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Abstract

Frequency-dependent linear-permittivity measurements are commonplace in the literature, 

providing key insights into the structure of dielectric materials. These measurements describe 

a material’s dynamic response to a small applied electric field. However, nonlinear dielectric 

materials are widely used for their responses to large applied fields, including switching in 

ferroelectric materials, and field tuning of the permittivity in paraelectric materials. These 

behaviors are described by nonlinear permittivity. Nonlinear-permittivity measurements are 

fraught with technical challenges because of the complex electrical coupling between a sample 

and its environment. Here, we describe a technique for measuring the complex nonlinear 

permittivity that circumvents many of the difficulties associated with other approaches. We 

validate this technique by measuring the nonlinear permittivity of a tunable Ba0.5Sr0.5TiO3 thin film 

up to 40 GHz and comparing our results with a phenomenological model. These measurements 

provide insight into the dynamics of nonlinear dielectric materials down to picosecond timescales.

I. OVERVIEW

Ferroelectric and related materials have many applications that rely on a nonlinear 

relationship between the electric field and the polarization [1]. For example, the switching of 

the built-in polarization leads to both non-volatile memory and alternative transistor designs 

that utilize switching dynamics to increase power efficiency [2–8]. In microwave electronics, 

tunability of the permittivity with applied electric field enables components such as filters 

and phase shifters to be reconfigured by applying a dc voltage [9–12]. These switching 

and tuning processes can have complex time dependence that is difficult to measure at 

microwave frequencies.

In nonlinear dielectric materials, mesoscale structure, including domain walls and polar 

nanoregions (PNRs), [13–20] strongly influences the dynamics of nonlinear dielectric 
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materials under an applied electric field. For example, PNRs in BaxSr1 − xTiO3 thin films 

affect microwave-frequency dielectric loss and dispersion. Several reports also attribute the 

broad temperature dependence of the ferroelectric-paraelectric phase transition to PNRs 

[17–19,19,21–26]. While a great deal of previous research focused on understanding the 

effects of nanostructure on dielectric properties, in recent years researchers are making rapid 

progress in designing specific nanostructures in dielectrics to induce specific properties. 

Examples include low-loss tunable Ruddlesden-Popper (RP) superlattices [27], superlattices 

with polar vortices [28,29], and nanoparticles with vortex domains [30,31]. In all of these 

cases, theoretical tools (mesoscale theory and density-functional theory) could predict 

the static dielectric properties [27–30], but the dynamic properties remain more difficult 

to describe. Notably, even though reducing dielectric loss is a main motivation for the 

development of RP dielectrics, the current physical picture of loss mechanisms in those 

materials is qualitative, rather than predictive [20, 27]. In this case, the experimental 

characterization is limited to linear permittivity and static tuning. The addition of nonlinear-

permittivity measurements would provide additional information that could aid in the 

development and validation of dynamic models.

Figure 1 schematically shows two approaches to nonlinear measurements. At low 

frequencies, the interpretation of time-domain measurements is straightforward [Fig. 1(a)]. 

One applies a steplike voltage pulse to a capacitor, and measures the current that flows 

as the capacitor charges [32–35]. The current is proportional to the time-derivative of 

the polarization. At short timescales (10 s of ps), this approach becomes more difficult 

because it becomes increasingly hard to account for all of the sources of signal distortion 

in the experiment [34,35]. Time-domain calibrations are possible in principle, but require 

specialized instrumentation and would add a great deal of complexity to a measurement 

system [36]. We are unaware of any attempts to use time-domain calibrations in this context. 

Instead, Refs. [34,35] relied on a circuit model that described the coupling between pulse 

width, the linear capacitor charging time, and the switching dynamics of the material they 

measured. As a consequence, the physical interpretation of their measurements depended on 

their model.

In principle, frequency-domain measurements [Fig. 1(b)] can circumvent these obstacles 

because one can correct for signal distortion (Sec. III A). Frequency-domain measurements 

quantify dynamics in terms of harmonics and frequency mixing products generated by 

nonlinear processes within a material. Most frequency-mixing measurements use either 

low-frequency (< 1 GHz) [25,26,37], or optical [1,21,38] techniques. These frequency ranges 

allow for useful approximations that simplify nonlinear-permittivity measurements. At low 

frequencies, one can use lumped-element circuit analysis; while at optical frequencies one 

can use the slowly varying envelope approximation. In the microwave regime, lumped-

element models are increasingly difficult to apply at high frequencies. Larger test devices 

can show distributed effects. These effects can be mitigated by using smaller devices, but 

then the calibration is more sensitive to the difficult-to-model electromagnetic fields near the 

probes. At the same time, the slowly varying amplitude approximation is not viable due to 

sample size and dielectric loss.
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Another challenge of microwave-frequency measurements is that the phase of the mixing 

products relative to the incident signals, which carries vital information about the dynamics, 

is difficult to determine. While the relative phase of two microwave signals at the same 

frequency can be measured by mixing the two signals, cross-frequency phase relationships 

are much harder to establish. These phase relationships are important because they are 

necessary to describe the shape of a time-domain waveform influenced by nonlinear 

processes. For example, the phase of the mixing products distinguishes between nonlinear 

gain and loss, and between increases and decreases in phase velocity.

Here, we describe a frequency-domain technique that resolves the frequency-dependent 

complex nonlinear permittivity. Specifically, we use a large-signal network analyzer 

(LSNA) to demonstrate nonlinear-permittivity measurements from 0 to 40 GHz with cross-

frequency phase resolution and absolute power calibration. In our experiments, we fabricate 

waveguides on a nonlinear Ba0.5Sr0.5TiO3 (BST) thin film, and measure the waves generated by 

nonlinear mixing within the waveguide. The key contributions are cross-phase calibration, 

power calibration, and our ability to interpret our results as fundamental materials properties 

rather than as ad hoc circuit parameterizations [39–41].

This paper is organized as follows. Section II describes how to relate nonlinear permittivity 

to experimentally accessible currents and voltages. Section III describes how we perform 

calibrated nonlinear microwave measurements of lithographically fabricated waveguide 

structures, and how these measurements can determine linear and nonlinear permittivity. 

Section IV then describes how we expect the measurements to look on the basis of 

phenomenological theory, and finally in Sec. V, we compare the results of a preliminary 

set of measurements to these theoretical expectations.

II. NONLINEAR CIRCUIT THEORY

Figure 2 illustrates how the nonlinear behavior of a dielectric leads to small-signal frequency 

mixing and harmonic generation. The model we use here is given explicitly in Sec. IV 

[42], but in this section we focus on its qualitative behavior. To reflect the basic features 

of our experimental data (Sec. V), we chose a model that does not show any hysteresis 

but is nonlinear in the sense that the permittivity changes in response to a large applied 

electric field. Equivalently, this changing permittivity can also be expressed as a nonlinear 

relationship between D and E [Fig. 2(a)]. When a field is applied, the material takes some 

time to relax to a new configuration. The relaxation dynamics lead to a difference between 

the response to a time-varying field [the cyan line in Fig. 2(a)] and the response to a dc 

field (the black line). While the model does not include hysteresis, the time lag between the 

response of the material and the applied field leads to loops in the D − E plot.

In our experiment, we characterize the dynamic nonlinear behavior using small sinusoidal 

electric fields. For reference, the amplitude of the sinusoidal signals is below 0.003  Vμm−1

root-mean-square, while the field necessary to change the permittivity by about 33% is 

8 Vμm−1. At lower frequencies it is possible to reconstruct a full D E  curve by applying 

a large, time-varying electric field and measuring harmonics of the input signal [43]. 

However, at microwave frequencies, small signals are convenient for several reasons. First, 
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dielectric loss increases with frequency, and a microwave-frequency signal large enough 

to significantly change the dielectric properties of a sample will also change the sample 

through heating. Another difficulty is that the nonlinear behavior in the measurement 

equipment can obscure the nonlinear response of the sample. While the nonlinearity of 

the measurement equipment can be mitigated, this is typically only possible in a narrow 

frequency range [44,45]. At the power levels we employ, we only detect the leading-order 

nonlinear response, the second-order mixing products. We measure these mixing products in 

the presence of a large applied dc field, because without this field, the second-order mixing 

products we seek to measure are suppressed by symmetry.

In Fig. 2, we show a simulation analogous to our experiment: a superposition of a dc 

field and two sinusoidal signals at different frequencies ω1 and ω2 [Fig. 2(b)] is applied 

to the material. Conceptually, one sinusoidal signal alters the permittivity of the material, 

and the second signal probes this change in permittivity. The response of the material 

includes a linear response, d 1 , which consists of the Fourier components with frequencies 

ω1 and ω2, as well as a second-order nonlinear response d 2  with Fourier components 

ω1 + ω2, ω1 − ω2 , 2ω1, 2ω2, and dc. In Fig. 2(c), we plot d 1  and d 2 . Figure 2(d) compares 

three models of the response of the material: a linear approximation D 1 = Ddc + d 1 , the 

second-order nonlinear approximation D 2 = Ddc + d 1 + d 2 , and a solution obtained by 

Euler integration D ∞ . We see that the amplitude of the higher-frequency oscillations in 

D ∞  is larger when E t  is smaller. This asymmetry arises because the permittivity of the 

material is higher with a smaller applied field. The second-order correction, d 2 , restores 

this asymmetry (tuning) that the linear approximation fails to capture. Note that the relative 

phase of the linear response d 1  and the nonlinear response d 2  determines whether the 

nonlinearity enhances the amplitude of D t  or diminishes it.

Formally, we model the behavior of a material by a Volterra-series expansion, which 

expresses a nonlinear process by a power-series expansion of the response of a system 

in powers of the stimulus [46]. The nth term in the expansion, d n t , is proportional to the 

nth power of e t . The relationship between these variables can be expressed in either the 

frequency domain or the time domain. The terms in the frequency-domain Volterra series 

can be written

d̂k
1 ω = ε0ε̂jk

1 ω êj ω ,

(1)

d̂l
2 ω = ε0∫ dω1∫ dω2δ ω − ω1 − ω2 × ε̂jkl

2 ω1, ω2 êj ω1 êk ω2 ,

(2)
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dkn + 1
n ω = ε0∫ dωδ ω − Σω εk1, …, kn + 1

n ω ∏
j = 1

n
ekj ωj ,

(3)

where δ is the Dirac delta function, and ε n ω  is the nth-order permittivity. In this 

formulation, the nonlinear permittivity tensors depend on dc bias field, and in the case 

of hysteretic materials, also depend on the past history of the applied bias field. Equation 

(3) states that when the material is stimulated by n sinusoidal signals whose frequencies 

sum to ω, the amplitude of the mixing product d n ω  is proportional to the nth-order 

permittivity ε n ω . To express the model more compactly, we define ω = ω1, ω2, …, ωn  and 

Σω = ω1 + ω2 + ⋯ + ωn.

Using a Volterra-series approach, we develop an equivalent circuit theory to describe how 

a nonlinear dielectric perturbs a waveguide mode. We follow the logic of Ref. [47], which 

derives the well-known telegraphers equations from Maxwell’s equations in a single-mode 

waveguide. Reference [47] defines a voltage V̂  and a current Î that are proportional to the 

transverse electric field êT and the transverse magnetic field ĥT, respectively:

ĥT =
Î z
I0

Ĥ x, y ,

(4)

êT =
V̂ z
V 0

Ê x, y .

(5)

Here, Ĥ and Ê are normalized transverse fields that do not depend on z. According to Ref. 

[47], there is not a universally accepted way to determine the normalization constants I0 and 

V 0. However, they are partially determined by a power-based normalization convention: in 

the situation where there is a wave propagating in one direction, the power traveling down 

the waveguide is given by V I*.

We make an additional simplifying assumption, which is that our waveguide supports a 

transverse electric-magnetic (TEM) mode whose electric and magnetic fields are in the 

plane perpendicular to the propagation direction. This approximation is good so long as 

the gap width W  is much less than the wavelength of the guided mode [48]. To model 

the nonlinear material properties, we include the first two terms in the Volterra-series 

expansion of d̂, and assume the materials involved have a linear magnetic response. From 

energy-based arguments, in direct analogy with Ref. [47], we obtain a generalized form of 

the telegrapher’s equations:
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d
dzV̂ ω, z = − Ẑ ω Î ω, z ,

(6)

d
dzÎ ω, z = − Ŷ 1 ω V̂ ω, z − N̂ ω, z ,

(7)

N ω, z = ∫ dωδ ω − Σω Y 2 ω ∏
j = 1

2
V ωj, z .

(8)

These equations are parameterized by a distributed admittance Ŷ 1 ω , nonlinear admittance 

Ŷ 2 ω , and impedance Ẑ ω . These coefficients are given by expressions involving surface 

integrals over the x − y plane:

Ẑ ω = iω
I0

2∫ dS μ̂jk ω ℋ̂j
* ω ℋ̂k ω ,

(9)

Ŷ 1 ω = iω
V 0

2∫ dS ℰ̂jk
1 ω ℰ̂j

* ω ℰ̂k ω ,

(10)

Ŷ 2 ω1, ω2 = i ω1 + ω2

V 0
2V 0

∫ dS × ε̂jkl
2 ω1, ω2 ℰ̂j

* ω1 + ω2 ℰ̂k ω1 ℰ̂l ω2 .

(11)

Equations (9) and (10) agree with the expressions given in Ref. [47] in the special case that 

there are no electric or magnetic fields in the propagation direction. Reference [47] did not 

consider the case of nonlinear materials and did not offer any expression for Ŷ 2 . Similar 

expressions to Eq. (11) can be derived for nonlinear magnetic materials, or materials with a 

higher-order dielectric nonlinearity.

A. Solution of the nonlinear telegrapher’s equations

To a good approximation, we can solve Eqs. (6)–(8) perturbatively, treating Ŷ 2  as a 

small parameter [49]. In our experiment, the microwave-frequency electric fields in the 
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waveguide are much smaller than the electric field required to change the permittivity 

of the nonlinear dielectric film by a substantial amount. We assume a solution of 

the form V̂ ω, z = V̂ 1 ω, z + V̂ 2 ω, z , Î ω, z = Î 1 ω, z + Î 2 ω, z , where Î 1 ≫ Î 2  and 

V̂ 1 ≫ V̂ 2 . The first-order voltage and current, V̂ 1  and Î 1 , represent the externally-

applied signals, while the second-order voltage and current V̂ 2  and Î 2  represent the waves 

generated by nonlinear mixing in the dielectric material. To lowest order, we set Ŷ 2 = 0, 

and Eqs. (6)–(8) reduce to the well-known telegrapher’s equations. These equations admit 

traveling wave solutions:

V̂ 1 z = V +e−γz + V −eγz,

(12)

Î 1 z = V +
Z0

e−γz − V −
Z0

eγz .

(13)

Here, γ = ẐŶ 1  is the propagation constant and Z0 = Ẑ /Ŷ 1  is the characteristic 

impedance. The unknown coefficients V + and V − are determined by boundary conditions. 

Once these coefficients are determined, we approximate the nonlinear term in Eq. (8) by

N ω ≈ ∫ dωδ ω − Σω Y 2 ω ∏
j = 1

2
V 1 ωj .

(14)

With this approximation, Eqs. (6)–(8) can be solved by a Green’s function approach. To 

construct a solution, we seek functions GV  and GI that satisfy the following differential 

equations:

dGV z, z′
dz = − Ẑ ω GI z, z′ ,

(15)

dGI z, z′
dz = − Ŷ 1 ω GV z, z′ + δ z − z′

(16)

Here, δ z − z′  is the Dirac δ function and models a pointlike current source at position z′. 
Once GI z, z′  and GV z, z′  have been computed, the voltage and current may be determined 
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by integrating the contributions of waves generated by the nonlinear current source N̂ ω, z′
at each position along the transmission line (with length l).

V̂ 2 ω, z = −
0

l
dz′GV z, z′ N̂ ω, z′ ,

(17)

Î 2 ω, z = −
0

l
dz′GI z, z′ N̂ ω, z′ .

(18)

B. Boundary conditions

We use boundary conditions based on the experimentally accessible quantities â and b̂ to 

solve for both the first-order solution, V 1  and I 1 , and for the form of the Green’s function. 

The wave parameters â and b̂ are defined with respect to an arbitrary, real, reference 

impedance Zref in terms of the current Î and voltage V̂  [47].

ân ≡ V̂ + ZrefÎ
2 ,

(19)

b̂n ≡ V̂ − ZrefÎ
2 .

(20)

The subscript n refer to ports 1 and 2, which we define to be the left and right edges of 

the waveguide. Note that the current is defined as flowing away from the port, so for â2 and 

b̂2, Î has the opposite sign as in Eqs. (13). The LSNA calibration that we describe in Sec. III 

allows us to measure the â and b̂ waves at the edge of our waveguides. In our analysis, we 

solve for the coefficients V + and V − assuming that the â wave at each end of the waveguide 

is given by its measured value.

We employ slightly different boundary conditions for the Green’s function than the first-

order solution. Green’s functions have homogeneous boundary conditions [50], and so we 

set the â wave to 0, rather than its measured value. In principle, we should also account for 

an inhomogeneous (proportional to â) contribution to the b̂ waves at the frequencies of the 

mixing products. In our case, we find that the â waves at these frequencies are negligible. 

We expect the â waves to be small because the LSNA is not sourcing any power at the 

frequencies of the mixing products, and we did not employ any highly reflective components 

in our setup. We found that including measured â waves in our analysis seemed to add noise 

to our results, because in our experiment these waves are near the limit of detection.
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If the left side of a waveguide is connected to a probe, we can assume as a boundary 

condition that â wave at z = 0 has the value â1. We arrive at the following relationship:

V̂ 0 + ZrefÎ 0 = 2â1 .

(21)

Meanwhile, if the right side of a waveguide is connected to a probe, we can assume as a 

boundary condition that â wave at z = l has the value â2.

V̂ l − Zref Î l = 2â2 .

(22)

In our measurements, we employ both two-port transmission lines, and one-port terminated 

transmission lines. One end of the terminated waveguide is connected to the probe, and 

the other is terminated by an open cirucit with a small capacitance compared to the rest of 

the transmission line. In terms of the impedance associated with this termination, Ẑl, the 

boundary condition on the right end of the terminated waveguide is

V̂ l = ẐlÎ l .

(23)

The equations given in Sec. IIA, with the boundary conditions in this section, allowed us to 

extract the nonlinear admittance from the measured wave parameters. In Sec. III, we discuss 

how to calibrate our measurements so that these boundary conditions can be applied.

III. EXPERIMENTAL APPROACH

A. Nonlinear calibration

To interpret LSNA measurements of our on-wafer waveguides, we need to characterize the 

relationship between ân
r and b̂n

r
, the raw signals measured by the receivers of an LSNA, and ân

and b̂n, the forward and backward waves at the edges of an on-wafer device. This relationship 

(calibration) accounts for signal distortion by all of the circuitry between the receivers of 

the LSNA and the sample, including the internal circuitry of the LSNA, the coaxial cables 

connecting the test ports of the LSNA to the probes, the bias tees and the wafer probes. We 

use a linear model to account for this distortion.

Figure 3 schematically shows the error model that we employ. We define three reference 

planes: the raw measurements, a coaxial reference plane at the connector to the wafer 

probes, and an on-wafer reference plane. As we discuss, this two-tiered structure is 

necessary for phase and amplitude calibrations. The 2 × 2 complex-valued matrices X1, Y 1, X2, 

and Y 2 are in T -parameter form, and describe how the â and b̂ waves change between 

reference planes.
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The LSNA calibration is a generalization of a traditional linear network analyzer calibration 

that also allows for phase and power calibrations. We model the relationship between the 

measured T  parameters of a linear device M  and their true values T  by M = XTY . In our 

two-tiered calibration model, X = X1X2 and Y = Y 2Y 1. By measuring a set of linear passive 

devices with known T  parameters, we determine seven of the eight complex numbers in 

X and Y  [51]. The remaining ambiguity is a feature of any linear error model determined 

solely from measurements of passive devices [52]. One way to resolve this ambiguity is 

to assume that either X or Y  represents a reciprocal network [51]. However, the first-tier 

error parameters X1 and Y 1 include the LSNA, and the signals measured by its receivers are 

subject to an unknown, and potentially nonreciprocal, scaling in magnitude and frequency. 

To determine the phase and amplitude of the â and b̂ waves, one must measure these 

quantities directly at some reference plane [52].

We determine the phase and amplitude by measuring these quantities at the coaxial reference 

plane immediately before the wafer probes. This reference plane is necessary because we 

lack on-wafer phase and power standards. Apart from an overall phase and amplitude, we 

use a short-open-load-thru (SOLT) calibration to determine the parameters in X1 and Y 1 up to 

40 GHz [53]. To establish the cross-frequency phase, we use a comb generator that produces 

periodic pulses in the time domain. The comb generator has a repetition rate of 10 MHz, 

and its Fourier spectrum consists of evenly spaced harmonics from 10 MHz up to 40 GHz. 

We attach a comb generator to port 3 of the LSNA for the duration of the experiment to 

serve as a phase reference. Thus, the phase of any signal at ports 1 or 2 could be determined 

by comparing to the phase of the reference at port 3, as long as all of the frequencies 

involved are multiples of 10 MHz. We also need to account for the fixed phase relationship 

between the phase reference and the signals measured at ports 1 and 2, and this relationship 

is determined by measuring a second comb generator attached to coaxial port 1. To calibrate 

the power of the â and b̂ waves, we measure the power sourced by the LSNA at port 1 at the 

coaxial reference plane.

B. On-wafer calibration

In order to interpret our mixing products in physical terms, we need to understand the 

relationship between the measured â and b̂ waves, and the guided modes of on-wafer 

waveguides. This involves measuring waveguides with well-understood properties, and 

constructing an error model from these measurements. Our on-wafer calibration standards 

are shorts, loads, and transmission lines, allowing for a multiline thru-reflect-line (MTRL) 

calibration [51]. The on-wafer calibration standards had an identical cross-sectional 

geometry to the test devices on the BST chip, but are patterned directly on a substrate with 

negligible dielectric dispersion at microwave frequencies tan δ < 0.005 . The calibration 

substrate also has a similar relative permittivity ε 1 ′ ≈ 24  to the substrate that the BST film 

was deposited on ε 1 ′ ≈ 22 . We do not need any phase or power calibration to construct our 

secondtier error parameters, X2 and Y 2. These matrices represent wave propagation through 

the wafer probes, which are made of reciprocal materials. This reciprocity removes any 

ambiguity in X2 and Y 2.
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Transmission lines make good calibration standards because their scattering parameters 

can be derived from fundamental electromagnetic theory. If one chooses Zref = Z0, then 

the T -parameter model of a transmission line is described by one unknown parameter, 

γ. Let M1 and M2 be T -parameter measurements of two transmission lines with lengths 

l1 and l2 = l1 + Δl. Reference [51] showed that the eigenvalues of matrix M1 M2
−1  are 

exp ± γΔl . This relationship means that, without any calibration, we can determine the 

propagation constant γ from measurements of two transmission lines with different lengths. 

By measuring a reflect standard and set of transmission lines, we can determine the error 

matrices X and Y  [51,54].

In practice, it is more convenient to set the reference impedance Zref to 50 Ω than Z0. The 

coaxial cables and probes leading up to the sample are designed to have a characteristic 

impedance near 50 Ω, and hence it is a natural choice for many measurements. To set the 

reference impedance, we make use of the fact that Z0 = γ /Ŷ . Our calibration transmission 

lines are fabricated on a substrate with little to no dielectric dispersion. In this case, we 

make the approximation Ŷ 1 = iωC0, where C0 is a frequency independent capacitance per 

unit length. This model of the admittance is justified by Eq. (10) under the assumption that 

the mode is TEM, and therefore the electric field is frequency-independent. To estimate the 

capacitance per unit length C0, we use the method described in Ref. [55]. We then modify 

the error matrices X and Y  to set the reference impedance to 50Ω [56]. By insisting that the 

capacitance is frequency independent, we implicitly determine the constant V 0 in Eq. (10). 

The power normalization condition determines the product I0
*V 0, so the waveguide current 

and voltage are unambiguously defined in terms of the guided mode electric and magnetic 

fields by the MTRL calibration.

In principle, there is some error in the calibration because the transmission lines on the BST 

test chip has a higher capacitance per unit length than the calibration standards by a factor 

of about 3/2 [56]. The systematic error introduced by this discrepancy should not influence 

our linear-permittivity estimates because our estimator of γ is based on the eigenvalues of 

measurements of pairs of transmission lines, and is therefore independent of the calibration 

[51]. To assess the magnitude of this uncertainty in our nonlinear measurements, we 

modeled the effect of a small parasitic capacitance to our analysis. As expected, this added 

error did not change our linear-permittivity estimates. Our nonlinear-permittivity estimates 

changed by less than the error bars. So, we conclude that the difference in distributed 

capacitance between our test structures and our calibration standards does not significantly 

degrade the quality of our data. We caution that for thicker films, or films with higher 

permittivity, some modifications to this calibration approach may be necessary to account 

for this effect.

C. Measurement configurations

Figure 4 shows two experiment configurations we use to measure 2nd order nonlinear 

mixing products. We use these two configurations because in our nonlinear measurements 

we encounter a trade-off between dynamic range and bandwidth. The dominant source of 

error in our nonlinear measurements is the nonlinearity of the sources and receivers in the 
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LSNA, which generated their own mixing products at exactly the frequencies of interest. 

Consequently, in our frequency-swept nonlinear measurements [Fig. (4a)], we have about 10 

dB of dynamic range even though the nonlinear signals from our sample are about 40 dB 

above the noise floor. In our voltage-swept nonlinear measurements [Fig. (4b)], we improve 

the dynamic range by fixing the source frequencies, using one-port devices, and employing 

filters to suppress spurious signals from the LSNA.

In the one-port measurements of the terminated transmission lines, we use a low-pass 

filter to remove signal content at 2ω1, 2ω2, and ω1 + ω2 generated by the sources. Likewise, 

high-pass filters placed in front of the receivers attenuated the signals at ω1 and ω2 and 

prevented mixing in the receivers. With these filters, the dynamic range increased to about 

30 dB for the frequencies under test in a narrow band around 7.8 GHz.

D. Sample preparation

To facilitate our measurements, we fabricate coplanar-waveguide transmission-line 

structures and coplanar waveguide offset open structures on the film (Fig. 5). We prepare 

our sample through standard deposition and lithography techniques. The BST film is 

grown to a thickness of 200 nm by pulsed laser deposition on the (001) surface of a 

LaAlO3 0.3 SrTaAlO6 0.7 (LSAT) substrate heated to 760 °C. The KrF ablation laser produced 

an incident laser fluence of 0.4J/cm2 at a repetition rate of 5 Hz. The film growth occurred 

under a background oxygen pressure PO2  of 40 Pa (30 mTorr). We pattern the test structures 

on the BST film by photolithography, followed by electron-beam deposition of a 500-nm-

thick gold layer with a 10-nm-thick titanium adhesion layer. We fabricated the calibration 

standards on the (001) surface of a LaAlO3 (LAO) substrate by the same process.

Photographs of the BST chip are shown in Fig. 5. The test devices on the BST 

thin film consisted of a collection of CPW structures and offset open structures of 

varying lengths: l = 0.420, 0.660, 0.880, 1.340, 2.240, 4.020, and 7.500 mm for the CPWs, 

and l = 0.720, 1.100, 1.620, 2.260, 4.700,  and 6.240  mmfor the offset opens. The CPWs had 

20 μm wide center conductors, 200 μm wide ground planes, and a 5μm gaps between the 

center conductor and the ground planes. The offset open structures have the same cross-

sectional geometry as the CPWs, but are terminated at one end with a 40μm gap to the 

ground plane.

E. Analysis overview

After performing the two-tiered calibration described in Sec. III, we perform both a linear 

and nonlinear characterization of our BST film to determine the permittivities ε̂ 1  and 

ε̂ 2  from the measured wave parameters. We treat these permittivities as complex frequency-

dependent scalars because we do not have enough information to independently determine 

all of the tensor elements. Because of the linear relationships between the admittances Ŷ 1

and Ŷ 2  and the permittivities ε̂ 1  and ε̂ 2 , our strategy is to determine Ŷ 1  and Ŷ 2  from 

measurements, and then use simulations to relate these quantities to ε̂ 1  and ε̂ 2 .
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The first step is a linear characterization to determine the circuit parameters Ŷ 1  and Ẑ
as a function of dc bias voltage and frequency. To do this, we measure a collection of 

transmission lines fabricated on the materials we wish to characterize, and make use of the 

fact that, if M1 and M2 are T -matrix measurements of two transmission lines whose lengths 

differ by Δl, the eigenvalues of M1 M2
−1  are exp ± γΔl  (Sec. III B). On our BST thin-film 

sample, we fabricate seven CPWs, leading to 21 different measurements (six independent 

measurements) of the quantity γΔl, and use linear regression against Δl to estimate γ. The 

linear admittance Ŷ 1 , is related to the propagation constant by γ = ẐŶ 1 . Under the 

assumption of single-mode TEM propagation, Ẑ depends only on the CPW geometry and 

metal conductivity [47, 57]. We estimate the value of Ẑ with the model described in Ref. 

[57]. From the theoretical Ẑ and measured γ, we can compute Ŷ 1. We use these linear circuit 

parameters in the nonlinear analysis.

Figure 6 illustrates our process for estimating Ŷ 2  from mixing product measurements. To 

measure the mixing products, we apply microwave power from both ends of the CPW as 

shown in Fig. 1(b). The incident power from port 2 is about −4 dBm, and the incident power 

from port 1 varied with frequency between −10 and −23 dBm. According to Eqs. (6)–(8), 

a waveguide excited by signals at ω1 and ω2 generates voltage and current waves at ω1 + ω2. 

The key insight from Sec. II that enables our nonlinear analysis is that the amplitudes of 

these mixing products are directly proportional to Ŷ 2 ω1, ω2 . In other words, the complex 

amplitude of the measured mixing products, b̂ ω1 + ω2 , is given by

b̂ ω1 + ω2 = b̂model  ω1 + ω2 Ŷ 2 ω1, ω2

(24)

where b̂model ω  is the hypothetical strength of the mixing products under the condition that 

Ŷ 2 = 1. To estimate Ŷ 2 ω , we measure the mixing product b̂2 ω  at ω1 + ω2 for our seven 

transmission lines, and use linear regression against b̂model ω1 + ω2  to determine Ŷ 2 ω . We also 

measure Ŷ 2 at the other second-order mixing frequencies: ω1 − ω2 , 2ω1, and 2ω2, but we focus 

on ω1 + ω2 for brevity.

The quantity b̂model is fully determined by the linear characterization. The first step to 

calculating b̂model is to reconstruct the spatial variation of the incident voltage waves from 

the measured values â1 ω1 , â2 ω1 , â1 ω2 , and â2 ω2 . Using the boundary conditions from Sec. 

II B, we can determine the traveling wave amplitudes V + and V −. From those amplitudes, 

and Eq. (12), we can estimate the spatial shape of the nonlinear current source density N̂ z

through Eq. (8). At this point, we solve for b̂model using a Green’s function approach. The 

Green’s function is given in Sec. IIA, and the unknown coefficients in the Green’s function 

are determined from Eqs. (15) to (16) with the boundary conditions from Sec. II B. With 

the Green’s function known, and the nonlinear current density N̂ z  known, the currents and 
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voltages at the frequencies of the mixing products are determined through Eqs. (17) and 

(18). These currents and voltages in turn can be used to determine b̂model.

The last step in our analysis is to relate the admittances Ŷ 1  and Ŷ 2  to the permittivities 

ε̂ 1  and ε̂ 2 . To simplify this relationship, we note that the electric field of a TEM mode 

is frequency independent. Therefore, the relationship between the admittances Ŷ 1  and Ŷ 2

and the permittivities ε̂ 1  and ε̂ 2  is also frequency independent. In our geometry, the 

linear admittance and the permittivity are approximately related by Ŷ 1 ω /iω = c0 + c1ε̂ 1 ω

[47,58,59]. The constants c0 and c1 can be computed through quasistatic finite-element 

methods. The nonlinear admittance Ŷ 2 ω  is linearly related to the strength of the dielectric 

nonlinearity, ε̂ 2 ω . To relate the nonlinear permittivity ε̂ 2  to the admittance, Ŷ 2 , we 

assume that the electric field in our waveguide (both microwave and dc) is given by the 

voltage between the center conductor and ground plane, divided by the gap width, W . This 

approximation leads to the relation Ŷ 2 = iω c1/W ε̂ 2 . From the agreement between our 

data and model (Fig. 8), we estimate that the error introduced by this approximation is about 

20% in the worst-case scenario (strong dc bias).

IV. THERMODYNAMIC MODEL

We compare our results to a physical model that predicts the nonlinear response of our 

BST thin film. To be comparable with our experiment, the model needs to describe the 

time dependence of the polarization, describe the change of the polarization in response to a 

large applied field, and be amenable to a small-signal Volterra-series expansion. Mesoscale 

models meet these requirements, but require detailed knowledge of the nanostructure of the 

material. The small-signal requirement rules out models like the Ishibashi-Orihara model, 

which assume the amplitude of the time-varying field is large enough to completely pole the 

material [60,61]. Many models, like the spherical-random-bond-random-field model, are not 

suitable because they do not describe the time dependence of the material [62].

In BST thin films, the relaxation dynamics of PNRs lead to permittivity that varies over 

a broad range of frequencies, often modeled by a distribution of relaxation times [17–20]. 

To our knowledge, there is no universally accepted first-principles method to predict the 

distribution of relaxation times for a given material. Even a conceptual picture of PNR 

dynamics remains a subject of current research [13,14].

Given the complexity of a first-principles model, we take a phenomenological approach to 

interpreting our measurements. We chose a model that uses a heuristic interpretation of PNR 

dynamics and the Landau-Ginzburg-Devonshire (LGD) free energy. This model, introduced 

in Ref. [37], incorporates the salient features of our data: tuning of the permittivity with 

an applied electric field and a distribution of relaxation times. It was used to describe the 

temperature dependence and frequency dependence of the third harmonic up to 100 kHz in 

Pb Mg1/3Nb2/3 O3. We expect this model to also apply to BST in the tens of GHz because BST 

has qualitatively similar tuning behavior and dispersion.
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The model describes the tuning processes in terms of the LGD free energy. In its simplest 

form, the LGD free energy U can be expressed in terms of the polarization P  and the 

phenomenological parameters α and β as U = 1/2 αP2 + 1/4 βP4. The one-dimensional 

model is justified because in our CPW structures, the electric fields are mostly in plane. 

The distribution of relaxation times is modeled by a function f t . The time evolution of the 

polarization is described by

P t = ε0Δε∫ dt′f t − t′ E t′ − βP3 t′ ,

(25)

where Δε = ε0α −1. Essentially, Eq. (25) models the polarization of a macroscopic region as 

a sum many coupled relaxation processes within identical anharmonic free-energy wells.

To model the nonlinear permittivity of our sample, we develop a perturbative expansion 

of Eq. (25) in powers of the electric field. We begin by writing the electric field as 

E t = Edc + e t  and the polarization as P t = Pdc + p 1 t + p 2 t + p 3 t + ⋯. We then 

substitute these series expansions into Eq. (25), and iteratively solve for p n  in terms of 

p 1 , …, p n − 1 . Setting e t = 0 and p t = 0, Eq. (25) admits a closed-form solution for 

Pdc if β > 0:Pdc = ε0ΔεENLT Edc/ENL , with T x = sinh 1/3 sinh−1 3 x [63,64]. We introduce 

the parameter ENL = 4α3/3β 1/2 with units of electric field to describe the strength of the 

nonlinearity. The function T x  has a sigmoidal shape, with a slope of unity for small 

arguments. With the dc polarization determined, calculating the Fourier transform of Eq. 

(25) yields

ε̂ 1 ω = ε∞ + Δεf̂E ω ,

(26)

ε̂ 2 ω = −4Pdc

ε0 ENL
2 f̂E Σω f̂E ω1 f̂E ω2 .

(27)

For convenience, we define the function f̂E ω = f̂ ω / 1 + 4T 2 Edc/ENL f̂ ω , where f̂ ω  is 

the Fourier transform of f t  in Eq. (25). We also add an additional parameter ε∞, which 

describes the high-frequency limit of the permittivity [17,18]. Qualitatively, both the real and 

imaginary parts of ε̂1 ω  peak at Edc = 0 Vm−1. The parameter ENL can be interpreted as a 

characteristic dc field strength necessary to cause appreciable tuning (about 64% at dc). On 

the other hand, ε̂2 ω  vanishes at Edc = 0 Vm−1, and is antisymmetric about 0 Vm−1. Note that 

the second-order permittivity is inversely related to ENL, so this parameter quantifies both the 

width of the tuning curve and the strength of the second-order nonlinearity.
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V. RESULTS AND DISCUSSION

As we expect from the model, the real and imaginary parts of the frequency-dependent 

permittivity tuned with the application of an electric field (Fig. 7). As we show in Fig. 

1, we apply the bias voltage between the center conductor and the ground planes. This 

resulted in a mostly in-plane dc and microwave electric field, which are superimposed 

onto one another. To check if the BST sample had hysteresis, we sweep the electric field 

in a cycle 0Vμm−1 8Vμm−1 − 8Vμm−1 8Vμm−1 0Vμm−1. No hysteresis larger 

than the measurement uncertainties is present. Both the real and imaginary parts of the 

permittivity have a peak near 0Vμm−1, and decrease as the magnitude of the bias field 

increases.

Equation (26) captures the basic features of the electric field and frequency dependence of 

the data. We assume that f̂ ω  is given by the Cole-Cole function f̂ ω = 1 + iωτ0
a −1

 [19]. 

The parameter τ0 is a phenomenological characteristic timescale. The parameter a describes 

the shape of the distribution of relaxation times, with the value a = 1 corresponding to 

the Debye model (one relaxation time), and smaller values describing wider distributions. 

This parameter also describes the limiting behavior of the dielectric loss at low frequencies 

ε 1 ′′ ∝ ωa. The model illustrates the close link between the dielectric loss and the tuning. 

The parameters τ0 = 0.49 ps, a = 0.50, ENL = 10.7  Vμm−1, ε∞ = 106, and Δε = 354 are estimated 

by a least-squares fit. Equation (25) states that the polarization relaxes to the lowest free 

energy by a superposition of coupled gradient descent processes. The free-energy gradient 

is steeper at large dc fields, so the relaxation is faster. This field-dependent relaxation 

speed manifests as a field-dependent loss tangent, and the imaginary part of the permittivity 

tunes more strongly (66% at 8Vμm−1) compared with the tuning of the real part (33% at 

8 Vμm−1).

As in the linear case, the model predicts the salient features of the dependence of ε̂ 2 ω1, ω2

on bias field and frequency (Fig. 8). Note that the black line in Fig. 8 is a prediction, rather 

than a fit. The parameters in Eq. (27) are determined from the linear-permittivity data in Fig. 

7. The model predicts the relaxationlike trend of ε̂ 2 ω1, ω2  with frequency, but somewhat 

overestimates the value of ε̂ 2 ω1, ω2 . More notably, even though we see no hysteresis in the 

linear data, we see some hysteresis in the field dependence of ε̂ 2 . Figure 8(c) shows that 

the absolute value of ε̂ 2  takes differing values on increasing and decreasing voltage sweeps, 

and that this difference is larger than the measurement uncertainties [65].

Extending this model to include spatial variation in the polarization could improve the 

accuracy of the model and provide physical insight. The electric field varies over the 

scale of the CPW gaps, causing different regions of the film to experience different dc 

bias. This large-scale inhomogeneity may impact the voltage dependence of the linear and 

nonlinear admittance. The polarization also varies on the scale of nanometers to hundreds 

of nanometers due to grain boundaries and PNRs. We speculate that interactions among 

PNRs might lead to different nonlinear coupling [other forms of the P3 term in Eq. (25)]. 
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While we conclude that Eq. (25) predicts most of the features of our data, we cannot exclude 

other models of nonlinear coupling. The samples that we characterize have relatively low 

dielectric loss, leading to a fairly flat frequency dependence for ε̂ 2 ω1, ω2 . In the future, we 

hope to evaluate more lossy samples and extend our measurements to higher frequencies. 

In this report, our main finding is that the measurement technique allows for broadband, 

calibrated, and model-independent measurements of material nonlinearity.

VI. CONCLUSIONS

In conclusion, we demonstrate the ability to measure nonlinear permittivity up to 40 GHz 

and develop a thermodynamic model informed by the data. We expect this technique to 

apply to a broad range of materials because the measurements and analysis used to produce 

Figs. 7 and 8 made no physical assumptions about the sample. These nonlinear-permittivity 

measurements provide a measurable quantity, independent of linear permittivity, that can be 

used to probe the complex dynamics of ferroelectric and related materials. The dynamics 

of these materials arise due to an interaction of many mechanisms including electrostatic 

energy, gradient energy, strain, and flexoelectricity. Nonlinear-permittivity measurements 

are a way to test models that include these different physical mechanisms. There are 

endless possibilities for manipulating the coupling between these effects to control domain 

structures and dielectric properties. For these materials to be used in high-speed electronics 

applications, it is necessary to understand their linear and nonlinear dynamics under an 

applied field.

The experimental data presented here is available online [66].
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FIG. 1. 
Schematic picture of nonlinear measurements of thin films. (a) In time-domain 

measurements, tuning dynamics are characterized by applying a voltage pulse V p t  to a 

capacitor and measuring the current I t = V t /Zin that flows as the capacitor charges. 

This current is related to the change of the polarization with respect to time. (b) We 

characterize tuning dynamics by exciting a waveguide patterned on a nonlinear material 

with two microwave frequencies ω1 and ω2, and measuring the waves generated by nonlinear 

mixing. The complex amplitudes â and b̂ correspond to the forward (towards the sample) and 

backward (from the sample) traveling waves, respectively. This method can be extended to 

much higher frequencies than time-domain measurements.
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FIG. 2. 
Illustration of the Volterra representation of dynamics. (a) Time-varying nonlinear 

relationship between the displacement field D t  and the electric field E t  superimposed 

with the dc D − E curve. (b) Two-tone input signal E t . (c) First-order d 1 t , teal line] and 

second-order d 2 t , magenta line] contributions to the output signal. (d) Comparison of the 

first-order approximation D 1 t  (teal line), second-order approximation D 2 t  (purple line), 

and a solution obtained by direct numerical solution of the equation of motion D ∞ t  (cyan 

line).
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FIG. 3. 
Error model. (a) Physical location of the reference planes. The raw wave parameters, ân

r and 

b̂n
r
, are measured by the detectors of the LSNA. The wave parameters at the coaxial plane, 

ân
c and b̂n

c
 are measured at the ends of the coaxial connectors that attach to the wafer probes. 

The wave parameters of the device under test (DUT), ân and b̂n, are measured at the wafer 

probe tips. (b) Schematic representation of the error model relating the wave parameters at 

the different reference planes. The error model has 16 parameters defined independently at 

each frequency point: X1, Y 1, X2 and Y 2, are all 2 × 2 complex-valued matrices.
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FIG. 4. 
Measurement configurations. (a) For broadband measurements, we use coplanar 

waveguides, and excite the waveguide from both edges. (b) For narrow-band measurements, 

we use a one-port configuration, with waveguides terminated by a gap to ground. This 

allows us to use filters to minimize spurious signals generated within the LSNA.

Hagerstrom et al. Page 24

Phys Rev Appl. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



FIG. 5. 
Our BST sample. (a) Photograph of the BST chip with the waveguide structures fabricated 

on it. Because the chip is larger than the microscope’s field of view, this photograph is 

stitched together from many smaller images. (b) Example of a two-port device, a coplanar-

waveguide (CPW) transmission line with a length of 0.880 mm. (c) Example of a one-port 

device, a coplanar waveguide offset open with a length of 1.100 mm.
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FIG. 6. 
Example of the nonlinear admittance estimation from measurements. (a) Measured mixing 

product, b̂ ω1 + ω2  of a CPW of length 1.340mm . ω2 = 2π × 5 GHz. (b) b̂model ω1 + ω2 , the 

hypothetical value of the mixing product under the condition Ŷ 2 ω1, ω2 = 1. The estimated 

uncertainty in (b) from uncertainty in Ŷ 1  is smaller than the width of the line. (c) Ŷ 2 ω1, ω2

estimated by Ŷ 2 ω1, ω2 = b̂ ω1 + ω2 /b̂model ω1 + ω2 . Error bars in (a) and (c) represent a 95% 

confidence interval estimated from the distribution of Ŷ 2  estimates from CPWs of different 

lengths. We omit error bars on individual data points for visual clarity.
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FIG. 7. 

Linear permittivity, ε̂ 1 = ε 1 ′ − iε 1 ′′ as a function of frequency, and as a function of bias 

electric field at 20 GHz. An interval of width ENL centered around Edc = 0Vm−1 is indicated. 

The error bars (gray) are the 95% confidence interval from the standard error of the mean. 

(a) Real part, ε 1 ′. (b) Imaginary part, ε 1 ′′.
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FIG. 8. 

Second-order nonlinear permittivity, ε̂ 2 = ε 2 ′ − iε 2 ′′, inferred from the ω1 + ω2 mixing 

product. In the frequency-dependent measurements, we vary the angular frequency 

of one of the stimulus signals, ω1, while the other stimulus frequency, ω2, is held 

constant at 2π × 5GHz. In our bias-swept measurements we set ω1 = 2π × 7.84GHz and 

ω2 = 2π × 7.76GHz. To facilitate comparison to Fig. 7, we indicate an interval of width ENL

centered around the Edc = 0Vμm−1. The error bars (gray) are the 95% confidence interval 

from the standard error of the mean. (a) Real part, ε 2 ′. (b) Imaginary part, ε 2 ′′. (c) 

Absolute value of ε̂ 2  near 0 Vμm−1.
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