a range 
of protein attributes, including type, shape, size, and overall 
structural characteristics. The statistics and information of 
22 proteins used for the training, validation and internal test 
are described in Supplementary Table S1. Moreover, 
Supplementary Fig. S2 illustrates the varying defocus values 
of the training data. The datasets encompass various protein 
categories, such as transport proteins, membrane proteins, vi
ral proteins, ribosomes, signaling proteins, aldolases, and 
more. They comprised micrographs featuring diverse attrib
utes, including those with ice patches, contaminants, varying 
ice thickness, and carbon areas. Different protein distribution 
patterns, including monodisperse, clumped clusters, and het
erogeneous views, are also included. The Supplementary 
Tables S2 and S3 contain the information and statistics of the 
proteins in the independent test dataset.

2.1.2 Denoising and pre-processing of cryo-EM micrographs
In the CryoTransformer image processing pipeline, cryo-EM 
micrographs in .mrc format undergo several key steps for 
noise reduction and enhancement. Initially, a Gaussian filter 
is applied to reduce noise, followed by standard normaliza
tion to center and scale pixel values. These normalized images 
are converted to grayscale for uniform representation. Noise 
reduction involves a two-step process: Fast Non-Local Means 
(FastNLMeans) denoising to preserve details and a subse
quent Weiner filter to further reduce noise. Contrast Limited 
Adaptive Histogram Equalization (CLAHE) is used to en
hance contrast, addressing non-uniform illumination and low 
contrast. Finally, guided filtering is performed using the 
CLAHE-enhanced image as a guide to selectively smooth 
while preserving fine structural details, resulting in balanced 
noise reduction and structural information preservation. In 
depth denoising pipeline is described in Supplementary 
Fig. S3 and Supplementary Note S1.

2.1.3 Generating COCO-dataset for labeled protein particles 
in micrographs
We used the ground truth particle coordinate data from the 
CryoPPP dataset (Dhakal et al. 2023a, b) to generate labels 
to train CryoTransformer. The particle labels were stored in 
Common Objects in Context (COCO) format (Lin et al. 
2014). An illustration of how these labels are stored is 
depicted in Supplementary Fig. S3 (H). In the case of all train
ing and validation images, we have two JSON files: one for 
training (referred to as the ‘train JSON’) and another for vali
dation (referred to as the ‘validation JSON’). For each parti
cle, we retain details such as its bounding box coordinates, 
area, category label (typically set to 1 in our case as all objects 
to be detected are protein particles), the corresponding image 
reference, and a unique particle ID.

2.2 Design and implementation of CryoTransformer
CryoTransformer is designed to achieve the accurate predic
tion of bounding boxes for the protein particles within a mi
crograph, while minimizing the number of false positives. It 
undergoes an end-to-end training, using a specialized loss 
function that effectively combines the bipartite matching loss 
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between predicted and ground-truth protein particles in the 
micrographs.

2.2.1 CryoTransformer architecture
As illustrated in Fig. 1, CryoTransformer comprises three 
main components: a Convolutional Neural Network (CNN) 
with residual connections [Resnet-152 (He et al. 2016)] re
sponsible for feature extraction, an encoder-decoder trans
former (Vaswani et al. 2017, Carion et al. 2020) for learning 
the shapes of the particles in the context of an entire image, 
and a feed-forward network (FFN) responsible for producing 
the ultimate particle predictions.

2.2.1.1 Resnet-152 backbone block
The Resnet-152 receives the preprocessed micrographs ximg 2

R3�H0�W0 (with three color channels)) as input and generates 
a lower-resolution activation map as f 2 RC�H�W; Where 
C ¼ 2048, and H ¼ H0

32, W ¼ W0
32 . 0 padding is applied to the 

images in a batch to make sure that they all have same input 
dimensions H0;W0ð Þ as the largest image size of the batch.

2.2.1.2 Transformer module
Transformer encoder
The features extracted from the Resnet-152 are subsequently 
passed through the encoder of the Transformer. The encoder 
plays a vital role in generating coherent and context-aware 
outputs. In the encoder, a 1x1 convolution operation is used 
to decrease the channel dimension of the high-level activation 
map, denoted as f, from C to a smaller dimension d; yielding 
a new feature map z0 2 Rd�H�W. Since the encoder accepts a 
1D sequence as input, we collapse the spatial dimensions of 
z0 into a single dimension. As a result, the resultant input 
becomes a feature map of dimension d�HW. Here, every 
encoder layer follows a consistent structure, comprising a 
multi-head self-attention component and a FFN layer. To ac
count for the permutation-invariant nature of the trans
former architecture, we enhance it by incorporating the 

Figure 1. Architecture of CryoTransformer. The raw micrographs are denoised and are fed into the ResNet-152 module for feature extraction. The image 
features, along with positional encoding, are fed to the encoder of the transformer (Carion et al. 2020). The output from the encoder is subsequently 
passed to the decoder layer. Finally, the decoder’s output is passed to the feed forward networks that generate the protein particle bounding box 
predictions. The final output includes the visual representation of predicted protein particles encircled in micrographs and .star files.

CryoTransformer: AI-based particle picking                                                                                                                                                                           3 



positional encodings (Parmar et al. 2018, Bello et al. 2019), 
which are included in the input of every multi-head self-atten
tion layer.

Transformer decoder
The decoder receives the memory from encoder, positional 

encoding, and particle queries as input. It involves the trans
formation of N embeddings of size d (in our specific scenario, 
N ¼ 600, meaning predicting max 600 protein particles per 
micrograph) through the multi-headed self- attention mecha
nisms. It’s worth noting that since the decoder is also 
designed to be permutation-invariant, it requires distinct par
ticle queries (initialized as random vectors) within the set of 
N inputs to generate different outcomes. These particle 
queries, added to the input at each attention layer, are a set of 
learnable embeddings which are updated through back prop
agation. Subsequently, the output of the decoder is individu
ally used to predict box coordinates and class labels (1 in our 
case) through a feed-forward network, a process detailed in 
the following subsection, resulting in N final predictions.

2.2.1.3 Feed-forward networks module
The final prediction is generated through a 3-layer perceptron 
with a ReLU activation function and d hidden nodes in each 
hidden layer, followed by a linear projection layer. This FFN 
is responsible for predicting the normalized center coordi
nates, height, and width of the bounding box relative to the 
input micrograph. Additionally, the linear layer predicts the 
class label using a softmax function. Considering that we are 
making predictions for a fixed-size set of N potential bound
ing boxes, and N is typically much larger than the actual 
number of protein particles in a single micrograph, we intro
duce a special class label denoted as ;. This label means that 
no protein particle has been detected in a particular slot. Its 
role is akin to the ‘background’ class in conventional ob
ject detection.

2.2.2 Loss function
CryoTransformer generates a consistent set of N predictions 
in a single traversal of the decoder. This number N was delib
erately chosen to exceed the usual count of protein particles 
in a micrograph. To achieve this, the loss function is designed 
to establish an ideal bipartite matching between the predicted 
protein particles and their corresponding ground truth. 
Subsequently, the model optimizes the losses pertaining to in
dividual particles in order to refine the predictions further.

We can represent the ground truth set of particles as y and 
the set of N predictions as ŷ ¼ ŷif g

N
i¼1. When N exceeds the 

number of true protein particles in the micrograph, we en
large y as a set of size N, with padding represented by ; (no 
protein particle). To find the optimal bipartite matching 
(Carion et al. 2020) between these two sets, we aim to find a 
permutation of N elements denoted as r 2 SN that incurs the 
lowest cost. This permutation is determined by the following 
equation, given in Equation (1): 

r̂ ¼ argmin
r2SN

XN

i

Lmatch yi; ŷrðiÞ
� �

(1) 

Lmatch yi; ŷrðiÞ
� �

represents the pairwise matching cost be
tween the ground truth particle yi and a prediction indexed 
by rðiÞ. This cost is calculated using the following equa
tion (2): 

Lmatch yi; ŷr ið ÞÞ ¼ � 1 ci 6¼;f gp̂rðiÞ cið Þ þ 1 ci 6¼;f gLbox bi; b̂rðiÞ

� ��

(2) 

We can view each element i in the ground truth set as a 
yi ¼ ci;bið Þ, where ci represents the target class label, and bi 
belongs to the range ½0; 1�4, representing a vector that speci
fies the center coordinates of the ground truth box, along 
with its height and width relative to the micrograph dimen
sions. This approach ensures a one-to-one matching, prevent
ing duplicate predictions when directly predicting sets.

The next stage involves calculating the Hungarian loss us
ing the Hungarian algorithm (Stewart et al. 2015) for all 
pairs that were matched in the preceding step. We define this 
loss according to the Equation (3): 

LHungarian ðy; ŷÞ ¼
XN

i¼1

� logp̂ r̂ðiÞ cið Þ þ 1 ci 6¼;f gLbox bi; b̂ r̂ðiÞ
� �

�

h

(3) 

Here, r̂ represents the optimal assignment obtained from 
the initial equation (1).

In practical implementation, we apply a down-weighting 
factor of 10 to the log-probability term when ci is equal to ;, 
denoting the absence of a particle. This adjustment is made to 
address the issue of class imbalance. The second part of the 
Hungarian loss (Lbox ð�ÞÞ scores the bounding boxes is given 
by the Equation (4): 

Lbox bi; b̂rðiÞ

� �

¼ kiou Liou bi; b̂rðiÞ

� �

þ kL1kbi � b̂rðiÞk1

(4) 

Where kiou ; kL1 2 R are hyperparameters and Liou ð�Þ is 
the generalized IoU (Rezatofighi et al. 2019) given by 
Equation (5): 

Liou brðiÞ; b̂i

� �

¼ 1

�
brðiÞ \ b̂i

�
�
�

�
�
�

brðiÞ [ b̂i

�
�
�

�
�
�
�

B brðiÞ; b̂i

� �

n brðiÞ [ b̂i

�
�
�

�
�
�

B brðiÞ; b̂i

� ��
�
�

�
�
�

0

B
@

1

C
A

(5) 

In the context provided, j.j denotes ‘area,’ and we use the 
terms union and intersection of box coordinates as shorthand 
references for the boxes themselves. To compute the areas of 
unions or intersections, we rely on the minimum/maximum 
of linear functions involving brðiÞ and b̂i. This approach 
ensures that the loss behaves in a stable manner for the 
computation of stochastic gradients. B brðiÞ; b̂i

� �

refers to the 
largest bounding box that contains both brðiÞ; b̂i.

2.2.3 Model implementation and training
We trained CryoTransformer with AdamW optimizer 
(Rezatofighi et al. 2019) by setting the initial transformer’s 
learning rate to 10−4, the backbone’s to 10−5, and weight de
cay to 10−4. All weights are randomly initialized with Xavier 
initialization (Glorot and Bengio 2010). Additive dropout of 
0.1 is applied after every multi-head attention and FFN be
fore layer normalization. We use a training schedule of 300 
epochs with a learning rate drop by a factor of 10 after 200 
epochs, where a single epoch is a pass over all training images 
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once. Training the model for 300 epochs on NVIDIA A100 
80GB GPU took 2 days and 11 hours to complete.

2.3 Ablation studies
We performed ablation studies to analyze the performance of 
the model with (i) different convolution backbone architec
tures and (ii) different datasets [denoised versus non-denoised 
(raw) micrographs]. The model configuration and tunned 
hyperparameter for both the backbone and transformer com
ponents of the model are detailed in Supplementary Table S4.

2.3.1 Ablation study with varying convolutional backbone 
architectures
We conducted various experiments by altering the backbone 
architectures (ResNet-18, ResNet-34, ResNet-50, ResNet- 
101, and ResNet-152) to examine their influence on the mod
el's loss functions. These experiments were carried out for 
both the non-denoised dataset (see Supplementary Fig. S4) 
and denoised one (see Supplementary Fig. S5). We found that 
ResNet-152 demonstrated the highest performance, while 
ResNet 18 exhibited the least favorable outcomes across all 
evaluated loss functions in both the cases. Refer to 
Supplementary Tables S5 and S6 for more details.

2.3.2 Ablation study with denoised versus non- 
denoised datasets
Using the ResNet-152 backbone architecture, we conducted 
an ablation study to investigate the impact of denoising 
micrographs on particle picking tasks. This was performed 
by using two datasets (Denoised versus Non-Denoised) on 
the CryoTransformer model. We observed that denoising the 
micrographs reduces the overall training loss by 40.16% and 
overall validation loss by 34.56%. The detailed statistical 
results (Supplementary Fig. S6 and Supplementary Table S7) 
affirm that denoised data consistently outperforms non- 
denoised (raw) data across all evaluated loss functions.

2.4 Postprocessing predictions and reconstructing 
protein density maps from picked particles
The FFN module of CryoTransformer predicts the coordi
nates of particles and their corresponding confidence scores 
(ranging from 0 to1). These predictions are processed in a 
few steps to generate .star file which undergo various opera
tions to build 3D density maps of proteins. The visual repre
sentation of the overall process is shown in Supplementary 
Fig. S7.

The predictions are first used to generate individual box 
files for every micrograph for a protein, containing the center 
coordinates (x and y) of all the predicted protein particles. 
We retain only the particles whose confidence score falls in 
the range from 25th percentile to 100th percentile. 
Subsequently, these box files are merged to create a .star file 
that can be accepted by CryoSPARC (Punjani et al. 2017) for 
density map construction for the protein.

The star files generated are imported into CryoSPARC 
through the ‘import particles’ task, accompanied by input 
parameters such as Acceleration Voltage (kV), Spherical 
Aberration (mm), and Pixel Size (Å) as well as the patch- 
based Contrast Transfer Function (CTF)-estimated micro
graphs. Subsequently, these particles are extracted using a 
specified extraction box size (in pixels) and fed into the 2D 
classification function of CryoSPARC to group them into dif
ferent orientation classes.

In Cryo-EM single particle analysis, the ‘Select 2D’ step 
plays a pivotal role in enhancing the quality of protein parti
cle selection, thereby contributing to the improved results. 
This step is strategically positioned after the initial particle 
picking process and before the subsequent 3D reconstruction. 
The significance of the ‘Select 2D’ step lies in its ability to dis
cern true protein particles from some noise or artifacts, 
thereby mitigating the impact of potential false positives in
troduced during particle picking. The selection process 
involves classifying extracted particle images into 2D classes, 
leveraging reference-free alignment techniques. By perform
ing this classification, valuable insights into the inherent 
structural heterogeneity within the dataset can be gained. 
This meticulous selection process ensures that mostly true 
protein particles with distinct structural classes are utilized in 
the final 3D density map reconstruction.

To assess the quality of the particles picked by 
CryoTransformer, CrYOLO and Topaz, we carried out the 
density map reconstruction experiments with and without the 
2D selection respectively. When the 2D classification was used, 
we generated a total of 50 particle classes, employing a window 
inner radius of 0.85 and an outer radius of 0.99. Additionally, 
we performed 15 iterations to refine the CryoSPARC’s noise 
model. The selected particles were used by an ab initio recon
struction process with the standard parameter settings, which 
includes 300 iterations of reconstruction with a Fourier radius 
step of 0.04, a momentum of 0 and an initial learning rate of 
0.4 for the stochastic gradient descent optimization. 
Additionally, a lowpass filter cutoff in Fourier radii of 7 was ap
plied to the initial random structures.

After generating the initial density map for a protein, the 
cryoSPARC's ‘homogeneous refinement’ job was employed 
to enhance it further. The homogeneous refinement was ap
plied to correct the higher-order aberrations and to refine 
particle defocus caused by factors such as beam tilt and 
spherical aberration. To ensure the fairness in comparisons of 
the particle picking methods, the experiment was conducted 
three times for each method with different random seed val
ues, and the best score (in Angstrom units) out of the three 
experiments was used in the comparison.

3 Results
We evaluated the particle picking performance of 
CryoTransformer in the following complementary ways. 
First, we compared it with CrYOLO and Topaz in terms of 
the resolution of the 3D density maps reconstructed from the 
particles picked by them from the full set of micrographs in 
the EMPIAR repository for the four proteins in the indepen
dent test dataset. Second, we compared it with CrYOLO and 
Topaz in terms of the resolution of the density maps picked 
from a subset of labeled micrographs in the CryoPPP dataset 
for the proteins in the independent test dataset. In all the 
comparisons, we employed CrYOLO's Generic model (pub
licly available) and Topaz's default model integrated into 
CryoSPARC (refer to Supplementary Table S8 for parame
ter details).

Compared to CrYOLO and Topaz, CryoTransformer is 
unique in utilizing transformers and a bipartite matching loss 
for direct set prediction. Its architecture eliminates the need 
for manually crafted components such as a non-maximum 
suppression procedure or anchor generation. With an opti
mized COCO-format dataset, robust automated denoising, 
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and loss functions based on bipartite matching (refer to 
Equations 1–5), CryoTransformer directly produces the final 
set of predictions that results in high-quality picked particles.

3.1 Comparing CryoTransformer, CrYOLO, and 
Topaz in terms of resolution of density maps 
reconstructed from the particles picked from the full 
set of micrographs in the EMPIAR repository 
(�1600 micrographs per protein)
The full set of micrographs in the EMPIAR repository for the 
four test proteins [Human HCN1 Hyperpolarization-Activated 
Channel (EMPIAR 10081), Influenza Hemagglutinin (EMPIAR 
10532), mechanotransduction channel NOMPC (EMPIAR 
10093), and asymmetric aVb8 (EMPIAR 10345)] in the inde
pendent test dataset were used to compare CryoTransformer, 
CrYOLO and Topaz. The resolution of the density map recon
structed from the particles picked by each method for each pro
tein was calculated. The density maps were reconstructed by 
CryoSPARC in two modes: with 2D particle selection (Select 
2D) or without it. The experiment for each method and each 
protein was conducted three times and the best results were se
lected for the comparison. The comparative results of the three 
methods are summarized in Table 1, while the detailed results 
of each trial are reported in Supplementary Table S9.

With Select 2D, CryoTransformer has the highest resolu
tion of the reconstructed density maps for three out of four 
proteins (i.e. EMPIAR IDs: 10081, 10532, and 10345), while 
Topaz has the highest resolution for one protein. Without 
Select 2D, CryoTransformer and Topaz each perform best on 
two proteins. The detailed assessment of crYOLO, Topaz, 
and CryoTransformer based on the 3D resolution of Gold 
Standard Fourier Shell Correlation (FSC) curves, 3D density 
maps, and density projections with Select 2D is visualized 
in Fig. 2.

In Fig. 2, FSC curves are plotted to assess the resolution of 
the obtained 3D density maps. Different variations of Fourier 
Shell Correlation (FSC) plots are presented: one employing 
an automatically generated mask with a 15 Å falloff, termed 
the ‘loose mask’ curve, and the other using an auto-generated 
mask with a falloff of 6 Å for all FSC plots, referred to as the 
‘tight mask’ curve. The 3D density map reconstructed by 
each method for each protein is also visualized. The notable 
difference between the results of CrYOLO and 
CryoTransformer can be observed. For instance, in the case 
of EMPIAR 10345, the correct shape of the density map has 
three distinct legs (Campbell et al. 2020), but CrYOLO failed 
to capture all three, yielding a lower resolution of 6.06 Å. In 
contrast, CryoTransformer captured all of them and achieved 
a high resolution of 3.45 Å. Similarly, in case of EMPIAR 
10532, Topaz missed the central segment of the rod-like pro
tein structure, whereas CryoTransformer successfully recon
structed that portion, attaining the highest resolution 
(3.21 Å) among all methods.

The plot located in the lower-right corner of each section 
in Fig. 2 represents the intermediate output of the ab-initio 
reconstruction phase. These plots depict density projections, 
but instead of slicing the density along a specific plane, the in
tegrated density values along the normal direction to that 
plane are displayed. The color scheme in the heatmap corre
sponds to the scalar density values at each voxel, with color 
intensity indicating density magnitude. Supplementary Figure 
S8 includes the comparison of the three methods in terms of 
the quality of 3D density maps for two more proteins.

In addition to this visual assessment in Fig. 2 and 
Supplementary Fig. S8, we conducted a comparison based on 
the visual orientation of the picked particles and the 2D clas
ses of the those particles (Supplementary Fig. S9), showing 
that CryoTransformer picked particles in multiple orientation 
states that are important for obtaining high-resolution den
sity maps. This analysis specifically involved analyzing the el
evation versus azimuth plots for each test EMPIAR IDs. In 
the case of EMPIAR 10532 in Supplementary Fig. S9, 
CrYOLO struggled to select particles representing various 
orientations, resulting in low-quality 2D particle classes. In 
contrast, Topaz performed reasonably well in picking par
ticles with a diverse range of orientations, and 
CryoTransformer excelled in picking a substantial number of 
particles with a broad angular distribution, as indicated by 
the red color in the heatmap. The higher intensity of the red 
color in the upper section of each block in Supplementary 
Fig. S9 corresponds to the higher number of particles in that 
particular elevation versus azimuth direction. Similarly, the 
lower section of each block depicts the averaged 2D orienta
tion classes generated from picked particles. The diverse set 
of particles picked by CryoTransformer enabled the recon
struction of the density map of the highest resolution for 
this protein.

To further interpret the generated 3D density maps from 
three different methods, the local resolution maps for them 
were constructed and analyzed (see Supplementary Fig. S10). 
As different regions of a 3D density map have variation in 
resolution, the local resolution analysis indicates how well- 
defined or detailed a particular region of the map is. High lo
cal resolution means that the structural features in that region 
are well-resolved and can be interpreted with confidence, 
while low local resolution suggests less detailed and less reli
able information.

To estimate the local resolution map, we used 
CryoSPARC’s Local Refine job. Subsequently, the obtained 
local resolution map was superimposed onto the original den
sity map using Chimera X. A color scale was then employed 
to depict the local resolution, with high-resolution regions 
represented in red and low-resolution regions in purple. For 
instance, in the case of EMPIAR 10532 (refer to 
Supplementary Fig. S10), the majority of the protein structure 
regions derived from CrYOLO-picked particles appears in 
purple and white, while only the tips of the density map ex
hibit high resolution. This means that CrOYLO was able to 
capture only a specific set of orientations of particles in 
micrographs accurately. In contrast, Topaz and 
CryoTransformer were able to capture a broader range of 
particle orientations, resulting in a predominantly red- 
colored density map.

3.2 Comparing CryoTransformer, CrYOLO, and 
Topaz on a subset of micrographs in CryoPPP 
dataset for the independent test proteins (�300 
micrographs per protein)
Similarly, as in Section 3.1, we compared CryoTransformer, 
CrYOLO, and Topaz on the labeled subset of micrographs in 
CryoPPP for the six proteins in the independent test dataset 
in terms of the resolution of reconstructed density maps. The 
density maps were reconstructed using the Select 2D job 
from the picked particles. The 3D resolution is listed 
in Table 2.
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Among the six datasets considered, CryoTransformer out
performs crYOLO and Topaz in four instances, despite pick
ing a much smaller number of particles than Topaz in most 
cases. This observation underscores Topaz's tendency to pick 
more duplicate particles or false positives. CrYOLO performs 
substantially worse than CryoTransformer and Topaz be
cause it picks a much small number of particles, which are 
not sufficient to build good density maps. For the same four 
proteins, the best resolution of the density maps in Table 2 is 
lower than that in Table 1 because a much small number of 
micrographs were used for the particle picking and density 
map reconstruction.

Our in-depth analysis has revealed the significant impact of 
increasing the number of particles with wide conformations 
on the resolution of reconstructed 3D density maps. Notably, 
augmenting the quantity of micrographs leads to an increased 
picking of protein particles with diverse conformations, 

resulting in superior resolution. Conversely, when the num
ber of distinct conformational particles remains constant, in
creasing the number of micrographs yields no substantial 
enhancement in the final 3D resolution.

In addition to the evaluation based on 3D resolution and 
the number of picked particles, we also we compared the par
ticles picked by each method with the ground truth particles 
labeled in CryoPPP in terms of four machine learning metrics: 
precision, recall, F1 score, and Dice score. Precision, a mea
sure of prediction accuracy, tells us how well the model 
avoids false positives. Recall, a measure of the ability to iden
tify relevant instances, assesses the model's avoidance of false 
negatives. The F1 score, a harmonic mean of precision and 
recall, strikes a balance between these two metrics. 
Additionally, Dice score evaluates the overlap between the 
predicted and true protein particles. The details are listed 
in Table 3.

Figure 2. Assessment of CrYOLO, Topaz, and CryoTransformer based on the 3D resolution CSFSC curves, 3D density maps, and density projections on 
cryo-EM graphs of two proteins (EMPIAR 10345 and 10532). The top diagram in each row shows CSFSC curves, which indicate the resolution of 3D 
density maps for proteins structures reconstructed from picked particles. Bottom-left image in each sub-figure provides a visual representation of the 3D 
density map. The bottom-right image in each sub-figure depicts the density projections from the intermediate output of the ab initio reconstruction 
phase. The integrated density values along the normal direction to that plane are displayed. The color scheme in the heatmap corresponds to the scalar 
density values at each voxel, with the color intensity indicating density magnitude.

Table 2. Comparison of CryoTransformer with CrYOLO and Topaz’s performance in terms of the resolution of 3D density maps reconstructed for six test 
proteins from the particles picked from a small set of micrographs in the CryoPPP.

EMPIAR ID Number of  
micrographs

Number of particles 3D resolution (Å)

CrYOLO Topaz CryoTransformer CrYOLO Topaz CryoTransformer

10017 (Scheres 2015) 84 283 98 625 43 735 10.4 5.3 5.61
10081 (Lee and MacKinnon 2017) 300 17 550 111 752 88 632 9.78 7.81 5.47
10093 (Jin et al. 2017) 295 8802 257 490 151 545 8.8 6.06 6.86
10345 (Campbell et al. 2020) 295 4095 93 699 105 739 10.2 8.12 6.43
10532 (Tan and Rubinstein 2020) 300 12 166 356 222 148 345 15.69 5.47 3.92
11056 (Asami et al. 2022) 305 46 582 144 600 98 193 10 8.34 7.42

Bold font denotes the best resolution of the density map reconstructed from picked particles in the three trials.
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CryoTransformer stands out with the highest average pre
cision of 0.7625 and the highest average F1-score of 0.740, 
indicating that it excels in producing accurate positive predic
tions and achieves the best-balanced performance considering 
both precision and recall. Topaz has the highest average re
call and dice score of 0.8815 and 0.671, highlighting its abil
ity to correctly identify a high proportion of true positive 
particles and generate a strong overlap between predicted 
and actual positive instances.

3.3 Visual inspection of particles picked by 
CryoTransformer, CrYOLO, and Topaz
Supplementary Figure S11 visualizes the particles picked by 
the three methods from the four representative micrographs 
of four proteins in the internal test data, which consist of 
10% of micrographs from the 80%-10%-10% train-valid- 
test split (see detailed results in Supplementary Table S10). 
Consistent with the results in Section 3.2, CrYOLO tends to 
select few true protein particles, consequently missing many 
true positive across various protein types. In contrast, Topaz 
selects an excessive number of particles, often leading to over
laps. Additionally, Topaz frequently picks false particles 
from contaminations, particle aggregates and ice patches, 
which can result in lower-resolution 3D density map recon
struction. Furthermore, picking a lot of redundant particles 
requires much more storage to store them and a lot of time 
and memory to reconstruct density maps from them. 
CryoTransformer, on the other hand, often picks most of 
true particles while keeping false positives to a low level, 
which is beneficial for 3D density map reconstruction.

4 Conclusion
We present CryoTransformer, a novel deep learning method 
for protein particle recognition and extraction. It leverages 
the power of transformers, residual networks, traditional im
age processing techniques, and a bipartite matching loss func
tion. CryoTransformer was trained and tested on the largest 
labeled particle dataset available. Several ablation studies 
were conducted to assess the influence of various technical 
components, including the effect of denoising micrographs. 
We used diverse metrics such as machine learning metrics, av
eraged 2D particle resolution, 3D density map resolution, 
and diversity of particle orientations to comprehensively eval
uate the method’s performance. According to the rigorous 
evaluations and comparisons, CryoTransformer achieves the 
state-of-the-art performance, making it a robust AI-based 
tool to automate the process of picking protein particles from 
cryo-EM micrographs.

Supplementary data
Supplementary data are available at Bioinformatics online.
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