Skip to main content
. 2024 Feb 8;20(5):2219–2227. doi: 10.1021/acs.jctc.3c01308

Table 2. Hybrid RPA:PBE(+D) Adsorption Energies, ΔEHL:LL,CPC(pbc), for CH4/Pt(111) with RPA as High-Level (HL) and Different Dispersion Approaches as the Low-Level (LL) Methodsa.

ΔE/ kJ mol–1 PBE PBE + MBD PBE + dDsC PBE + D3 PBE + D2
ΔELL(pbc) –1.8 –13.6 –18.1 –22.3 –28.5
ΔELL, CPC(C) –0.1 –10.3 –12.0 –16.8 –23.8
ΔEdisp(C) - –10.2 –11.8 –16.6 –23.7
ΔEHL,CPC(C) -12.6 -12.6 -12.6 -12.6 -12.6
ΔHLCPC(C) –12.5 –2.4 –0.7 4.1 11.2
ΔLR(pbc,C) -1.7 -3.3 -6.2 -5.5 -4.7
ΔEHL:LL,CPC(pbc)b –14.3 –16.0 –18.8 –18.1 –17.3
ΔERPA(pbc)c –13.8
ΔEobs.29,35 –15.6
a

The structure corresponds to the RPA minimum in Figure 4 with r(C–Pt) = 375 pm.

b

This can be summed from ELL(pbc) + ΔHL(C) (bold numbers) or EHL(C) + ΔLR(pbc, C) (italics), cf. eq 2.

c

This work.