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Abstract

White blood cells, also called leukocytes, are hematopoietic cells of the immune system that 

are involved in protecting the body against both infectious diseases and foreign materials. The 

abnormal development and uncontrolled proliferation of these cells can lead to devastating 

cancers. Their timely recognition in the peripheral blood is critical to diagnosis and treatment. 

In this study, we developed a microscopic imaging system for improving the visualization of 

white blood cells on Wright’s stained blood smear slides, with two different setups: polarized 

light imaging and polarized hyperspectral imaging. Based on the polarized light imaging setup, 

we collected the RGB images of Stokes vector parameters (S0, S1, S2, and S3) of five types of 

white blood cells (neutrophil, eosinophil, basophil, lymphocyte, and monocyte), and calculated 

the Stokes vector derived parameters: the degree of polarization (DOP), the degree of linear 

polarization (DOLP), and the degree of circular polarization (DOCP)). We also calculated 

Stokes vector data based on the polarized hyperspectral imaging setup. The preliminary results 

demonstrate that Stokes vector derived parameters (DOP, DOLP, and DOCP) could improve the 

visualization of granules in granulocytes (neutrophils, eosinophils, and basophils). Furthermore, 

Stokes vector derived parameters (DOP, DOLP, and DOCP) could improve the visualization of 

surface structures (protein patterns) of lymphocytes enabling subclassification of lymphocyte 

subpopulations. Finally, S2, S3, and DOCP could enhance the morphologic visualization of 

monocyte nucleus. We also demonstrated that the polarized hyperspectral imaging setup could 

provide complementary spectral information to the spatial information on different Stokes vector 
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parameters of white blood cells. This work demonstrates that polarized light imaging & polarized 

hyperspectral imaging has the potential to become a strong imaging tool in the diagnosis of 

disorders arising from white blood cells.
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1. INTRODUCTION

White blood cells (leukocytes) function as the body’s defenders against pathogens. They 

can be broadly classified into five different types: basophils, eosinophils, neutrophils, 

lymphocytes, and monocytes. Blood smear analysis is a common procedure to accompany a 

standard complete blood count (CBC) of all the elements inside a sample of blood, including 

white blood cells. Differences in the number, proportion, and morphology (e.g., size, shape, 

granulation, nuclear size and condensation) of white blood cells are associated with a variety 

of diseases and conditions. For example, the presence of immature lymphocytes known 

as lymphoblasts or immature neutrophils known as myeloblasts in large numbers result in 

leukemia [1]. This makes an accurate identification and count of different types of white 

blood cells crucial in disease diagnosis.

Current methods for counting white blood cells include manual and automatic methods. 

Manual methods microscopic examination of stained peripheral blood slides to count and 

classify white blood cells; however, this process is time-consuming and highly dependent 

on the skills of the technician, pathologist or clinician performing the task, which creates 

significant room for error [2]. Automated methods have made large progress in easing 

the burdens of manual classification but are notably suboptimal in the presence of cell 

abnormalities, requiring manual analysis [3, 4].

Hyperspectral imaging (HSI) is a novel imaging technique first used in remote sensing 

that has since found applications in many different fields, including biomedical applications 

[5]. Each image represents a three-dimensional data cube with two spatial dimensions 

and one spectral dimension with many discrete channels, allowing for more complex 

spectral analysis. Our group has investigated several machine learning and deep learning 

algorithms for head and neck cancer detection based on hyperspectral imaging, including 

principal component analysis (PCA) [6], tensor-based computation and modeling [7], the 

incorporation of support vector machine (SVM) into a minimum spanning forest [8, 9], non-

negative matrix factorization (NMF) [10], the combination of superpixels, PCA, and SVM 

[11], as well as convolutional neural networks (CNN) [12, 13, 14, 15, 16, 17]. Recent works 

have shown the usefulness of hyperspectral imaging for white blood cell classification. Li 

et al used an acousto-optic tunable filter (AOTF) based molecular hyperspectral system to 

distinguish the nucleus from the cytoplasm in white blood cells [18]. Robison et al used 

a snapshot hyperspectral camera to differentiate red blood cells and white blood cells on 

unstained slides [19]. Duan et al proposed a leukocyte segmentation algorithm for automatic 

classification of white blood cells using an AOTF-based hyperspectral system [20]. Further 
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research has combined HSI with deep learning methods to further improve classification 

accuracy [21, 22, 23, 24].

Polarized light imaging is a technique used to reveal morphological features that cannot 

be identified by unpolarized light techniques. This modality acquires the polarization 

characteristics of light which can reveal a wide range of structural features in biological 

tissues. There is significant research on the interaction of polarized light with biological 

tissues [25, 26]; however, few have investigated this interaction in white blood cells. 

Current research largely integrates polarized light scattering with flow cytometry rather than 

optical imaging to detect morphological differences in white blood cells [27, 28]. Optical 

polarization imaging has mainly found use in detecting cell abnormalities and features inside 

phagocytic white blood cells. Polarized hyperspectral imaging (PHSI) combines polarized 

light imaging with HSI to acquire the polarization state, spectrum, and spatial information 

of a sample. We have previously used PHSI combined with machine learning to detect head 

and neck cancer on tissue slides [29, 30, 31].

In this paper, we developed a microscopic imaging system for improving the visualization 

of microstructures of white blood cells on Wright’s stained blood smear slides. Firstly, 

we demonstrated that our customized microscope has good performances in visualizing 

the granules in granulocytes (i.e., neutrophils, eosinophils, and basophils), cells of the 

innate immune system that are distinguished morphologically by the presence of distinct 

granules in their cytoplasm [33], which impart different functions in immune responses (e.g., 

neutrophils and basophils defend against bacteria and parasites, respectively). Degranulation 

of granulocytes is a critical cellular process that releases antimicrobial cytotoxic and other 

important molecules from granules. The normal function of granulocytes is essential to 

health, and when impaired, the clinical manifestations are diverse and significant. For 

instance, granulocytopenia, an abnormally low concentration of granulocytes in the blood, 

reduces the body’s resistance to infections. On the other hand, decreased granulation 

by granulocytes (e.g., hypogranulation) may be indicative of a pre-leukemic state (e.g., 

myelodysplastic syndrome) that can lead to the development of leukemia. Secondly, we 

demonstrated that our customized microscope performed well in visualizing the surface 

structures of lymphocytes, which may reflect surface protein expression patterns (e.g., 

antigen receptors) that depend on the type of lymphocyte (B or T-cell) and/or degree 

of maturation (i.e., lymphoblast vs more mature) and/or activation stages (exposed to 

antigen or not). and their maturation (i.e., lymphoblast vs mature) and/or activation stages. 

Lymphocytes are central components of adaptive immune responses that bear antigen 

receptors that specifically recognize different components of a pathogen (i.e, antigens). 

When a lymphocyte encounters a pathogen and binds the specific antigen that its antigen 

receptors recognize, it becomes activated, divides, and goes on to play important effector 

roles such as producing antibodies (i.e., B-cells) or defending against cancers (i.e., T-cells) 

[34, 35]. Thirdly, we demonstrated that our customized microscope has good performances 

in visualizing the morphologic features of the nucleus of monocytes. Monocytes are 

the largest type of white blood cell. Monocytes play critical roles in innate immunity, 

adaptive immune responses, and tissue repair. Finally, we demonstrated that our customized 

microscope could provide complementary spectral information to the spatial information on 

different Stokes vector parameters of white blood cells. Generally, this study demonstrates 
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that polarized light imaging & polarized hyperspectral imaging has the potential to become a 

strong imaging tool for the diagnosis of diseases/disorders of white blood cells.

2. METHODS

2.1 Polarized light imaging & polarized hyperspectral imaging

Under both the polarized light imaging setup and the polarized hyperspectral imaging setup, 

our customized microscopic system is able to acquire Stokes vector parameters (S0, S1, 

S2, and S3). Stokes vector imaging is realized by two polarizers and two LCVRs. Figure 

1 demonstrates the polarized light imaging setup and the polarized hyperspectral imaging 

setup of the microscopic system.

Polarizer 1 was set at 45 degrees, and polarizer 2 was set at 0 degrees. LCVR 1 was set 

at 0 degrees, and LCVR 2 was set at 45 degrees. The system is capable of full Stokes 

polarimetric imaging, which produces all four components of the Stokes vector. Thus, the 

system can completely define the polarization properties of transmitted light. The way to 

calculate the four elements of Stokes vector (S0, S1, S2, and S3) is expressed in Equation 

(1):

S0 = Iℎ + Iv , S1 = Iℎ − Iv
S2 = 2 ∗ I45 − Iℎ + Iv
S3 = Iℎ + Iv − 2 ∗ Ilc

(1)

where Ih represents the light intensity measured with a horizontal linear analyzer, in 

which the retardations of LCVR 1 and LCVR 2 are both set at 0 rad; Iv represents the 

light intensity measured with a vertical linear analyzer, in which LCVR 1 is set at 0 

rad retardation and LCVR 2 is set at π rad retardation; I45 represents the light intensity 

measured with a 45 degrees oriented linear analyzer, in which LCVR 1 and LCVR 2 are 

both set at π/2 rad retardation; Ilc represents the light intensity measured with a right 

circular analyzer, in which LCVR 1 is set at 0 rad retardation and LCVR 2 is set at π/2 

rad retardation. The phase retardation of LCVR is determined by different values of voltage 

applied on it. In addition, the value of S0 is equal to the value of light intensity.

After acquiring the four Stokes vector parameters, we calculated the Stokes vector derived 

parameters DOP, DOLP, DOCP using Equation (2):

DOP = sqrt(S1 ∗ S1 + S2 ∗ S2 + S3 ∗ S3)/S0
DOLP = sqrt(S1 ∗ S1 + S2 ∗ S2)/S0
DOCP = S3/S0

(2)

Comparing to the polarized light imaging setup, the polarized hyperspectral imaging setup 

can help us to get more insights into the interaction between white blood cells and light at 

different wavelengths by extracting the spectra of Stokes vector parameters. The polarized 

hyperspectral imaging setup of microscopic system uses a SnapScan hyperspectral camera 

instead of the RGB camera. In the polarized hyperspectral imaging dataset obtained by 
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the system, each Stokes vector parameter corresponds to a 3D data cube with two spatial 

dimensions and one spectral dimension, as is shown in Figure 2.

2.2 Synthetic RGB images

To generate synthetic RGB images from Stokes vector data cubes, we adopted an HSI-to-

RGB transformation function similar to the spectral response of human eye and modified 

it for our data to generate the synthetic RGB images [32]. The transformation function 

is shown in Figure 3. In the transformation process, three different spectral response 

curves (R,G,B) are multiplied with the data cubes to generated the three images at the 

three channels (red, green, blue) of synthetic RGB images. We applied this HSI-to-RGB 

transformation function to all the four Stokes vector parameters (S0, S1, S2, and S3) to 

generate four sets of PHSI-synthesized RGB images.

2.3 Spectra extraction

In order to accurately extract the spectra of Stokes vector parameters (S0, S1, S2, and S3) 

from different types of white blood cells, we manually outlined the cell regions in the 

synthetic RGB images of S0 to generate the binary masks of cells. The cell masks generated 

from S0 were also applied to S1, S2, and S3 to extract the same regions of interest (ROI) 

from the synthetic RGB images. In the next step, we apply the cell binary mask to the data 

cubes of Stokes vector parameters (S0, S1, S2, and S3) to extract the four spectra (S0, S1, 

S2, and S3) of the cell ROI with mean and standard deviation from all the pixels in the 

ROI. This process can help to get rid of the influence of background pixels on the spectra of 

Stokes vector parameters (S0, S1, S2, and S3).

3. RESULTS

3.1 Polarized light images of granulocytes (neutrophils, eosinophils, and basophils)

Figure 4, Figure 5, and Figure 6 demonstrate the RGB images of Stokes vector parameters 

(S0, S1, S2, and S3) and Stokes vector derived parameters (DOP, DOLP, and DOCP) of 

an eosinophil, a basophil, and a neutrophil from a Wright’s stained blood smear slide. The 

preliminary results demonstrate that Stokes vector derived parameters (DOP, DOLP, and 

DOCP) could improve the visualization of granules in granulocytes (eosinophils, basophils, 

and neutrophils), and DOCP performs the best among the three parameters. The RGB 

images were collected by polarized light imaging setup.

3.2 Polarized light images of lymphocytes

Figure 7 demonstrates the RGB images of Stokes vector parameters (S0, S1, S2, and S3) 

and Stokes vector derived parameters (DOP, DOLP, and DOCP) of a lymphocyte from a 

Wright’s stained blood smear slide. The preliminary results demonstrate that Stokes vector 

derived parameters (DOP, DOLP, and DOCP) could improve the visualization of surface 

structures of lymphocytes, and DOCP performs the best. The surface patterns shown in the 

images may reflect surface protein expression patterns (e.g., antigen receptors) that depend 

on the type of lymphocyte (B or T-cell) and/or degree of maturation (i.e., lymphoblast vs 

more mature) and/or activation stages (exposed to antigen or not). Figure 8 demonstrates the 
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RGB images of S0 and DOCP of other four lymphocytes, which show more apparent surface 

patterns. The RGB images were collected by the polarized light imaging setup.

3.3 Polarized light images of monocytes

Figure 9 demonstrates the RGB images of Stokes vector parameters (S0, S1, S2, and S3) and 

Stokes vector derived parameters (DOP, DOLP, and DOCP) of a monocyte from a Wright’s 

stained blood smear slide. The RGB images were collected by the polarized light imaging 

setup.

The polarized light imaging setup could help to visualize specific microstructures (granules, 

nuclear size, contour and degree of condensation, cell surface structures) on granulocytes 

or lymphocytes. The visualization of monocytes by polarized light imaging did not show 

advantages in catching specific microstructures. However, we used contrast to quantitatively 

measure the image quality of different Stokes vector related parameters of monocytes, and 

found that polarized light imaging could improve the image contrast of the large nucleus of 

monocytes.

3.4 Polarized hyperspectral imaging

In this study, rather than just use the polarized light imaging setup to collect the spatial 

information of white blood cells, we also employ polarized hyperspectral imaging setup 

to collect the spatial and spectral information simultaneously. Figure 10 demonstrates the 

synthetic RGB images of Stokes vector data cubes (S0, S1, S2, and S3) of one monocyte 

from a Wright’s stained blood smear slide with the corresponding RGB images collected 

under the polarized light imaging setup. Figure 11 demonstrates the corresponding spectra 

of S0, S1, S2, and S3 based on the mean and standard deviation of pixels belonging to the 

monocyte. The four spectra have different shapes comparing to each other, and the spectrum 

of S1, S2, and S3 have more fluctuations than the spectrum of S0.

From the representative images in Figure 10, we found that the synthetic RGB images 

acquired under polarized hyperspectral imaging setup and the RGB images acquired under 

polarized light imaging setup share some similarities. For example, in the two sets of 

images, S3 both improve the visualization of the monocyte. However, there are some 

differences. For instance, the difference between synthetic RGB images of S2 and S3 from 

polarized hyperspectral imaging is larger than the RGB images of S2 and S3 from polarized 

light imaging. We need to further improve the HSI-to-RGB transformation function to make 

the synthetic RGB images of Stokes vector parameters look closer to the real RGB images 

of Stokes vector parameters.

4. DISCUSSION AND CONCLUSION

In this study, we developed a microscopic imaging system for improving visualization of 

white blood cells on Wright’s stained peripheral blood smear slides, with two different 

setups (polarized light imaging and polarized hyperspectral imaging). We demonstrate that 

our customized microscope could improve the visualization of granules in granulocytes 

(neutrophils, eosinophils, and basophils). It could also enhance the visualization of surface 

structures of lymphocytes, which may reflect surface protein expression patterns (e.g., 
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antigen receptors) that depend on the type of lymphocyte (B or T-cell) and/or degree of 

maturation (i.e., lymphoblast vs more mature) and/or activation stages (exposed to antigen 

or not). Furthermore, it could improve the visualization of morphology on nucleus of 

monocytes. We also demonstrated that the polarized hyperspectral imaging setup could 

provide complementary spectral information to the spatial information on different Stokes 

vector parameters of white blood cells.

As is discussed in the introduction section, few have investigated this interaction in white 

blood cells. To the best of our knowledge, this is the first work to apply polarized light 

imaging & polarized hyperspectral imaging to improve the visualization of white blood 

cells. This work shows that polarized light imaging & polarized hyperspectral imaging has 

the potential to become a strong imaging tool for the diagnosis of diseases/disorders of white 

blood cells. In our future study, we will acquire more images from white blood cells under 

more clinical situations, and incorporate our customized microscope with more quantitative 

analysis methods.
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Figure 1. 
The setups of polarized light imaging (left) and polarized hyperspectral imaging (right) of 

our customized microscopic system.
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Figure 2. 
Diagram of full-polarization hyperspectral imaging data cubes. The data cube of each Stokes 

parameter (S0, S1, S2, and S3) has three dimensions including two spatial dimensions (x, y) 

and one spectral dimension (λ).
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Figure 3. 
Transformation function to synthesize pseudo-RGB images from the polarized hyperspectral 

data cubes. In the transformation process, three different spectral response curves (R,G,B) 

are multiplied with the data cubes to generated the three images at the three channels (red, 

green, blue) of synthetic RGB images.
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Figure 4. 
The four images on the top row (left to right) demonstrate the RGB images of Stokes vector 

parameters (S0, S1, S2, and S3) of an eosinophil on a Wright’s stained blood smear slide. 

The three images on the bottom row (left to right) demonstrate the RGB images of Stokes 

vector derived parameters (DOP, DOLP, and DOCP) of the eosinophil.
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Figure 5. 
The four images on the top row (left to right) demonstrate the RGB images of Stokes vector 

parameters (S0, S1, S2, and S3) of a basophil on a Wright’s stained blood smear slide. The 

three images on the bottom row (left to right) demonstrate the RGB images of Stokes vector 

derived parameters (DOP, DOLP, and DOCP) of the basophil.
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Figure 6. 
The four images on the top row (left to right) demonstrate the RGB images of Stokes vector 

parameters (S0, S1, S2, and S3) of a neutrophil on a Wright’s stained blood smear slide. The 

three images on the bottom row (left to right) demonstrate the RGB images of Stokes vector 

derived parameters (DOP, DOLP, and DOCP) of the neutrophil.
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Figure 7. 
The four images on the top row (left to right) demonstrate the RGB images of Stokes vector 

parameters (S0, S1, S2, and S3) of a lymphocyte on a Wright’s stained blood smear slide. 

The three images on the bottom row (left to right) demonstrate the RGB images of Stokes 

vector derived parameters (DOP, DOLP, and DOCP) of the lymphocyte.
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Figure 8. 
The four images on the top row (left to right) demonstrate the RGB images of S0 from 

four different lymphocytes on a Wright’s stained blood smear slide. The four images on the 

bottom row are the corresponding RGB images of DOCP.
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Figure 9. 
The four images on the top row (left to right) demonstrate the RGB images of Stokes vector 

parameters (S0, S1, S2, and S3) of a monocyte on a Wright’s stained blood smear slide. The 

three images on the bottom row (left to right) demonstrate the RGB images of Stokes vector 

derived parameters (DOP, DOLP, and DOCP) of the monocyte.
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Figure 10. 
The synthetic RGB images of Stokes vector data cubes (S0, S1, S2, and S3) of one 

monocyte from a Wright’s stained blood smear slide acquired under the polarized 

hyperspectral imaging setup, and the corresponding RGB images acquired under the 

polarized light imaging setup.
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Figure 11. 
The corresponding spectra of S0, S1, S2, and S3 are based on the mean and standard 

deviation of pixels belonging to the monocyte. The four spectra have different shapes 

compared to each other, and the spectrum of S1, S2, and S3 have more fluctuations than the 

spectrum of S0.

Zhou et al. Page 20

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2024 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	INTRODUCTION
	METHODS
	Polarized light imaging & polarized hyperspectral imaging
	Synthetic RGB images
	Spectra extraction

	RESULTS
	Polarized light images of granulocytes (neutrophils, eosinophils, and basophils)
	Polarized light images of lymphocytes
	Polarized light images of monocytes
	Polarized hyperspectral imaging

	DISCUSSION AND CONCLUSION
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Figure 9.
	Figure 10.
	Figure 11.

