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Summary:

We consider methods for causal inference in randomized trials nested within cohorts of trial-

eligible individuals, including those who are not randomized. We show how baseline covariate 

data from the entire cohort, and treatment and outcome data only from randomized individuals, 

can be used to identify potential (counterfactual) outcome means and average treatment effects 

in the target population of all eligible individuals. We review identifiability conditions, propose 

estimators, and assess the estimators’ finite-sample performance in simulation studies. As an 

illustration, we apply the estimators in a trial nested within a cohort of trial-eligible individuals 

to compare coronary artery bypass grafting surgery plus medical therapy versus medical therapy 

alone for chronic coronary artery disease.
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1. Introduction

When effect modifiers influence who participates in randomized trials, causal inferences 

from randomized individuals need to be generalized (extended) to the population of all 
trial-eligible individuals (Rothwell, 2005). The need to extend trial findings arises naturally 

when trials are nested in cohort studies that collect baseline covariate data from all eligible 

individuals, including those who are not randomized. In this setting, treatment and follow-up 

data from non-randomized individuals might be unavailable or unreliable. For example, 

investigators might wish to use treatment and outcome information only from randomized 

individuals to avoid confounding of the treatment effect among non-randomized individuals 

(Torgerson and Sibbald, 1998; Silverman and Altman, 1996).

In this paper, we build on the emerging literature on “generalizing” and “transporting” 

inferences from randomized trials to a target population (Cole and Stuart, 2010; Tipton, 

2012; O’Muircheartaigh and Hedges, 2014; Hartman et al., 2013; Rudolph and van der 

Laan, 2017; Zhang et al., 2016) to show how data from randomized trials nested within 

cohorts of eligible individuals can be used to generalize inferences from randomized 

individuals to the target population of all trial-eligible individuals. We review identifiability 

conditions and propose estimators for the potential (counterfactual) outcome means and 

average treatment effects in the target population. We assess the finite-sample performance 

of different estimators in simulation studies. Lastly, we illustrate the application of the 

estimators in the Coronary Artery Surgery Study (CASS), a randomized trial nested within 

a cohort of trial-eligible individuals to compare coronary artery bypass grafting surgery plus 

medical therapy versus medical therapy alone for chronic coronary artery disease.

2. Targets of inference

Consider a trial nested in a cohort of trial-eligible individuals and let A be the set of 

treatments evaluated in the randomized trial. For each treatment a ∈ A, we use the random 

variable Y a to denote the potential (counterfactual) outcome under intervention to receive 

treatment a (Splawa-Neyman, 1990; Rubin, 1974; Robins and Greenland, 2000). We only 

consider a finite number of distinct treatments (e.g., comparisons of treatment vs. control, or 

comparisons between two or more active treatments).

Baseline covariate information is collected from all cohort members, but treatment 

and outcome information is only collected (or only deemed reliable) from randomized 

individuals. We model the data as independent and identically distributed realizations of the 

random tuple Xi, Si, Si × Ai, Si × Y i , i = 1, …, nS = 1, nS = 1 + 1, …, nS = 1 + nS = 0 = n, where nS = 1 is 

the number of randomized individuals, nS = 0 is the number of non-randomized individuals, 

and n is the total number of trial-eligible individuals; S is the indicator for being randomized 

(S = 1 for randomized individuals; S = 0 for non-randomized trial-eligible individuals); X
is a vector of baseline covariates; A is the (randomized) treatment assignment indicator; and 

Y  is the observed outcome. An example data structure for binary treatment A, along with the 

potential outcomes, is depicted in Table 1 (throughout, we use uppercase letters to denote 

random variables and lowercase letters to denote realizations). For simplicity, we assume 

that full adherence to assigned treatment, absence of measurement error, and no dropout in 
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the trial. Though the methods we propose can be extended to address these issues, we do 

not pursue these extensions here to simplify exposition and maintain focus on selective trial 

participation. Extensions of our results will be considered in future work.

We are interested in using the data to draw causal inferences about all trial-eligible 

individuals. Key targets of inference are the potential outcome means E Y a , for each 

a ∈ A, and the average treatment effects E[Y a − Y a′], for any pair of treatments a, a′ ∈ A. 

In general, E[Y a − Y a′] ≠ E[Y a − Y a′ ∣ S = 1]; in our setup, differences arise when effects are 

heterogeneous over baseline covariates that are not equidistributed among randomized and 

non-randomized individuals (Dahabreh et al., 2016).

3. Identifiability conditions for potential outcome means

The following conditions are sufficient to identify the potential outcome means E Y a

for a ∈ A: (I) Consistency of potential outcomes: for individuals who receive treatment 

A = a, the observed outcome equals the potential outcome under treatment a, that 

is, if Ai = a, then Y i = Y i
a, for every a ∈ A. (II) Mean exchangeability in the trial: 

E Y a ∣ X, S = 1, A = a = E Y a ∣ X, S = 1  for every a ∈ A. (III) Positivity of treatment 

assignment probability in the trial: Pr A = a ∣ X = x, S = 1 > 0 for every a ∈ A and every x
such that fX ∣ S x ∣ S = 1 > 0. (IV) Mean generalizability (i.e., mean exchangeability over S): 

E Y a ∣ X, S = 1 = E Y a ∣ X  for every a ∈ A. The mean generalizability condition is implied 

by, but does not imply, the often invoked (and stronger) condition of generalizability in 

distribution, Y a ⫫ S ∣ X. (V) Positivity of trial participation: Pr S = 1 ∣ X = x > 0 for every x
such that fX x > 0.

Conditions I through III are expected to hold for well-defined interventions compared 

in randomized trials (Hernán and Robins, 2018). Of note, implicit in our notation is an 

assumption that the invitation to participate in the trial and trial participation itself do not 

affect the outcome except through treatment assignment – this assumption is often plausible 

in pragmatic randomized trials (Ford and Norrie, 2016). Conditions IV and V are needed to 

extend inferences about the potential outcome means (or the average treatment effect) from 

randomized individuals to the target population of all trial-eligible individuals.

As is common in the causal inference literature, we use the term “exchangeability” to 

mean that two or more groups are expected to have the same outcome functionals had they 

received the same treatment (Greenland and Robins, 1986). This notion differs from other 

uses of the term in statistics. Furthermore, in this section, we used the term “consistency” for 

the condition linking potential (counterfactual) and observed outcomes; later, we will use the 

same term to refer to the property of an estimator that converges to its estimand; the intended 

meaning should be clear from context.
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4. Identification

Under the identifiability conditions listed in the previous section, the conditional potential 

outcome mean in the target population of all trial eligible individuals for each treatment 

a ∈ A can be identified,

E Y a ∣ X = E Y a ∣ X, S = 1 = E Y a ∣ X, S = 1, A = a = E Y ∣ X, S = 1, A = a .

It follows that we can identify the potential outcome means,

E Y a = EX E Y ∣ X, S = 1, A = a , for eacha ∈ A,

where the subscript X denotes expectation with respect to the target population distribution 

of X. Using this result, we can identify average treatment effects by differencing,

E[Y a − Y a′] = EX[E[Y ∣ X, S = 1, A = a]] − EX E Y ∣ X, S = 1, A = a′ .

Furthermore, we can identify any other measure of effect defined in terms of the potential 

outcome means (Hernán, 2004); for example, for binary Y , we can identify the causal risk 

ratio comparing treatments a and a′ in the target population,

Pr Y a = 1
Pr[Y a′ = 1]

= E Y a

E[Y a′]
= EX[E[Y ∣ X, S = 1, A = a]]

EX E Y ∣ X, S = 1, A = a′ .

In the Appendix, we show that identification of average treatment effects is possible under 

weaker identifiability conditions, which do not, however, suffice to identify the potential 

outcome means. Because these potential outcome means are of inherent scientific and policy 

interest in most applications, in the remainder of the paper we focus on estimating them.

5. Estimation

We now discuss estimators of the functional μ a ≡ EX[E[Y ∣ X, S = 1, A = a]]. Specifically, 

we consider (1) outcome model-based estimators that rely on modeling the expectation of 

the outcome; (2) inverse probability (IP) weighting estimators that rely on modeling the 

probability of participation in the trial; and (3) augmented IP weighting estimators that rely 

on modeling both the expectation of the outcome and the probability of participation in 

the trial. Hereafter, “convergence” and the symbol “ ” denote convergence in probability; 

estimators that converge to their corresponding estimands are termed “consistent” (see the 

Web Appendix for additional information).

5.1 Outcome model-based estimator

The outcome model-based estimator is obtained by fitting a conditional outcome mean 

model among trial participants and marginilizing over the empirical covariate distribution of 

all trial-eligible individuals (Robins, 1986),
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μOM a = 1
n ∑

i = 1

n
ga Xi ,

(1)

where ga X  is an estimator of E[Y ∣ X, S = 1, A = a] for a ∈ A. Typically, we posit a 

parametric outcome model ga X; θ  with finite-dimensional parameter θ for each treatment 

a, and estimate the model parameters by standard methods. In applications, we recommend 

fitting separate outcome models among the treated and untreated randomized individuals to 

better capture effect modification over baseline covariates. When the outcome models are 

correctly specified,ga(X; θ) E[Y ∣ X, S = 1, A = a] and μOM a μ a  for each a ∈ A.

5.2 IP weighting estimators

An alternative approach for generalizing inferences from randomized individuals to the 

target population relies on estimating the probability of trial participation followed by IP 

weighting, an approach related to the analysis of sampling surveys (Horvitz and Thompson, 

1952) and to IP weighting methods for confounding control in observational studies 

(Robins, 1999). Specifically, we can use the IP weighting estimator

μIPW1 a = 1
n ∑

i = 1

n SiI Ai = a Y i
p Xi ea Xi

,

(2)

where p X  is an estimator for Pr[S = 1 ∣ X] and ea X  is an estimator for Pr[A = a ∣ X, S = 1]
for a ∈ A. When trials are nested within cohorts of eligible individuals, we do not know 

the probability of trial participation, but we can estimate it, typically using a parametric 

model p X; β . The probability of treatment in the trial Pr[A = a ∣ X, S = 1] is under the 

control of the investigators and does not need to be estimated. Nevertheless, estimating 

the probability of treatment among randomized individuals, say using a parametric model 

ea X; γ , can improve efficiency in finite samples. Heuristically, modeling the probability 

of treatment is beneficial because it addresses random imbalances in baseline covariates 

among randomized individuals, provided that we properly account for the estimation of γ
(Hahn, 1998; Lunceford and Davidian, 2004, Williamson et al., 2014). When the model 

for the probability of participation is correctly specified, and given that the model for 

the probability of treatment among randomized individuals is always correctly specified, 

p(X; β)ea(X; γ) Pr[S = 1 ∣ X]Pr[A = a ∣ X, S = 1] and μIPW1(a) μ(a) for every a ∈ A.

The estimator in (2) is unbounded, in the sense that it can produce point estimates that fall 

outside the support of Y , particularly in the presence of extreme weights (Robins et al., 

2007). Using the identity

E SI(A = a)
Pr[S = 1 ∣ X]Pr[A = a ∣ X, S = 1] = 1,
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(3)

which holds when positivity conditions III and V hold, we can construct a bounded IP 

weighting estimator by normalizing the weights to sum to 1 (Hájek, 1971),

μIPW2(a) = ∑
i = 1

n SiI(Ai = a)
p(Xi)ea(Xi)

−1
∑

i = 1

n SiI(Ai = a)Y i
p(Xi)ea(Xi) .

(4)

Even when not intending to use IP weighting estimators, analysts should inspect the 

distribution of the estimated probabilities of trial participation to examine overlap between 

randomized and non-randomized individuals. Furthermore, analysts should examine whether 

the sample analog of (3) is approximately satisfied, that is,

1
n i = 1

n SiI Ai = a
p Xi ea Xi

≈ 1 .

5.3 Augmented IP weighting estimators

We can combine modeling the probability of trial participation with modeling the 

expectation of the outcome among randomized individuals to obtain more efficient 

(augmented) IP weighting estimators (Robins et al., 1994; Bang and Robins, 2005). 

Augmented IP weighting estimators are also doubly robust in the sense that they are 

consistent and asymptotically normal when either the model for the probability of 

participation or the model for the expectation of the outcome is correctly specified. Because 

background knowledge is often inadequate to correctly specify the outcome model, the 

improved efficiency of augmented IP weighting estimators is often the primary motivation 

for using them (Tan, 2007), provided the model for the probability of trial participation can 

be (approximately) correctly specified.

The theory of augmented IP weighting estimation is extensive and multiple estimators, with 

different behavior in finite samples, are doubly robust (Robins et al., 1994, 2007). Here, we 

examine three estimators that are easy to implement in standard statistical packages.

We begin by considering the augmented IP weighting estimator

μAIPW1(a) = 1
n ∑

i = 1

n SiI(Ai = a)
p(Xi)ea(Xi) Y i − ga(Xi) + ga(Xi) ,

(5)

with p(X), ea(X), and ga(X) as defined above.

We can normalize the weights, as we did for the IP weighting estimators, to obtain
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μAPP2(a) = ∑
i = 1

n SiI(Ai = a)
p(Xi)ea(Xi)

−1
∑

i = 1

n SiI(Ai = a)
p(Xi)ea(Xi) Y i − ga(Xi) + 1

n ∑
i = 1

n
ga(Xi) .

(6)

Alternatively, we can obtain a bounded regression-based augmented IP weighting estimator 

by fitting an IP weighted parametric multi-variable regression model for the outcome among 

randomized individuals and then standardizing the predictions over the empirical covariate 

distribution of all trial-eligible individuals,

μAIPW3(a) = 1
n ∑

i = 1

n
ga(Xi; θ),

(7)

where θ is the vector of estimated parameters from the IP weighted outcome regression. This 

estimator is doubly robust when the outcome is modeled with a linear exponential family 

quasi-likelihood (Gourieroux et al., 1984) and the canonical link function (Robins et al., 

2007; Wooldridge, 2007).

In the Web Appendix we show that the estimator in (5) is the one-step in-sample estimator 

suggested by the influence function for μ(a) and argue that it is locally efficient (Robins 

et al., 1994; Robins and Rotnitzky, 1995). The estimators in (6) and (7) are asymptotically 

equivalent to the estimator in (5). In finite samples, augmented IP weighting estimators 

will tend to produce more precise results than non-augmented IP weighting estimators, 

sometimes strikingly so. When using any augmented IP weighting estimator, as for the 

outcome model-based estimator in (1), we recommend fitting separate outcome models in 

each treatment group in the randomized trial.

6. Simulation studies

We conducted simulation studies to compare the finite-sample performance of different 

estimators, for binary and continuous outcomes. Details about the simulation study methods 

and code to replicate the analyses are provided in the Web Appendix; the simulation results 

are summarized in Appendix Tables A.2 through A.19. In brief, our numerical studies 

confirmed that, when all models were correctly specified, all estimators were approximately 

unbiased even with small numbers of randomized individuals and small total cohort sample 

sizes (when one model was incorrectly specified, the augmented IP weighting estimators 

were also approximately unbiased; results not shown). The outcome-model based estimator 

had the lowest variance, followed closely by the two doubly robust estimators; IP weighting 

estimators had substantially larger variance than all other estimators, especially when using 

non-normalized weights.
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7. The Coronary Artery Surgery Study (CASS)

7.1 CASS design and data

CASS was a comprehensive cohort study that compared coronary artery bypass grafting 

surgery plus medical therapy (henceforth, “surgery”) versus medical therapy alone for 

individuals with chronic coronary artery disease; details about the design of CASS 

are available elsewhere (William et al., 1983; Investigators, 1984). In brief, individuals 

undergoing angiography in 11 participating institutions were screened for eligibility and 

the 2099 trial-eligible individuals who met the study criteria were either randomized to 

surgery or medical therapy (780 individuals), or included in an observational study (1319 

individuals). We excluded 6 individuals for consistency with prior CASS analyses and in 

accordance with CASS data release notes; in total we used data from 2093 individuals (778 

randomized; 1315 non-randomized). Baseline covariates were collected from randomized 

and non-randomized individuals in an identical manner. No randomized individuals were 

lost to follow-up in the first 10 years of the study; we did not use information on adherence 

among randomized individuals, in effect assuming that the non-adherence would be similar 

among all eligible individuals, so that intention-to-treat effects are transportable.

7.2 Statistical analysis

Estimands.—We estimated the 10-year mortality risk under surgery and medical therapy, 

and the risk difference and risk ratio comparing the treatments for the target population of all 

trial-eligible individuals.

Model specification.—We fit logistic regression models for the probability of 

participation in the trial, the probability of treatment among randomized individuals, and 

the probability of the outcome (in each treatment arm) with the following covariates: 

age, severity of angina, history of previous myocardial infarction, percent obstruction of 

the proximal left anterior descending artery, left ventricular wall motion score, number 

of diseased vessels, and ejection fraction. We chose these variables based on a previous 

analysis of the same data (Olschewski et al., 1992) and did not perform any model selection.

Missing baseline covariate data.—Of the 2093 trial-eligible individuals, 1686 had 

complete data on all baseline covariates (731 randomized, 368 in the surgery group and 

363 in the medical therapy group; 955 non-randomized). For simplicity, in the main text 

we only report analyses restricted to individuals with complete data. To examine whether 

missing data influenced our results, we repeated our analyses using (1) multiple imputation 

with different models for the missing data conditional on the observed data (multivariate 

normal multiple imputation and multiple imputation with chained equations) (Little and 

Rubin, 2014) and (2) IP of missingness weighting for non-monotone missing data (Sun and 

Tchetgen Tchetgen, 2018).

Inference.—For all analyses, we used bootstrap resampling (with 10,000 samples) to 

obtain normal distribution-based 95% confidence intervals (results using percentile intervals 

were very similar and are not shown).
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7.3 Results

Baseline characteristics, overlap, and balance.—Web Appendix Table A.20 

summarizes baseline covariate information for randomized and non-randomized individuals. 

The left panel of Figure 1 presents kernel densities of the estimated probabilities of trial 

participation for randomized and non-randomized individuals; there was good overlap 

and the smallest estimated probability for trial participation for randomized individuals 

was approximately 0.273. The right panel of Figure 1 presents the kernel density of 

the estimated weights among randomized individuals, obtained as the inverse of the 

estimated probability of trial participation times the inverse of the estimated probability 

of receiving the treatment actually received among randomized individuals. The sample 

average of the estimated weights was approximately 1.001, both in the surgery and medical 

therapy groups; the largest estimated weight was less than 10. Taken together, these 

results suggest that the observed covariate distributions of randomized and non-randomized 

individuals had sufficient overlap for attempting to extend inferences from the trial to 

the target population of all eligible individuals. Baseline covariates in randomized and 

non-randomized individuals were balanced after IP weighting (Web Appendix Table A.21).

Treatment-specific risks and treatment effects.—Estimates of the 10-year mortality 

risk and treatment effects at 10 years are shown in Table 2. All generalizability methods 

produced similar results: the mortality risk in the target population was about 18% for 

surgery and 20% for medical therapy, corresponding to a risk difference of about 2% and 

a risk ratio of about 0.9, in favor of surgery. Because different methods rely on different 

parametric models, agreement across their point estimates suggests that inference is not 

driven by model specification. The similar confidence interval widths produced by different 

generalizability estimators reflect the binary nature of the outcome as well as the absence of 

strong selection on measured baseline covariates in this particular application. The mortality 

risk among randomized individuals was about 17.3% for surgery and 20.9% for medical 

therapy, corresponding to a risk difference of about 3.5% in favor of surgery. The closeness 

of estimates from the randomized trial and our generalizability analyses probably reflects the 

absence of strong selection on measured baseline covariates in this application.

Using treatment and outcome data on non-randomized individuals to evaluate 
the generalizability analyses.—In CASS, data on treatment and outcome were 

collected among non-randomized individuals, even though such data are not necessary for 

identification under the conditions in Section 3. To evaluate whether outcome models built 

among randomized individuals were reasonable, we compared the empirical mortality risk 

among non-randomized individuals who received treatment a against the average outcome 

predictions for the same group of individuals, using models estimated among randomized 

individuals. The similarity of the empirical risk in non-randomized individuals to the 

average of the predictions provides some reassurance that the models were not grossly 

inappropriate for generalizing trial results: for surgery, the empirical risk was 18.6% and the 

average of the predictions was 19.8%; for medical therapy, the empirical risk was 19.1% and 

the average of the predictions was 18.9%.
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The comparison in the preceding paragraph is only indirectly relevant to the goal 

of generalizing inferences to the target population of all trial-eligible individuals; 

after all, the comparison is conditional on treatment received among non-randomized 

individuals. Another way to evaluate the generalizability analyses, is to compare 

them against an observational analysis that uses all the data (regardless of S). The 

validity of such observational analysis requires exchangeability of treatment groups, 

E Y a ∣ X, S, A = a = E Y a ∣ X, S , and positivity, Pr[A = a ∣ X, S] > 0, for a ∈ 0, 1 , but 

does not require identifiability conditions IV or V (which are necessary to endow the 

generalizability estimators with a causal interpretation). Using an IP weighting regression 

estimator for confounding control in the entire CASS dataset (Robins et al., 2007), the 

potential outcome mean estimates were 17.9% and 19.6% for surgery and medical therapy, 

respectively; these estimates are similar to those from the generalizability analyses. Because 

the observational and generalizability analyses rely on different identifiability conditions, 

agreement between them provides some mutual support (but does not establish the validity 

of either).

Comparison of methods for handling missing data.—Web Appendix A.22 presents 

descriptive statistics for missing covariate data; the missing data pattern for baseline 

covariates was non-monotone. The point estimates from analyses using multiple imputation 

or IP weighting for missing baseline covariates were nearly identical to those of the 

complete case analyses and only slightly more precise (Web Appendix Tables A.23 through 

A.25).

8. Discussion

We examined methods for extending inferences from randomized individuals to the target 

population of trial-eligible individuals, using trials nested within cohorts for outcomes 

observed at a single time-point post-randomization. Our work adds to the literature on 

“generalizability” and “transportability” (Cole and Stuart, 2010; O’Muircheartaigh and 

Hedges, 2014; Tipton, 2012; Hartman et al., 2013; Zhang et al., 2016; Rudolph and van 

der Laan, 2017), and connects with the literature on selection bias (Keiding and Louis, 2016; 

Infante-Rivard and Cusson, 2018).

The methods we propose rest on two identifiability conditions beyond those supported 

by randomization: mean generalizability from randomized to non-randomized individuals 

and positivity of trial participation. Directed acyclic graphs can facilitate reasoning about 

the mean generalizability condition (Pearl, 2015; Pearl and Bareinboim, 2014). Arguably, 

the identifiability conditions are most plausible in studies explicitly designed to collect 

information on all trial-eligible individuals, including those who are not randomized. Our 

methods are therefore appropriate for “comprehensive cohort studies” (Olschewski et al., 

1985, 1992; Schmoor et al., 1996), randomized preference designs (Torgerson and Sibbald, 

1998; Lambert and Wood, 2000), and pragmatic trials embedded within healthcare systems 

(Fiore and Lavori, 2016; Choudhry, 2017). Though our approach is useful for extending 

inferences from randomized individuals to trial-eligible individuals in these designs, it does 
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not address individuals who are candidates for treatment but do not meet the trial eligibility 

criteria.

Our approach uses treatment and outcome data only from randomized individuals, to avoid 

confounding of the treatment effect among non-randomized individuals and eliminate the 

need to follow them up. Nevertheless, if treatment and outcome data from non-randomized 

individuals are available, analysts can use them to assess model specification, as we did in 

the CASS reanalysis. When such data are available and substantive knowledge suggests 

that the observed covariates suffice to adjust for confounding among non-randomized 

individuals, it may be useful to compare the results of generalizability methods against 

the results of observational analyses of the entire cohort. These analyses target the same 

causal quantities but rest on different identifiability conditions: generalizability analyses 

require mean generalizability from randomized to non-randomized individuals whereas 

observational analyses require mean exchangeability of treated and untreated individuals. 

As in our CASS reanalysis, similarity of results from analyses that rest on different 

identifiability conditions provides mutual support for their validity (but does not definitively 

establish it).

Methods for generalizing inferences from randomized individuals to all trial-eligible 

individuals exploit models for the expectation of the outcome in the trial or the probability 

of trial participation. Investigators typically rely on parametric working models and 

model misspecification can lead to inconsistency, even if mean generalizability holds. 

Approximately correct specification of the model for the probability of participation may 

be more feasible, because inverstigators can use surveys or qualitative studies to investigate 

what drives eligible individuals to participate in a randomized trial (Ross et al., 1999). The 

findings from these investigations can be used to specify models for trial participation and 

obtain consistent IP weighting estimators.

Augmented IP weighting estimators are consistent when either working model is correctly 

specified, providing two opportunities for valid inference. Misspecification of just one of 

the models can adversely affect how these estimators perform. And misspecification of 

both models, in some cases (Waernbaum and Pazzagli, 2017), can make augmented IP 

weighting estimators perform worse than the (misspecified) outcome model-based estimator 

(Kang and Schafer, 2007). Serious bias can also occur when IP weights are highly variable, 

though this problem is to some extent mitigated with bounded estimators (Robins et al., 

2007). Even when the outcome model is misspecified, augmented IP weighting estimators 

may still be preferred for their typically increased efficiency compared to non-augmented 

IP weighting estimators; their performance may be further improved with approaches that 

explicitly attempt to minimize variance (Cao et al., 2009; Rotnitzky et al., 2012) or reduce 

bias (Vermeulen and Vansteelandt, 2015) under model misspecification.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Kernel densities of the estimated probabilities of trial participation (left panel) for 

randomized (solid line) and non-randomized (dashed line) individuals and estimated weights 

(right panel) for randomized individuals.
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Table 1:

The left-hand-side of the table depicts the data structure, including baseline covariates X, the trial participation 

indicator (S = 1  for the nS = 1 randomized indviduals and S = 0  for the nS = 0 non-randomized individuals), the 

binary treatment (A), and the observed outcome (Y ). The right hand side of the table depicts the potential 

outcomes Y 1 and Y 0 under treatment a = 1  and a = 0, respectively. The consistency assumption allows us to 

equate some of these potential outcomes with the observed outcomes, depending on trial participation and 

treatment assignment. Dashes denote missing values in the observed data.

Individual X S A Y Y 1 Y 0

1 x1 1 1 y1 y1
1 = y1 y1

0

2 x2 1 1 y2 y2
1 = y2 y2

0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

n1 xn1 1 1 yn1 yn1
1 = yn1 yn1

0

n1 + 1 xn1 + 1 1 0 yn1 + 1 yn1 + 1
1 yn1 + 1

0 = yn1 + 1

n1 + 2 xn1 + 2 1 0 yn1 + 2 yn1 + 2
1 yn1 + 2

0 = yn1 + 2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

n1 + n0 = nS = 1 xnS = 1 1 0 ynS = 1 ynS = 1
1 ynS = 1

0 = ynS = 1

nS = 1 + 1 xnS = 1 + 1 0 – – ynS = 1 + 1
1 ynS = 1 + 1

nS = 1 + 2 xnS = 1 + 2 0 – – ynS = 1 + 2
1 ynS = 1 + 2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

nS = 1 + nS = 0 = n xn 0 – – yn
1 yn

0
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