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ABSTRACT: Biomolecular research traditionally revolves around comprehending the mechanisms
through which peptides or proteins facilitate specific functions, often driven by their relevance to
clinical ailments. This conventional approach assumes that unraveling mechanisms is a prerequisite for
wielding control over functionality, which stands as the ultimate research goal. However, an alternative
perspective emerges from physics-based inverse design, shifting the focus from mechanisms to the
direct acquisition of functional control strategies. By embracing this methodology, we can uncover
solutions that might not have direct parallels in natural systems, yet yield crucial insights into the
isolated molecular elements dictating functionality. This provides a distinctive comprehension of the underlying mechanisms.In this
context, we elucidate how physics-based inverse design, facilitated by evolutionary algorithms and coarse-grained molecular
simulations, charts a promising course for innovating the reverse engineering of biopolymers interacting with intricate fluid phases
such as lipid membranes and liquid protein phases. We introduce evolutionary molecular dynamics (Evo-MD) simulations, an
approach that merges evolutionary algorithms with the Martini coarse-grained force field. This method directs the evolutionary
process from random amino acid sequences toward peptides interacting with complex fluid phases such as biological lipid
membranes, offering significant promises in the development of peptide-based sensors and drugs. This approach can be tailored to
recognize or selectively target specific attributes such as membrane curvature, lipid composition, membrane phase (e.g., lipid rafts),
and protein fluid phases. Although the resulting optimal solutions may not perfectly align with biological norms, physics-based
inverse design excels at isolating relevant physicochemical principles and thermodynamic driving forces governing optimal
biopolymer interaction within complex fluidic environments. In addition, we expound upon how physics-based evolution using the
Evo-MD approach can be harnessed to extract the evolutionary optimization fingerprints of protein−lipid interactions from native
proteins. Finally, we outline how such an approach is uniquely able to generate strategic training data for predictive neural network
models that cover the whole relevant physicochemical domain. Exploring challenges, we address key considerations such as choosing
a fitting fitness function to delineate the desired functionality. Additionally, we scrutinize assumptions tied to system setup, the
targeted protein structure, and limitations posed by the utilized (coarse-grained) force fields and explore potential strategies for
guiding evolution with limited experimental data. This discourse encapsulates the potential and remaining obstacles of physics-based
inverse design, paving the way for an exciting frontier in biomolecular research.

■ INTRODUCTION
The development of novel chemical targets, such as in material
design or drug candidates, has historically been based on a
process of lead optimization, where initial (natural) molecules
are selected and put through an iterative process of adaptation
and testing to selectively improve key properties.1 While this
strategy produces more optimized solutions, only a minuscule
fraction of the imaginable combinations is considered.
To alleviate this, research increasingly focuses on the

exploration of this so-called chemical space.2,3 Here, the
main challenge�and interest, as evidenced by the number of
citations�arises from the astronomical size of chemical space,
estimated at around 1063 unique combinations for small
molecules alone.4 To this end, large chemical libraries of
compounds and molecular fragments have been constructed,
which see application in virtual screening and de novo
design.3,5 As part of the initial stage in the development
process, these in silico strategies can increase the efficiency of

the research through early identification of viable candidates.2

However, due to the involved dimensions, the limitations of
standard design approaches quickly become apparent.

Inverse Design. Inverse design�where the process begins
with the desired functionality, instead of the molecular
structure�is particularly suited to such research due to its
ability to efficiently handle many-dimensional problems.1

Involved methods seek to create order from the massive
chemical space through computation of the functional space,
relating chemical structure(s) to a measure of the correspond-
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ing desired functionality ( f itness). While computation of the
entire functional space is infeasible, intelligent methods act by
sampling positions in the functional space and�depending on
subsequently computed local gradients�are capable of
efficiently exploring this space to discover positions with
better functionality.1 A variety of methods can be applied in
this regard, with the choice of method depending on factors
such as the continuity of the functional space and the
availability of (computational) resources. Several examples of
inverse design and search space exploration strategies have
been highlighted in Figure 1A−F.

Learning from Evolution. Evolutionary strategies, such as
the genetic algorithm (GA), function through an iterative

process inspired by Darwinian evolution.11 In optimization
problems, candidate solutions are encoded as sequences of bits
or characters, where each position in the sequence represents a
specific property that is free to be adapted by the optimization
algorithm. These sequences can be evaluated according to a
specified fitness function, which assigns fitness values to the
sequences based on how well they perform in the given
problem.
The GA proceeds by generating a population of candidate

sequences, either based on some existing (natural) solution
which is to be optimized or generated randomly to better
explore the overall functional space. All sequences in this
population are then evaluated according to the fitness function

Figure 1. Collection of various inverse design and chemical space exploration approaches. (A) Generative model, encoding molecules of interest
into a continuous latent space which can be explored to identify new molecules with similar properties. Reprinted with permission from ref 5.
Copyright 2018 American Chemical Society. This is a commonly applied strategy in virtual screening. (B) Sequence-based genetic algorithm
seeded with fragments that maximize specific physicochemical properties. Fitness values are directly calculated from sequence. Adapted from re 6.
Copyright 2018 The Authors under a Creative Commons CC BY license, published by Springer Nature. (C) Simplified overview of the Rosetta
protocol. Biomolecule configurations are iteratively modified and evaluated according to a prespecified scoring function of various energetic
functions. Adapted with permission from ref 7. Copyright 2020 Nature Springer America, Inc. (D) Physics-based redesign of proteins using Monte
Carlo and Boltzmann sampling. Adapted with permission from ref 8. Copyright 2020 American Chemical Society. (E) Combining genetic
algorithms with amino-acid-scale coarse-grained MD simulations for local optimization of existing liquid−liquid phase separating proteins.
Reprinted with permission from ref 9. Copyright 2021 The Authors under Creative Commons Attribution International license, published by
PLOS. (F) Combining genetic algorithms with MD simulations using a binary coarse-grained copolymer model for de novo optimization of
copolymer compatibilizers. Reprinted with permission from ref 10. Copyright 2017 American Chemical Society.
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and ranked based on the resulting fitness values. The best
performers are selected from the population, and parts of their
sequences are combined with each other to generate a new
population. Random mutations are introduced in the new
sequences to maintain diversity within the population. This
process of evaluation, selection, and recombination repeats
until a desired target is achieved.11

The underlying assumption behind this approach is that the
functional properties of a solution are inherently encoded
within its sequence, and through recombination of high-
performing sequences more high-performing sequences are
produced. Random crossover and mutation of these sequences
allows for sporadic increases in functionality, leading to a
steady increase in the fitness of a population over time until it
converges to some optimal solution.11

Notably, such evolutionary operations are fairly trivial within
the chemical space of biopolymers, since they topologically
consist of linear chains of repeating autonomous units and
therefore the chemical design rules are well-defined. A
straightforward example of this concept in practice can be
seen in peptide optimization problems, where the solutions
(peptides) are simply encoded as sequences of amino acids,
which are then evaluated using a fitness function that considers
one or several amino acid-dependent factors, such as
hydrophobicity or helix-forming propensities.6 In the case of
small organic molecules, however, encoding into chemical
space is far from trivial due to the inherently nonlinear and
three-dimensional nature of the structures, typically involving
conversions into continuous and high-dimensional descriptor
spaces.1,12

Solutions obtained through natural evolution are optimized
with respect to a complex environment�taking into account
factors like cell toxicity, competition between molecules,
variations within the environment, energetic cost, and so on,
to ensure that the overall fitness of an organism is not
negatively affected. As many of such factors are in conflict with
each other (e.g., toxicity putting limitations on the possible
chemistry and concentrations of molecules), it is conceivable
that more optimal “solutions” exist when we consider only
specific functionalities of interest. Part of the strength of
inverse design strategies lies with the transparency of the
fitness function, as it allows us to precisely define those factors
we are interested in, and leave out those which we are not.
This selectivity allows us to move beyond what is seen in
natural evolution. Although not directly applicable in natural
systems, solutions found in this manner allow for the
identification of the isolated molecular features that dictate
functionality and therefore provide unique insight in the
underlying mechanisms. The resulting knowledge can poten-
tially assist in the development of new drug targets.

Physics-Based Inverse Design. Physics-based inverse
design operates on the principle that the physical driving forces
governing functionality are encoded within independently
parametrized energy functions, such as molecular force fields.
By employing inverse design approaches, functional molecular
structures can be identified from these energy functions. In
such approaches, the chemical space is sampled directly
through thermodynamic ensemble averaging of observables,
either through Hamiltonian dynamics in molecular dynamics
(MD) simulations or through explicit calculation of Boltzmann
factors subject to detailed balance in Monte Carlo (MC)
simulations.

Data-driven inverse design approaches, on the other hand,
often rely on constructing a latent space, a high-dimensional
vector space comprising physicochemical and structural
descriptors of biomolecules.1 These approaches, such as
quantitative structure−activity relationship (QSAR) models,
aim to establish a quantitative relationship between the
descriptor vector and the corresponding functionality. Inverse
design in these approaches involves the identification of optima
in the latent space and subsequent translation into
corresponding chemical structures.12 Data for constructing
latent spaces can come from experiments or computational
high-throughput methods such as molecular simulations or
molecular docking. This distinction is visualized in Figure 2.

Physics-based design offers a distinct advantage over data-
scientific approaches by eliminating the need for the
construction of a latent space, addressing the three primary
drawbacks associated with data-driven methods: First, the
requirement for large experimental data on functionality can be
challenging to fulfill or access. Second, the construction of a
latent space relies on a priori known descriptors, which may
omit significant determinants and lead to suboptimal
predictions. In contrast, physics-based design approaches can
enhance optimization efficiency by reducing the dimensionality
of the physical molecular space through techniques like coarse-
graining. Third, a latent space may restrict the applicability
domain of sequence generation, resulting in generated
molecules resembling the training data. Physics-based inverse
design approaches overcome this limitation by exploring the
entire available amino acid sequence space, enabling the
identification of global optima in lipid−protein interactions
even within a vast sequence space (e.g., 2024 sequences).

Figure 2. Comparing “data-driven” to “physics-based” methods. To
clarify the distinction, we look to the relation between experimental
data and the desired outcome. In data-driven methods, the
experimental data are of the same class as the result (high-level)�
i.e., to optimize protein−ligand binding, one needs protein−ligand
binding experimental data. In contrast, physics-based methods utilize
general, indirect experimental data (low-level) to construct physical
models, from which data specific to the desired optimization (high-
level) can be extracted using inverse design techniques.
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Physics-Based Design of Proteins. One prominent
example of physics-based design in biopolymer or protein
design is Rosetta.7 Rosetta operates on the principle that native
protein structures represent free energy minima, aiming to
determine the sequence corresponding to the minimal free
energy state. The approach combines knowledge-based
potentials derived from the PDB database with physical energy
terms like van der Waals and electrostatic interactions. Rosetta
is widely used in protein design to obtain desired folding
patterns, binding pockets, and more (see Leman et al.7 for a
comprehensive review). However, existing protein design
methods, including Rosetta, are primarily focused on single
molecular structures in simplified solvent environments.
Consequently, their energy functions, often relying on
knowledge-based potentials, may fail to accurately capture
scenarios where energy minimization is influenced by complex,
fluidic, and responsive environments such as biological lipid
membranes and protein liquid phases.

Proteins Interacting with Complex Fluid Phases. The
main focus of this perspective lies on conducting physics-based
design of biopolymers, optimized for interaction with fluid
phases. We posit that in such scenarios the fold of a
biopolymer is often not the determining factor for function-
ality. This notion is supported by the discovery of highly
functional disordered proteins and protein regions in recent
decades.13,14 Furthermore, the fold can often be assumed or
predetermined. For instance, the design of α-helical peptides
that sense lipid packing defects typically yields sequences with
a high propensity for α-helical structure, as functionality is
primarily driven by intermolecular interactions at the
membrane interface.15 This optimization process tends to
“bake-in” the imposed structure. Consequently, the energy
function should focus on accurately and efficiently describing
interactions with the environment, favoring physical molecular
force fields over knowledge-based potentials. Coarse-grained
force fields are particularly advantageous due to the computa-
tional costs associated with inverse design using molecular
dynamics simulations in conjunction with evolutionary
algorithms.
Moreover, in structure-focused protein design, even minor

alterations can have a significant impact within the tightly
sculpted angstrom-resolution world of protein cavities.16,17

This leads to a search space which is highly localized around
unique solution sequences, aligning with the key−lock
hypothesis for molecular recognition. In contrast, interactions
with fluid phases involve weak, transient, and dynamic
interactions with individual constituents of the fluid phase
such as, for example, a lipid membrane15,18,19 or a protein
liquid condensate.9,20−25 These interactions feature search
spaces characterized by smoothness and a high degree of
degeneracy in relevant physicochemical properties. In other
words, due to the smoothness of the search space, the
optimum is represented by a potentially large set of equally
valid and degenerate solutions, rather than a single “holy grail”
sequence that outperforms all others. We argue that these
aspects often facilitate convergence to a global rather than a
local optimum, even in search spaces containing 2020 or more
sequences.
In the following sections, we will present various examples of

biopolymer design for interaction with complex fluid phases,
introduce our recently developed evolutionary molecular
dynamics approach, and discuss the potential, challenges,

culprits, and shortcomings of current physics-based design
methods.

Recent Applications of (Physics-Based) Inverse
Design. Inverse design strategies involved in the design of
biopolymers commonly focus on the optimization of existing
(natural) sequences,8 effectively constraining the potential
exploration of the search space to regions of known
functionality. Reduction of the search space in this manner
decreases the computational requirements, which can instead
be directed toward a more thorough analysis (considering large
population sizes and many iterations) for inverse design
methods with relatively simple fitness functions. Sequence-
based fitness functions as applied by Porto et al. are a prime
example of cost-effective evaluations of peptide features,
scoring candidate sequences as a function of amino acid
hydrophobicity and helicity scales.6 Alternatively, fewer
evaluations (i.e., small population sizes and few iterations)
can be performed using more complex and resource-intensive
fitness functions capable of exploring the dynamic features of
candidate biopolymer sequences as applied in physics-based
inverse design. An example of this is seen in the work of
Lichtinger et al., where MD simulations are integrated into a
genetic algorithm with the aim of identifying stabilizing and
disruptive features of liquid−liquid phase separation in
intrinsically disordered proteins.9

While this approach has proven effective, there are several
drawbacks. Initializing the optimization using known sequen-
ces has the potential for getting trapped in local optima as large
regions of the search space remain unexplored. Initialization of
the population with random sequences instead provides a
relatively uniform distribution over the search space while
eliminating a potential source of input bias, potentially
identifying new solutions as previously unknown regions of
the search space are explored.26 Most importantly, starting
from independent random populations allows for discrim-
ination between local optima and a potential global optimum,
thereby providing unique information on the main phys-
icochemical determinants that underpin solution space.
The main challenges of physics-based inverse design

strategies involve the heavy computational and time require-
ments that arise from the integration of (resource-heavy)
physics-based techniques into metaheuristic inverse design
strategies. While conventional fitness functions used in, for
example, genetic algorithms can typically be evaluated in the
order of (milli)seconds to minutes,11 physics-based techniques
such as molecular simulations require essential computation of
ensemble averages which lies magnitudes of order above that,
ranging from hours to days for most coarse-grained systems, to
potentially weeks or months for larger atomistic or quantum
simulations. The product of physics-based evaluations and
inverse design strategies, where tens of thousands of
evaluations must be performed to produce reliable results,
leads to slow methods which are heavily reliant on computa-
tional resources to perform a complete optimization.
To ensure the viability of physics-based inverse design

strategies, particularly in the absence of prior knowledge during
initialization, a balance should be struck between the
thoroughness of the inverse design process (e.g., population
size and number of iterations) and the depth and accuracy of
the fitness function (e.g., resolution and simulation time).
Recent literature support the feasibility of such approaches,
through the use of smart strategies and manageable search
spaces. The field of polymer science in particular sees benefit

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Perspective

https://doi.org/10.1021/acs.jctc.3c00874
J. Chem. Theory Comput. 2024, 20, 1763−1776

1766

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00874?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


from such approaches.27,28 For example, Meenakshisundaram
et al. have applied the combination of genetic algorithms with
coarse-grained MD simulations to identify synthetic copolymer
compatibilizers, capable of stabilizing polymer−polymer
interfaces.10 Due to the computationally intensive nature of
the MD simulations, time spent on simulations should be kept
to a minimum.
An alternative strategy entails the use of surrogate models�

in particular artificial neural network models trained by
performing extensive molecular simulations of targets�in
place of actual physics-based simulations. Surrogate models are
capable of predicting simulation results at orders of magnitude
faster than what would be achievable by directly performing
the simulation,29,30 providing an attractive alternative to direct
simulations in the inverse design process. While such models
bear similarities to data-driven strategies,1 training of surrogate
models relies on molecular simulations and can therefore be
considered as part of a physics-based strategy. However,
reliance on extrapolation, particularly the case for machine
learning-based models, may limit optimization when exploring
untrained regions of the search space.10,29 Hybrid strategies
that integrate surrogate models into the optimization work-
flow, combined with systematic retraining of the model during
optimization, could provide the best of both worlds.23,31

In our recent works, we have demonstrated applications of
physics-based inverse design strategies in the de novo design of
functional membrane peptides, relying solely on direct
molecular simulation. The main challenge in protein design
lies with the immense search spaces that are available to
explore, with 2024 possible combinations existing for a 24
amino acid long peptide when considering 20 natural amino
acids. While problems of this magnitude might seem
computationally intractable, identification of the optimal
transmembrane cholesterol attractor18 and optimal membrane
curvature sensor15 peptides support the viability of the strategy
for in silico identification of candidate peptides, hinting to the
potential of physics-based inverse design strategies in various
fields.

Synthetic Polymers. Although not strictly biopolymers,
the research on synthetic polymers also highly benefits from
physics-based inverse design strategies, as recently reviewed by
Patra.27 While many similarities exist between the fields, the
main difficulties that set biopolymers apart involve the larger
chemical spaces often considered as well as the interactions
and functionalities that are considered for optimization.
Biopolymers such as polynucleotides and polypeptides contain
many more elements per position than what is generally
considered for polymer optimization, producing significantly

larger search spaces. Optimizing interactions for biopolymers
primarily involves their intricate, heterogeneous environments,
such as lipid membranes, where they are localized or
influenced. In contrast, polymer optimization typically focuses
on the bulk properties of the materials. Nonetheless, valuable
lessons can be learned that apply to either field. In particular
perspectives on multiobjective optimization and the integra-
tion of automated experimental characterization could also be
of relevance to the design of biopolymers.27

■ EVOLUTIONARY MOLECULAR DYNAMICS:
PRINCIPLE OF EVO-MD

We introduce EVO-MD as an example implementation of the
physics-based inverse design concept, which we have applied in
the development of membrane-interacting peptides.15,18,32

EVO-MD integrates molecular simulations based on build-
ing-block coarse-grained force fields, such as the Martini
model, into a custom genetic algorithm wrapper program,
allowing for the automated setup, production, and subsequent
analysis of MD simulations based on candidate sequences
selected by the genetic algorithm. The concept of EVO-MD is
inspired by the work on virtual creatures performed by Karl
Sims in the 1990s.33,34 Virtual creatures, as simulated by Karl
Sims, involve the evolution of virtual block creatures in a
simulated dynamic environment. These creatures are created
within a computer and undergo a process of variation and
selection to improve their ability to perform specific tasks, such
as swimming or walking, or even competition for food (see
Figure 3). The goal is to create creatures with successful
behaviors through the evolution of their virtual genes. At its
heart, EVO-MD uses the idea of virtual creatures to guide the
evolution of biomolecules within a molecular dynamics
environment. It harnesses the laws of physics and thermody-
namic forces to shape biomolecules starting from completely
random sequences.
The heavy computational and time requirements associated

with physics-based inverse design, particularly when consider-
ing both large search spaces (e.g., exceeding 2024 combina-
tions) and random initialization, are mitigated using strategies
that maximize information extraction from the available
simulation data. The largest gain in efficiency follows from
the use of relatively short coarse-grained MD simulations for
the fitness evaluations. While the simulations are not yet
converged within these time frames and the measured
observable(s) are therefore far from accurate, genetic
algorithms do not require the absolute value of an observable.
All that is required for evolution to proceed is an estimation of
the relative ranking of the solutions within a population as this

Figure 3. Virtual creatures in action. The snapshots (from left to right) illustrate a scenario where the evolution of virtual creatures is being driven
by food competition (green colored block). Adapted with permission from ref 34. Copyright 1994 MIT.
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is the sole criterion on which the selection is based. As long as
a “better” solution relatively outperforms most other solutions,
evolution proceeds in the proper direction. However, the
closer we approach the (global) optimum in evolution, the
smaller the spread in fitness within the population pool and
thus the more relevant robust sampling becomes.
Undersampling of simulation observables does pose a

problem for the selection step, as outliers�being excessively
overestimated observables with respect to their actual value
due to undersampling�would almost fully constitute a
selection pool after evaluation. We devised several approaches
to combat this: (i) We assume that the outliers are due to
undersampling and that the distributions of the mean values
are (mostly) sequence independent. From this follows that
outliers of better solutions (i.e., with high “true” values for their
observable(s)) are more likely to exceed the outliers of worse
results, and therefore allows us save time in our simulations by
intentionally undersampling (within reason). (ii) We optimize
the time that we allocate for sampling through the use of
simulation replicas. This can provide a more efficient and
accurate estimation of the observable(s) compared to a single,
longer simulation�in particular when the largest relaxation
time in the system of interest is in the order of the time scale of
the simulation.35,36 (iii) We eliminate outliers by verifying the
best results of each iteration and maintaining high-performing
solutions between iterations. The usage of elitism�where the

best performing solutions in a population are directly copied
over to the new population�leads to solutions occurring
which have already been evaluated. To verify the best
performers, the corresponding observable(s) are again
estimated using independent simulations. The new value is
then computed from the weighted average of previous
estimations and the new simulation result. This process
effectively adds additional replicas into a solution’s evaluation,
increasing accuracy and thereby removing outliers from the
selection pool. Sequences that maintain their high-performing
status are retained through a second elitism procedure, to
ensure that high-performing solutions are not lost.

■ APPLICATIONS
Optimizing Transmembrane Peptides for Cholesterol

Attraction. Development of EVO-MD was centered around
the optimization of transmembrane proteins for protein−
cholesterol interaction. In an attempt to identify potential
linear cholesterol-recognition motifs using evolutionary strat-
egies, we discovered a thermodynamically driven effect of
attraction, based on hydrophobic mismatching between
peptide and membrane and the membrane-snorkeling ability
of cholesterol molecules18 (see Figure 4).
The project yielded two valuable lessons for advancing the

realm of physics-based biopolymer design. First, we demon-
strated that it is in fact feasible to perform directed evolution

Figure 4. Inverse design of the optimal transmembrane cholesterol-attracting peptide sequence using Evo-MD. Reprinted with permission from ref
18. Copyright 2021 The Authors, preprinted by Cold Spring Harbor Laboratory. (A) Graphical overview of the Evo-MD approach. (B) Side view
of an example simulation system used for fitness evaluation. The candidate peptide (yellow) is transversely positioned in a POPC (white/brown)
and cholesterol (red) bilayer membrane. Fitness is computed from the time-averaged interaction energy between peptide and all cholesterol
molecules. (C) Plot of cholesterol enrichment in a shell surrounding the peptide. As Evo-MD produces higher fitness sequences, we see an increase
in the accumulation of cholesterol around these peptides. (D) Sequence logo visualizing the characteristics of the optimal transmembrane
cholesterol attractor, revealing highly conserved lysine patches located deep within the membrane, and a short block consisting of small
hydrophobic amino acids.
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starting from completely random sequences, using a fitness
function that is evaluated through coarse-grained molecular
dynamics simulations. Considering the many limitations
brought about by this approach�constraining the method to
relatively small population sizes, low numbers of iterations, and
significant undersampling�we show that it is indeed possible
to converge toward the global optimum, as is evident by
reproducing the same solution despite starting from different
random sequences and sequence population sizes. Interest-
ingly, this suggests that the solution space of protein−lipid
interactions�in our example cholesterol attraction�com-
prises a function with a well-defined single maximum/
optimum. As a result, the fitness of the optimization converges
rapidly toward the global optimum.
Second, the usage of evolutionary strategies allows for a

more thorough exploration of the search space, where the
search itself is less dependent on researcher’s bias. This bias,
however, is effectively transferred to other aspects of the
approach such as in the definition of the fitness function. An
example of this can be seen in the definition of cholesterol
recognition. Are we interested in a sequence that attracts and
therefore clusters as much cholesterol around it as possible
(aspecific binding) or instead a sequence that allows for the
strongest binding to a single specific cholesterol molecule,
preventing dissociation afterward (specific binding). A fitness
function which simply maximizes interaction energy between
protein and lipid, which we applied in our cholesterol
recognition project,18 would result in the former example,
while a fitness function optimizing the latter case might instead
require an alternative measurement/definition for binding,
possibly considering the duration at which a specific
cholesterol molecule stays bound to the protein. Such
distinctions are easy to overlook, yet evolutionary algorithms
are extremely sensitive to them. Precisely because of this
sensitivity, important insights can be gained into what it is that
natural evolution truly optimizes for.

Curvature Sensing Peptides. We also applied EVO-MD
to the inverse design of surface peptides that sense hydro-
phobic defects in the lipid packing that arise when membranes
are strongly curved.15,32 In line with elastic theory,37 we found

that the optimal physics-based curvature sensor is extremely
hydrophobic and bulky (rich in phenylalanine and tryptophan
residues), allowing for deep insertion into the outer membrane
leaflet and maximization of asymmetric leaflet tension.
Obtaining these fundamental insights through a data-driven
approach, devoid of reliance on physics-based principles, is a
nontrivial task. The answers lie beyond the practical domain of
native water-soluble peptide sequences. Herein lies the
strength of physics-based inverse design, which empowers
true physical optimization, unconstrained by biological
limitations or researcher biases. However, this emphasis on
physical optimization does not preclude the exploration of
practical applications. On the contrary, in addition to the
valuable contributions physical optimization offers for
fundamental understanding, one can incorporate pragmatic
“posthoc” adjustments based on the theoretical optimum.
For instance, it is possible to restrict the optimization within

a “biologically feasible” search space, aligning with criteria
imposed by biology such as solubility, membrane-binding
selectivity, and fine-tuned protein−protein interactions.
Starting from the theoretical optimum, one can argue that
this approach expands the exploration of a much broader
search space, especially when employing the data to train a
neural network model for fitness prediction, as is utilized in
surrogate models.30 This model can then be utilized to further
optimize the solution while subjecting it to additional
pragmatic constraints. The result may unveil additional feasible
solutions that might otherwise remain undiscovered when
exclusively working within the confines of biologically viable
configurations.
With the large body of MD data we acquired during the

Evo-MD optimization of these curvature sensors, we trained a
convolutional neural network (CNN) that can predict sensing
free energy of a peptide from its primary amino acid sequence
alone.15 On average, the (root mean squared) error of these
predictions was in the same range as the typical sampling error
from MD simulations. Interestingly, we found that the CNN-
predicted free energies better describe qualitative experimental
trends (derived from literature) than the MD trajectories they
were trained on. We suggest that this is due to a smoothing

Figure 5. Overview of PMIpred: on-the-fly prediction of peptide−membrane interaction using physics-based inverse design. Adapted with
permission from ref 19. Copyright 2023 The Authors, preprinted by Cold Spring Harbor Laboratory. (A) Data produced using physics-based
inverse design approaches such as Evo-MD can be used to train deep learning models, allowing for quick but accurate evaluation of entire proteins
while avoiding the overhead of MD simulations. PMIpred incorporates a transformer model trained on Evo-MD generated data for optimizing
curvature sensing, allowing for the classification of peptides and regions of proteins as either nonbinding, curvature sensing, or membrane binding.
(B) Example output of PMIpred showing the protein structure of ArfGAP1. Regions of interest are labeled according to the model, indicating
regions likely to exhibit curvature sensing, membrane binding, or nonbinding behavior.
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effect in both chemical space (the CNN is trained on data for
>100000 unique sequences) and in the MD sampling itself,
which, overall, leads to more robust predictions.
The observed accuracy of neural networks trained by EVO-

MD data has motivated us to launch the protein−membrane
interaction prediction (PMIpred) server (https://pmipred.fkt.
physik.tu-dortmund.de/),19 which utilizes a transformer model
trained by physics-based generation (EVO-MD) of over 54000
curvature-sensing peptide sequences to predict the membrane-
interaction behavior of peptide sequences (Figure 5A).
Moreover, PMIpred enables users to (i) scan protein structures
(PDB files) for the presence of membrane-binding domains,
(ii) quantify curvature sensing, (iii) discriminate between
membrane binding and curvature sensing (see Figure 5B for an
example), and (iv) quantify the contribution of each individual
amino acid to membrane binding, thereby easing the design of
point deleterious mutations. Using training data generated by
evolutionary optimization has the important advantage that it
encompasses the full thermodynamic range of possibilities over
a vast search space (2024 sequences in this particular case),
whereas a data set of natural peptides (if available in the first
place) would be strongly constrained to a certain biologically
feasible regime that only comprises peptides with highly similar
physicochemical characteristics. Therefore, we argue that such
a training set can substantially improve both the applicability
domain as well as the accuracy of neural network models,
despite many of the generated sequences not necessarily being
biologically relevant. This principle is equivalent to fitting an
unknown function to data points that are well-spaced over the
whole range of the applicability domain versus data points that
are only clustered within a narrow window. Particularly, precise
knowledge of the maxima (and minima) of a function�which
a physics-based optimization is able to resolve�will benefit
the quality of a fit or model, also within the biologically
relevant domain of the search space.

Considerations. Hyperparameter Optimization. Results
obtained from our work with EVO-MD substantiate the
viability of physics-based inverse design as a tool for efficient in
silico exploration of extensive search spaces. However, the
demanding nature of the method makes it rather difficult to
perform performance optimizations with regard to the inverse
design segment of the approach, as this would require
performing multiple runs of the algorithm to evaluate the
effect of various hyperparameters on convergence efficiency
and search space exploration. It is therefore likely that there
exists significant room for improvement regarding the
optimization of algorithm parameters. This becomes apparent
when we compare to more common use cases for such
methods. For example, general genetic algorithm applications
often make use of individual evaluations that are on a much
shorter time span ((milli)seconds to minutes), rather than the
hours seen in molecular simulations.11 In such cases, it is
relatively easy to perform large scale hyperparameter and
performance tests to find algorithm parameters that optimize
the search for efficient convergence and a reduced chance of
getting stuck in suboptimal solutions of the search space (local
optima).
Surrogate models, as applied in similar strategies,27,29,31

could provide an alternative scheme for more efficient
debugging and parameter testing within a physics-based
inverse design context. This would involve (1) running a
short preliminary optimization using physics-based models
with default parameters, (2) training a surrogate model (e.g.,

neural network) on the gathered data, (3) replacing the
physics-based fitness function (hours) with the surrogate
model (seconds), and (4) performing the parameter testing
with the highly efficient surrogate-based genetic algorithm. The
resulting parameters can then be applied to the original
physics-based genetic algorithm.
Secondary Structure Prediction. The gain in efficiency

achieved through the use of the Martini coarse-grained force
fields is vital to the feasibility of the approach. However, a
major trade-off with respect to protein simulations is the
models failure to represent changes in secondary structure
during simulations. Secondary structure must therefore be
defined prior to the simulation and is fixed using specific
parameters for the affected beads.38 This is not necessarily a
limiting factor in the physics-based inverse design of sequences
interacting with fluidic systems, where optimizing the
interactions with the environment dominates protein function-
ality.20,21 The forcing of a specific structure, while the sequence
might not adhere to this structure in reality, in fact avoids a
potential source of bias. While the quality of secondary
structure prediction tools has seen significant advances through
implementation of machine learning techniques, prediction
remains limited to 84% accuracy.39 Viable solutions might
therefore be excluded from the search space. In addition,
although sequence-based exclusion of nonhelical solutions
might guarantee structurally valid peptides, it essentially
restricts regions of the search space and thereby limits
exploration during the inverse design process. Structurally
invalid solutions might still exhibit favorable aspects, and could
therefore serve as a stepping stone toward higher fitness
solutions. Finally, such solutions still yield unique insight into
the physicochemical driving forces underpinning functionality,
and obtained optima could alternatively serve as templates for
synthetic peptide mimics. Once optimization has been
performed, more realistic sequences can be produced based
on the optimized results.
An example of this procedure can be seen with the

optimization of the transmembrane cholesterol attractor
peptide.18 Due to the (thermo)dynamic nature of this
problem, most solutions do not impose hard requirements
on the specific type and position of specific amino acids.
Instead, analysis of the produced solutions leads to the
identification of groups of amino acids that produce similar
effects. Based on this analysis, we can then select amino acids
suiting a specific structure constraint based on the user’s need.
For the transmembrane cholesterol attractor, we sought to
produce an α-helical peptide and therefore enforced this
structure in the simulations. This allowed the search to
produce solutions that would not conform to the desired
secondary structure in laboratory experiments. However, after
analysis of the produced sequences, alternative amino acids
could be selected that both complied with the given structure
yet still produced the desired functionality.
Finally, advances in the field of (secondary) structure

prediction have led to tools such as AlphaFold40 and Porter5,41

which do not require specific experimental data and can be
integrated as part of the sequence generation step should a
(semi)accurate structure representation be desired for
individual sequences. Such preliminary exclusion of structurally
invalid solutions reduces the search space and therefore allows
for a faster convergence of the inverse design process, although
it may converge toward local optima.
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■ OUTLOOK
In Silico Optimization in Dynamic Environments. We

have thus far only scratched the surface of the potential utility
of physics-based evolutionary optimization within the field of
molecular sciences. We in particular envision physics-based
inverse design to open new and unique avenues in the
(inter)facial recognition of biological lipid membranes, e.g., the
inverse design of peptide drugs and peptide-based drug
vehicles capable of selectively targeting the fluid membranes
of viruses, microbes, and cancer cells; since their membrane
leaflets are characterized by pronounced differences in
curvature42 and/or lipid composition.43 Here, structure-based
molecular design approaches are rendered ineffective beyond
the level of targeting individual lipid species due the diffusive
and fluid nature of lipid membranes.

Mystery of Lipid Rafts. A closely related design challenge
emerges within research domains investigating the interactions
between proteins and lipid rafts. Lipid rafts are organized but
transient regions of the cellular membrane where the formation
is primarily driven by lipid−lipid interactions, in particular
saturated lipids, glycosphingolipids, and cholesterol.45 Lipid
rafts are expected to be in the liquid-ordered phase. While such
domains have been extensively studied in model membranes,45

the highly dynamic nature of these domains complicates in
vivo detection and therefore investigation.45 An important
question is whether motifs might exist in native proteins
capable of sensing and potentially inducing such phase
compositions in lipid membranes, as is hinted at by the
discovery of several features for transmembrane protein−raft
association.46 In this context, leveraging physics-based inverse
design emerges as a pivotal tool, providing a framework for the

Figure 6. A peek into the (potential) near-future of physics-based inverse design. All illustrated quantitative data are symbolic and only serve as an
impression of the aimed result. Discovering lipid raft sensing motifs using Evo-MD. (A) Suggested coarse-grained system for the optimization of a
membrane binding peptide (yellow), showing preference for liquid-ordered (Lo) regions (green) over liquid-disordered (Ld) regions (red).
Cholesterol is labeled in black. (B): The potential of the mean force plot of a Lo-phase binding peptide would show a pronounced preference for
the bulk Lo phase over either Ld phase or the interface. Evolution of a short disordered glutamate-sensing motif. (C) Visualization of an
unstructured peptide sequence responsive to the presence of glutamate molecules (magenta), chloride ions (green), and sodium ions (purple). (D)
Impression of the evolution of fitness (for example, measurement of peptide−glutamate enthalpic interactions) over the course of GA iterations.
CGCompiler: automated coarse-grained molecule parametrization. (E) Both categorical (bead type) and continuous (bond/angle/dihedral)
properties of molecules are able to be tuned simultaneously using mixed-variable particle swarm optimization. Simulation results are optimized with
respect to target data obtained from atomistic simulations and/or experiments. Adapted with permission from ref 44. Copyright 2023 American
Chemical Society.
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direct optimization of protein-raft interactions, specifically
focusing on the affinity of proteins for liquid ordered phases
over liquid disordered phases (see Figure 6A,B). Subsequently,
a follow-up analysis to determine raft affinity in native protein
sequences could be streamlined by employing a neural network
trained in a manner similar to PMIpred.19 However, the main
challenge will be in translating the affinity derived from
simplified in silico models of lipid rafts to the complex and
dynamic lipid rafts in vivo.
Molecular Recognition in Structureless Proteins. Beyond

the field of lipid membranes, physics-based inverse design
methods also have an interesting potential for the field of
intrinsically ordered proteins (IDPs).47 The discovery of IDPs
has profoundly transformed our understanding of protein
structure and function. Nevertheless, our comprehension of
how unstructured biomolecules can effectively recognize and
bind to specific small molecules remains limited. Physics-based
design could provide insight by engineering short disordered
peptide sequences, where the conformational ensemble, such
as radius of gyration, is responsive to the presence of small
molecules in the solution (see Figure 6C,D). This approach
could not only address essential questions regarding potential,
alternative mechanisms of molecular recognition in IDPs, but
also explore the boundaries of their molecular sensitivity. The
primary challenge remains with the fact that coarse-grained
models like the Martini model maintain predefined secondary
structure, limiting the potential for transient secondary and
even tertiary structures to occur. Nonetheless, it would be
worthwhile to investigate the limits of molecular recognition
within entirely unstructured configurations.

Allocation of Computational Power. The heavy reliance
of physics-based inverse design on computing power demands
a careful allocation of resources. A large gain in performance is
obtained from restricting the often astronomical search space,
for example through consideration of binary genes in
copolymer optimization (producing search spaces of 2N), or
through mirroring of transmembrane peptide sequences
(reducing the 20N search space to 10N). Other strategies
include the intentional undersampling of simulations to allow
the algorithm to complete within a reasonable time frame, and
the choice for small population pools and a minimal number of
iterations to limit the total number of fitness evaluations that
must be performed.
As the availability and affordability of computational power

continues to advance, the opportunity arises to enhance parts
of the approach. Although we could improve simulation
accuracy to reduce the occurrence of outliers, or increase
fitness evaluations (larger population pool, more iterations) to
increase the chance of convergence to optimal solutions, we
are currently able to manage considerable search space
exploration despite these limiting factors. A compelling
allocation could involve employing more sophisticated fitness
evaluations. Examples of this include the use of higher
resolution simulations (e.g., all atom, or united atom force
fields; for example as applied by Zhou et al.48) to better
capture nuances of the design space. The application of larger
simulation systems containing more complex environmental
factors, think of more realistic membrane models containing
membrane proteins that might affect processes of interest,
might allow for better transferability between in-silico results
and in vivo verification. Finally, expanding the chemical space
through more elaborate encodings, for example longer
peptides/proteins or a broader pool of available elements

(e.g., non-natural amino acids), may allow for the discovery of
previously inaccessible solutions.

Multiobjective Optimization. Multiobjective optimiza-
tion enables the concurrent evaluation of multiple properties of
interest during the inverse design process, of particular
relevance in the design of biopolymers due to their intricate
interactions with the environment. While naive implementa-
tions are straightforward to implement with little decrease in
efficiency, for example penalties to the fitness score of a
supposed surface-bound peptide based on its actual positioning
during the simulation, they may inadvertently constrain search
space exploration by limiting diversity.
“True” implementations of multiobjective optimization, for

example the NSGA algorithms,49,50 avoid this issue by
computing the Pareto front, a collection of solutions that
represent optimal compromises between the various opti-
mization targets supplied to the algorithm. The main limitation
remains with the substantial computational demands of
physics-based inverse design, as these algorithms typically
necessitate additional fitness evaluations. Nevertheless, the
trade-off may be justifiable depending on the problem’s
complexity.

Moving beyond (Bio)polymers. Furthermore, while this
perspective mainly focuses on the optimization of biopolymers,
the approach is not limited to genetic material alone. When
considering evolutionary algorithms for inverse design, the
common origin between such algorithms and the (genetic)
biopolymers is a straightforward relation to draw, and it is easy
to miss the wide spectrum of problems that could be tackled by
the approach. Indeed, all that is required for a problem to be
considered for evolutionary optimization is an encoding of the
problem suited to the selected inverse design method. For
example, one might consider a similar approach as used for
peptides but instead applied to small molecule design,
encoding moieties as building blocks into a chromosome
representation1�although this would require the introduction
of search constraints since the dimension of the small molecule
universe becomes otherwise intractable. Furthermore, opti-
mization targets outside the single-molecule scope can be
envisioned as well, such as encoding variable system properties
(e.g., temperature, pressure, and system size), system
composition (e.g., type and number of molecules present,
initial position), and combinations thereof.
Continuous Optimization Problems. While genetic algo-

rithms are particularly suited for discrete optimization
problems, semicontinuous encodings can be envisioned for
real-value optimization. However, inherently continuous
strategies like particle swarm optimization (PSO)�also falling
under the category of population-based heuristic approaches�
show a higher computational efficiency for such problems.51

The general idea behind PSO algorithms is that each candidate
solution (particle) is represented by a position and a velocity in
parameter space, and particles are updated by utilizing
information from earlier good solutions of the swarm (the
collection of particles).52,53 Thus, candidate solutions are
efficiently guided toward good solutions. Similar to genetic
algorithms, PSO algoritms can be combined with MD-based
fitness functions in an EVO-MD scheme to allow for physics-
based optimization within continuous search spaces.
Automating Force-Field Parametrization. The computa-

tional efficiency and accuracy of available coarse-grained
molecular force fields has been pivotal for the here-discussed
physics-based design of biopolymers. Developing accurate
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parametrizations of these models remains a challenging task
due to the complexity and interdependence of the involved
interaction parameters. Seemingly paradoxical, force field
development is in itself a physics-based inverse design
problem, as the tuning of interaction parameters essentially
boils down to a complex optimization problem where its
performance is evaluated using physics-based force fields.
Evaluation of sets of parameters using corresponding
simulations and subsequent comparison to expected values
(obtained from experimental or ab initio methods) could serve
as a fitness function for inverse design strategies, particularly
when targeting macroscopic properties.54 Such implementa-
tions have been demonstrated in various works. For example,
Messerly et al. describe an algorithm for the optimization of
nonbonded interaction parametrization for reproduction of
vapor−liquid equilibria properties, using surrogate models
which rely on molecular configurations obtained from
simulation.29 Other examples include the optimization of
existing coarse-grained force-field parameters for the modeling
of intrinsically disordered protein properties, relevant to their
role in liquid−liquid phase separation.24,25,55

While such models show promise when applied within their
respective domains, extension toward the broader chemical
domain (e.g., including new molecules or targeting different
properties) requires reparametrization of the force-field
parameters. Building-block-type force fields such as the Martini
force field provide a solution by parametrizing thermodynam-
ical properties of groups of atoms, from which complete
molecules can be constructed. However, this remains a
complex task due to the complexity of the possible
interactions.44 The most recent version of the Martini force
field, Martini 3, rebalances the density of interactions by
introducing an even larger number of possible interaction
types, often rendering the parametrization of molecules a
nontrivial problem to common users.56 Automation of the
coarse-grained parametrization of molecules could provide a
solution, especially in the construction of large databases of
molecules. Importantly, parametrization of bonded and
nonbonded parameters should ideally be performed simulta-
neously since bonded and nonbonded interactions are not

independent�instead, they are directly influencing each other
via the density of interactions.56,57 The primary hurdle lies with
the nonbonded parameters of building-block force fields, such
as the Martini force field, which are constructed of discrete and
predefined fixed variables. In contrast, the bonded parameters
involve continuous variables. This gives rise to a para-
metrization challenge that entails managing a mixed variable
problem. To this aim, we have pioneered the use of mixed-
variable particle swarm optimization in the automated
parametrization of molecules within the Martini 3 coarse-
grained force field by matching both structural (e.g., RDFs)
and thermodynamical data (e.g., phase-transition temper-
atures).44 An important advantage of this “CGCompiler
approach” is that both bonded and nonbonded interactions
are simultaneously optimized while conserving the search
efficiency of vector guided particle swarm methods over
heuristic search methods (see Figure 6E).

Integration of Direct Experimental Feedback. Finally,
while in silico optimization has undeniably emerged as a
valuable tool for designing chemical structures across diverse
domains, including drug and material design,1,58 it is
imperative to recognize its inherent limitations in completely
replacing experimental characterization. In silico models, by
their nature, tend to oversimplify the intricate complexities of
biological systems. Consequently, there is a growing need for a
more seamless integration of experimental feedback into the
process of inverse design.
One potential approach toward achieving this integration

involves harnessing empirical data to influence the generation
of the genetic pool within physics-based inverse design,
facilitated by genetic algorithms. Such an integration strategy
is poised to steer the search toward solutions that are
inherently more contextually relevant. One such idea involves
mapping the “misses” and “hits” obtained from experimental
assays into a continuous high-dimensional descriptor space,
which comprises descriptor vectors, such as the descriptors
being developed for antimicrobial peptides.59 This map acts as
an evolutionary constraint on the generation of the sequence
pool within physics-based inverse design driven by genetic
algorithms. New peptides generated within this protocol that

Figure 7. Integration of experimental feedback within physics-based peptide design. (A) Using a descriptor space to integrate experimental
feedback on desired activity into biasing the physics-based evolution of peptides. The red dots indicate forbidden regions in solution space that are
not being revisited in the course of peptide evolution enforcing the sampling of new regions. (B) Impression of a designed antiviral peptide
targeting the SARS-CoV-2 viruses. Experimental feedback on “hits” and “misses” is envisioned to, for example, gradually improve the physics-based
design of antiviral peptides. Adapted with permission from ref 60. Copyright 2023 Elsevier Ltd.
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are too closely related to past “misses” within the descriptor
space are omitted from entering the sequence pool (see Figure
7), a concept akin to support vector machines (SVMs).
The overarching objective is 2-fold: first, to reduce the

dimensionality of the descriptor space through principal
component analysis (PCA), and second, to continually refine
the constraints on the descriptor space during the course of
experimental validation. This iterative process aims to seek
improved exclusion and inclusion criteria that optimally guide
the retrospective prediction of collected experimental data.
The implementation of experimental feedback holds the

potential not only to enhance future design but also to uncover
shared physicochemical characteristics among “hits” or
“misses”, which may further aid in identifying potential
mechanisms of action. The primary challenge in implementing
this integrated approach lies in the demand for sophisticated
high-throughput experimental techniques tailored to the
specific problems studied, as well as imposing efficient
constraints in a high-dimensional descriptor space where
points are predominantly located on a hypersurface. Never-
theless, as our knowledge and experience in this field continue
to evolve, we anticipate that this integration will increasingly
define the future of research and design across various
domains.

■ CONCLUSION
We have outlined how physics-based inverse design can open a
promising new avenue for the inverse design of biopolymers
interacting with complex, fluid phases. Physics-based inverse
design could introduce a quantum leap in the development of
biomolecular sensors and peptide drugs that either recognize
or selectively target membrane curvature, membrane lipid
composition, or membrane phase (e.g., lipid rafts), and even
protein condensates. Furthermore, even when the generated
optimal solutions are not of direct biological relevance,
physics-based inverse design uniquely enables pin-pointing of
relevant physicochemical principles and thermodynamic
driving forces on how biopolymers optimally interact with
complex fluidic environments. In addition, physics-based
evolution can be exploited to isolate the fingerprints of
evolutionary optimization within native proteins, such as in the
optimization of protein−cholesterol interactions within trans-
membrane domains.
Sequences generated in the course of the evolution span the

entire physicochemical applicability domain of the targeted
functionality. Therefore, generation of such training data in
conjunction with neural network models additionally paves the
road for novel (quantitative) prediction tools in the public
domain, as shown with the PMIpred server15 for sequence-
based prediction of membrane binding free energies. It is
straightforward to extend this concept to other applications, for
example in the scoring of the ability of peptide sequences to
recognize/attract cholesterol or on their affinity for liquid
ordered phases (lipid rafts).18

A main challenge of physics-based inverse design is the
appropriate choice of the fitness function that specifies a
desired functionality, as well as the underlying assumptions in
the used system setup, adopted/targeted protein structure, and
(coarse-grained) force field.
Finally, as physics-based methods effectively extract implicit

information from the underlying force field, integration of
improved (coarse-grained) force fields�for example, the
recent Martini 356,61 and the Spica force-field62,63�in

conjunction with the integration of groundbreaking protein
structure prediction methodology�for example, the Alphafold
2 project64�could further facilitate these applications.
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