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Integrated single-cell transcriptomic and epigenetic 
study of cell state transition and lineage commitment 
in embryonic mouse cerebellum
Nagham Khouri-Farah1†, Qiuxia Guo1†, Kerry Morgan1, Jihye Shin1, James Y. H. Li1,2*

Recent studies using single-cell RNA-sequencing have revealed cellular heterogeneity in the developing mammalian 
cerebellum, yet the regulatory logic underlying this cellular diversity remains to be elucidated. Using integrated 
single-cell RNA and ATAC analyses, we resolved developmental trajectories of cerebellar progenitors and identified 
putative trans- and cis-elements that control cell state transition. We reverse engineered gene regulatory networks 
(GRNs) of each cerebellar cell type. Through in silico simulations and in vivo experiments, we validated the efficacy 
of GRN analyses and uncovered the molecular control of a posterior transitory zone (PTZ), a distinct progenitor 
zone residing immediately anterior to the morphologically defined rhombic lip (RL). We showed that perturbing 
cell fate specification in the PTZ and RL causes posterior cerebellar vermis hypoplasia, the most common cerebellar 
birth defect in humans. Our study provides a foundation for comprehensive studies of developmental programs 
of the mammalian cerebellum.

INTRODUCTION
The cerebellum, which contains 80% of the total neurons of the human 
brain, is important in cognitive processing and sensory discrimina-
tion, in addition to its well-known function in motor coordination. 
There is a resurgence of interest in the development of the cerebellum 
as it is recognized as a locus for numerous developmental brain dis-
orders, such as ataxia, autism, schizophrenia, and attention-deficit/
hyperactivity disorder (1).

The embryonic cerebellum contains two spatially distinct germinal 
zones: the ventricular zone (VZ) and the upper rhombic lip (RL), 
which give rise to inhibitory and excitatory neurons, respectively (2). 
From these germinal zones, different types of GABAergic and 
glutamatergic neurons are generated in temporally restricted phases 
(2). In particular, the RL produces cerebellar glutamatergic nuclear 
neurons between embryonic day (E) 9.5 and E12.5, granule cells 
(GCs) after E12.5, and unipolar brush cells at E16.5 (2). Genetic 
studies have demonstrated that transcription factor (TF) Ptf1a con-
trols the GABAergic fate of VZ progenitors, whereas Atoh1 controls 
the glutamatergic fate of RL cells (2). Despite these advances, the gene 
regulatory programs that regulate the diversification of GABAergic 
and glutamatergic neurons remain to be defined.

It was suggested that RL-derived Atoh1 cells are induced de novo 
throughout embryogenesis (3). However, the molecular mechanisms 
responsible for the remarkable cellular diversity of the Atoh1 lineage 
are poorly understood. Furthermore, the source of progenitors that 
are recruited into the Atoh1 lineage, particularly those forming 
cerebellar GCs—the largest population of neurons in the mammalian 
brain—is still an enigma. We have recently proposed that the posterior 
end of the cerebellar VZ, named as “posterior transitory zone (PTZ),” 
contains bipotent progenitor cells for the Atoh1 lineage and choroid 
plexus epithelium (4). However, the regulation and function of the 

PTZ have not been examined. A recent report showed that the RL in 
the developing human cerebellum has distinctive cytoarchitectural 
features from other vertebrates, including the rhesus macaque (5). 
Unusual longevity of the human RL is attributed to the expansion of 
the posterior cerebellar vermis, a region that is associated with 
human cognition and predominantly affected in cerebellar birth 
defects such as Dandy-Walker malformation (DWM) and cerebellar 
vermis hypoplasia (5). Therefore, studying the molecular and cellular 
mechanisms that sustain the Atoh1 lineage will shed light on the 
evolution and congenital defects of the human cerebellum.

C. Waddington introduced the concept of epigenomic landscape 
to explain the emergence of distinct cell fates during development 
(6). In particular, the chromatin state defines the functional archi-
tecture of the genome by modulating the accessibility of cis-regulatory 
elements (CREs), which are regions of DNA bound by TFs to regulate 
the transcription of target genes. Together, the CREs and TFs 
constitute the regulatory logic for cell state transition and lineage 
commitment. The adaptation of assay for transposase accessible 
chromatin (ATAC) allows measuring of chromatin accessibility, a 
proxy for CRE activity, at single-cell resolution (7). Powerful algo-
rithms have been developed to harness time-series single-cell data 
to identify the molecular trajectories that describe cell fate specifica-
tion in vertebrate embryogenesis (8–10). Although several studies 
using single-cell technology have examined the heterogeneous cell 
populations in the mouse (4, 11–15) and human cerebellum (16), 
systematic integrated RNA and ATAC analysis by sampling devel-
oping cerebellar cells is still lacking.

In the current study, we applied single-cell RNA-sequencing 
(scRNA-seq) to resolve the developmental trajectories and the under-
lying transcriptional changes in the embryonic mouse cerebellum. 
We profiled the accessible chromatin of the mouse cerebellum at 
E12.5, E13.5, and E14.5 using single-nucleus ATAC sequencing 
(snATAC-seq). By integrating single-cell resolved RNA and ATAC 
modalities, we identified CREs that undergo temporal, cell type–
specific changes in chromatin accessibility and linked them to 
transcriptional targets. On the basis of information on the trans- 
and cis-elements and their linked targets, we reverse engineered 
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gene regulatory networks (GRNs) of individual cerebellar cell types 
and applied the GRNs to simulate loss of function and gain of func-
tion (GOF) of transcription regulators. Last, we performed genetic 
and fate-mapping studies to validate our in silico analyses. We re-
fined the molecular features of the PTZ, a VZ domain immediately 
anterior to the classically defined RL. We showed that the balance of 
cell fate specification in the PTZ and RL is crucial for the expansion 
of the posterior cerebellar vermis in mice. Several genes that have 
been implicated in DWM, the most common congenital human 
cerebellar defect with cerebellar vermis hypoplasia, are enriched in 
the PTZ, suggesting that abnormal development of PTZ cells underlies 
the pathogenesis of DWM.

RESULTS
Reconstruction of cerebellar development with  
time-series scRNA-seq
To investigate developmental trajectories of cerebellar neural pro-
genitor cells (NPCs), we reanalyzed a previously published scRNA-seq 
dataset (11), which includes 12 time points from E10.5 to postnatal 
day (P) 10 mouse cerebella, focusing on the embryonic data (E10.5 
to E17.5). On the basis of the known markers, we assigned identities 
to 29 recovered clusters, which included all major cerebellar cell 

types (Fig. 1A, fig. S1, and data S1). In Uniform Manifold Approxi-
mation and Projection (UMAP) embedding, proliferative cells, 
including NPCs and granule cell progenitors (GCPs), at either the 
synthesis (S) or the mitosis (M-G2) phase are arranged in circles, 
resembling the cell cycle, and linked to branches of postmitotic cells 
(Fig. 1B). Cells from different stages are well integrated, but their 
relative contributions to each cell type change in agreement with 
the temporal development of the cell type (Fig. 1, C to E) (2). For 
example, Purkinje cells (PCs) initially appear at E12.5, and GABAergic 
interneurons (IN) and GCPs first appear at E14.5 and greatly expand 
afterward (Fig. 1, D and E). The UMAP projection displays four main 
branches, corresponding to glutamatergic neurons, GABAergic 
neurons, PTZ, and anterior neural progenitor (NPCa), respectively 
(Fig. 1B). After E13.5, NPCs shift toward the NPCa, displaying a 
transition from neural epithelium to radial glia with increasing ex-
pression of Fabp7, Lxn, Aldh1l1, and Slc1a3 (Fig. 1, C and D, and 
data S1). Along the glutamatergic branch, cells from the early stages 
form a continuum leading to cerebellar and extra–cerebellar nuclei 
(CNs), whereas cells after E13.5 contribute to GCs (Fig. 1, C to E), 
in agreement with a CN-to-GC switch in the production of gluta-
matergic cerebellar neurons (3). Therefore, our scRNA-seq trajec-
tory analyses reconstruct the order of cell differentiation in the 
embryonic mouse cerebellum.
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Fig. 1. Reconstruction of the development of the embryonic mouse cerebellum by time-series scRNA-seq. (A to D) UMAP representation of merged scRNA-seq of 
mouse cerebella from E10.5 to E17.5. Dots indicate individual cells; colors show cell clusters (A and D), cell cycle phases (B), and embryonic stages (C); the dashed-line 
arrows in (B) denote the main branches of developmental trajectories arising from NPCs; and the empty and black arrowheads in (D) indicate the early and late NPCs, 
respectively. The initial appearance of cerebellar nuclear neurons (CN), parabrachial nuclear neurons (C3.Tlx3), PCs, IN, cerebellar GCs, and unipolar brush cells (UBC) are 
indicated in (D). Dashed lines in (D) circle GCs. (E) Bar plots showing cell composition across stages. (F) Partition-based graph abstraction (PAGA) showing the relationship 
of cells from different stages. BG/AS, Bergmann glia and astrocytes; CPE, choroid plexus epithelium; Eryth.early and Eryth.late, early and late erythrocytes; GABA.Pro, 
GABAergic neuron progenitors; GABA.Pre, GABAergic neuron precursors; Glu.Pro, glutamatergic neuron progenitors; Isth, isthmus; NPC.M and NPC.S, NPCs in the 
M and S phase.
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Resolution of four developmental trajectories 
from the cerebellar VZ progenitors
Unbiased hierarchical analysis using partition-based graph abstraction 
(PAGA), which provides an interpretable graph-like map of the data 
manifold based on the connectivity of cell groups (17), correctly 
orders cells from E10.5 to E17.5 (fig. S2A). Furthermore, PAGA re-
veals that cerebellar cells of the early (E10.5 to E12.5) and late (E15.5 
to E17.5) embryonic stages are interconnected, whereas cells between 
E12.5 and E15.5 form a linear connection (Fig. 1F). This tripartite 
pattern suggests that the cell state transition is dynamic and abrupt 
between E12.5 and E15.5, but it is much more gradual and asyn-
chronous before and after that. We reasoned that, by taking advantage 
of the gradual and asynchronous development at the early phase, we 
could resolve the developmental trajectories from cerebellar NPCs 

in greater detail. UMAP embedding of E10.5 to E13.5 data reveals 
four conspicuous trajectories (RL and p2-4), each of which emerges in a 
stepwise manner (Fig. 2, A and B). Inspecting selected genes revealed 
that these trajectories represent neurons arising from four cerebellar 
VZ domains that are demarcated by proneural genes Atoh1, Ascl1, 
Ptf1a, and Neurog1, respectively (Fig. 2, C and D) (18, 19). The 
glutamatergic and GABAergic lineages are differentially marked by 
Atoh1 and Ascl1; the latter gives rise to three branches, in which 
pC2 and pC4 are both marked by Neurog1, while pC2 is selectively 
marked by Ptf1a (Fig. 2, C and D). RL and pC2 cells give rise to 
the cerebellar glutamatergic and GABAergic neurons, respectively 
(18, 19). pC3 cells are precursors of the parabrachial nuclei (20), 
whereas the fate of pC4 cells is currently unknown. By performing 
immunofluorescence for the markers that represent each branch, 
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we confirmed the cell types arising from the four cerebellar VZ 
domains (Fig. 2, E to G).

To study cellular differentiation kinetics, we calculated RNA 
velocity with scVelo (21). Adding RNA velocity vector streams to the 
UMAP embedding demonstrates the developmental trajectories—
the proliferating state of NPCs traverses through the four branches 
(Fig. 2H). scVelo predicts that the differentiation progression is slow 
immediately after cell cycle exit and speeds up after cell fate com-
mitment to the individual trajectory (Fig. 2I). Next, we identified cell 
fates, gene cascades, and driver genes along each developmental tra-
jectory with CellRank (Fig. 2, J and K; fig. S2, B and C; and data S2) 
(22). To validate the analysis, we performed functional enrichment 
analysis reasoning that genes in a given cascade should have common 
biological functions. Driver genes of each lineage exhibit distinct 
enrichments in biological function and pathways (fig. S2, D and E).

To assess the robustness of our results, we examined additional 
scRNA-seq datasets. First, we repeated the analysis by adding E14.5 
cells to the E10.5 to E13.5 dataset. We also reanalyzed another pub-
lished scRNA-seq data of E10.5, E12.5, and E14.5 mouse cerebella 
(14). Last, we generated our scRNA-seq data of E12.5, E13.5, and 
E14.5 cerebella (in-house). All these datasets produced almost iden-
tical results to the E10.5-to-E13.5 one (fig. S3). Collectively, our 
scRNA-seq analyses confirm the four subdomains in the cerebellar 
VZ in mouse embryos between E10.5 and E13.5. We identify the 
genetic cascades, including putative driver genes, in the four popula-
tions of cells arising from the respective cerebellar VZ subdomains.

Molecular control of cerebellar GABAergic neuron differentiation
Prior studies have demonstrated an essential role of Ptf1a in the pro-
duction of GABAergic cerebellar neurons (23). Our computational 
analysis placed Ptf1a at the beginning of the gene cascade leading to 
the generation of PCs (Fig. 2K). We found that the expression of 
Lhx1/5, Tfap2b, and Olig2, which constitute the gene cascade down-
stream of Ptf1a, was absent from C2 in the E12.5 mouse cerebellum 
without Ptf1a (Fig. 3, A to B′, and fig. S4). Notably, the Tlx3 

expression, which normally demarcates the C3 area, was expanded 
into the C2 domain (Fig. 3, A to B′, and fig. S4), demonstrating that 
C2 cells are respecified to a C3 fate in the absence of Ptf1a as de-
scribed previously (20). Although Lhx1/5 and Tfap2b are expressed 
in both C2 and C4, their expression in C4 cells was unaffected in the 
Ptf1a-deficient cerebellum, indicating that C2 and C4 cells are dif-
ferentially regulated. Therefore, the in vivo studies validate our 
single-cell trajectory inference and demonstrate the critical role of 
Ptf1a in the specification of the C2 cell fate.

In UMAP embeddings, cells are arranged according to the tran-
scriptome similarity, but not necessarily to the lineage relationship. 
We postulated that lineage-unrelated clusters could be detected by 
scrutinizing their temporal appearance along a trajectory. Although 
the Mes.Isl1 cluster, which represents mesencephalon-derived Isl1-
expressing cells (4), resides at the end of the C3 trajectory, it is 
abundant and separated from the C3 branch at E10.5 (Fig. 2, 
A and B), indicating that Mes.Isl1 and C3 cells are lineage unrelated. 
Prekop et al. reported that Sox14 marks a subset of GABAergic pro-
jection neurons in CNs (24). However, the origin of these neurons, 
denoted as CN.gaba, remains undetermined. Notably, CN.gaba cells 
first appear at E11.5, but they are separated from the C4 and C2 trajec-
tories at this stage (Fig. 2B), suggesting that CN.gaba cells have a 
different origin from that of C2 or C4 cells. Sox14+ cells were initially 
found in the lateral part of the cerebellar anlage, extending from the 
basal plate of r1 at E12.5 (Fig. 3C). Near the cerebellar VZ, newly 
born neurons, presumably nascent PCs, were positive for both Foxp2 
and Tfap2b, but negative for Sox14 (Fig. 3, D to E″). Therefore, our 
data suggest that Sox14+ inhibitory projection neurons of CNs orig-
inate from the basal plate of r1, rather than the cerebellar VZ.

Ephemeral Atoh1-expressing cells destined for the Atoh1 
lineage from the cerebellar VZ
The Atoh1 lineage produces diverse cerebellar cell types, including 
CN neurons, GCs, and unipolar brush cells (3, 25, 26). Our data sug-
gest that the early Atoh1-expressing cells produce early-born CN 
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neurons (CN.early) before E12.5 and then late-born (CN.late) be-
tween E12.5 and E13.5 (Fig. 2, A to C). Lhx2 is expressed in CN.ear-
ly cells, whereas Pax6, Olig2, and Neurod2 are expressed in CN.late 
cells (fig. S5A). Lhx2+ cells occupy the anterior part of the nuclear 
transitory zone, whereas Pax6+, Olig2+, and Neurod2+ cells are 
present in the posterior part of the nuclear transitory zone at E13.5 
(fig. S5, B and C). At E15.5, the Lhx2+ cells are positive for tyrosine 
hydroxylase (Th), which marks the isthmic nuclei as shown previously 
through genetic fate mapping with Fgf8-CreER mice (fig. S5D) (4). 
Pax6 and Olig2 differentially mark in the prospective medial (fastigial) 
and lateral (interposed and dentate) CNs (4, 27, 28). Therefore, 
CN.early likely represent isthmic nuclei neurons, whereas CN.late 
are cerebellar glutamatergic nuclear neurons.

In contrast to the conventional view that GABAergic and gluta-
matergic neurons arise from spatially distinct germinal zones (2), 
our trajectory analysis suggested that the same group of NPCs gives 
rise to the Atoh1 and Ascl1 branches between E10.5 and E13.5 
(Fig. 2, A to C). Sporadic Atoh1+ and Ascl1+ cells were found in 
proliferative NPCs, NPC.M (NPCs in the M phase), and NPC.S 
(NPCs in the S phase) (fig. S5E). To evaluate codependency and 
mutual exclusivity for Atoh1, Ascl1, and other genes in proliferative 
NPCs, we calculated the codependency index (CDI) and exclusively 
expressed index (EEI) (29). We found that Atoh1 and Ascl1 were ex-
pressed in a mutually exclusive manner among proliferative NPCs 
(fig. S5, F and G, and data S3). Ascl1 was coexpressed with Ptf1a and 
Neurog2, whereas Atoh1 was with Olig3 and Msx1 (fig. S5, F and G, 
and data S3). The distinct coexpression pattern indicates that the 
sporadic expression of Atoh1 and Ascl1 in NPCs is unlikely technical 
noise of scRNA-seq but reflects a transient expression of these genes 
and the associated developmental program.

To investigate the generation of the Atoh1 lineage, we performed 
genetic fate mapping using an Atoh1-Cre transgene (30) and the Ai14 
Cre-reporter mouse line, denoted as R26RFP, which expresses red 
fluorescent protein (RFP; tdTomato) upon Cre-mediated recombi-
nation (31). RFP-labeled descendants of the Atoh1 lineage were found 
in the subpial stream (32), the mantle zone underneath the pial surface 
in Atoh1-Cre;R26RFP/+ embryos at E10.5 and E11.5 (Fig. 4, A to D′). 
Almost all RFP+ cells in the subpial stream were positive for Cre and 
Meis2 (Fig. 4, B to D′ and I). Unexpectedly, radially oriented RFP+ 
cells were found in the dorsal and anterior parts of the cerebellar VZ in 
addition to the RL (Fig. 4, B to E). These RFP+ cells were positive for 
Sox2, but not Dcx, indicating that they were progenitors (Fig. 4, F to G″). 
In contrast to the RFP+ cells in the subpial stream, only 35.1% of the 
RFP+ cells in the VZ were positive for Cre (Fig. 4, B to D′ and I). 
These findings suggest that some NPCs in the cerebellar VZ tran-
siently express Cre, resulting in sporadic, but permanent, RFP labeling 
of their progeny. The fact that almost all RFP+ cells in the subpial 
stream were positive for Meis2 and Cre suggests that cerebellar VZ 
progenitors with ephemeral Atoh1 expression are committed to the 
Atoh1 lineage. In support of this notion, Cre+ or RFP+ cells were 
negative for Tfap2b and Ascl1, which mark precursors of GABAergic 
neurons (Fig. 4, B to D′ and H). The expression pattern of RFP 
and Cre in the cerebellar VZ was undetected in the midbrain and 
telencephalon of Atoh1-Cre;R26RFP/+ or in the cerebellum of R26RFP/+ 
embryos. Furthermore, immunostaining showed that Cre and Atoh1 
were colocalized in the E11.5 and E12.5 cerebellum (Fig. 4, J to K′), 
demonstrating that the Atoh1-Cre transgene faithfully mimics the 
endogenous Atoh1 expression in the cerebellum. Therefore, our 
scRNA-seq and lineage tracing analyses show that the cerebellar VZ 

contains transient Atoh1-expressing NPCs that are committed to the 
Atoh1 lineage between E10.5 and E13.5.

Single-cell analysis of chromatin accessibility 
of the embryonic mouse cerebellum
To identify CREs and quantify their dynamic activity during early 
cerebellar development, we performed snATAC-seq of the mouse 
cerebellum at E12.5, E13.5, and E14.5. Fragment size distribution 
and transcription start site enrichment demonstrated the high quality 
of our data (fig. S6, A to D). After stringent selection, we obtained a 
total of 31,144 high-quality cells, which were clustered into 26 groups 
(Fig. 5, A to E, and fig. S6E). We determined fixed-width peaks 
[501 base pairs (bp)] on aggregate single cells of the individual 
cell group and merged nonoverlapping peaks to a union set of 
401,835 peaks, which span over 200 Mb or 10.7% of the reference 
mouse genome.

To determine the identity of ATAC cell clusters, we calculated 
“gene activity scores” to estimate gene expression based on local 
accessibility of the gene body and promoter. We assigned identities 
according to the activity of known cell-specific markers: Foxp2 and 
Rora for PCs, Ptf1a for GABAergic progenitors (GABA.Pro), Sox14 
for GABAergic CN projection neurons (CN.gaba), Pax2 for IN, 
Meis2 for glutamatergic CN neurons, Pax6 and Atoh1 for GCs and 
GCPs, respectively, and Id3 for NPCs (fig. S7A). Differential analyses 
identified cluster-specific markers and confirmed our identity 
assignment (fig. S7B and data S4). To systematically assess the cell 
identity, we integrated our in-house E12.5 to E14.5 RNA and ATAC 
cells, revealing strong concordance between the two modalities—
most ATAC cell clusters had one-to-one mapping to the RNA cell 
clusters (fig. S7C). The integration resulted in a more accurate esti-
mation of gene expression in each ATAC cell (fig. S7, D and E).

Focusing on the E12.5 data, which were sufficient to reconstruct 
most of the trajectories of Carter’s E10.5 to E13.5 data, we showed 
that the global structures revealed by UMAP embedding for RNA 
and ATAC cells were remarkably conserved (fig. S8A). When the 
scVelo-inferred latent time of the RNA cell was transferred to its 
nearest ATAC neighbors, we observed a smooth continuum of latent 
time in the chromatin manifold (fig. S8B). One notable exception 
was that only the ATAC analysis correctly placed the PTZ cells be-
tween the NPC and the Atoh1 lineage, although both assays recovered 
the same set of molecular features of PTZ cells (fig. S8C). The better 
performance of ATAC than RNA analysis in trajectory inference is 
likely because the former is unobscured by cell cycle genes, which 
confound the RNA study of dividing cells. Many PTZ feature genes, 
such as Atoh1, Cdon, Hes1, Gdf10, Nkd1, and Reln, are expressed in 
distinct but overlapping patterns in the area encompassing the 
posterior part of the cerebellar VZ and morphologically defined 
RL (fig. S8, C to E). To distinguish it from the RL, we refer to this 
VZ domain as PTZ.

Examination of cell type–specific accessible chromatin 
regions and their associated TF-binding motifs
We found that 40.5% of the total ATAC peaks exhibit differential 
accessibility among cell clusters [a median of 9761 peaks per cluster; 
false discovery rate (FDR) < 0.01 and log2 fold change (FC) ≥ 1; 
Fig. 5F], demonstrating that different cell types and states have 
distinctive chromatin landscapes. Motif analysis revealed that the 
cluster-specific loci are enriched for different TF binding motifs: 
The Atoh1 lineage, including CNs, GCs, and GCPs, is enriched for 
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binding motifs of nuclear factor I (NFI) TFs and basic helix-loop-
helix TFs, NPCs for regulatory factor X (RFX) TFs, and PCs for 
homeodomain-containing TFs (Fig. 5G). We compiled a list of 
genomic features on the basis of published snATAC-seq, bulk chro-
matin immunoprecipitation, and deoxyribonuclease (DNAse) I 
hypersensitive site (DNaseHS) sequencing to perform overlapping 
enrichment testing. As expected, cell type–specific open chromatin 
regions are largely consistent with those identified by a recent 
snATAC-seq of mouse cerebella (fig. S7F) (13). The ATAC peaks 
specific for GABAergic progenitors are enriched for DNA sequences 
bound by Ascl1 and Ptf1a (33), whereas those specific for GCs and 

GCPs are enriched for sequences bound by Atoh1 (fig. S7F) (34). 
Notably, chromatin regions identified by bulk analysis of H3K27ac, 
and DNaseHS of postnatal mouse cerebella, are notably enriched 
in GC-specific peaks, likely due to the prevalence of GCs in the 
postnatal cerebellum (fig. S7F). Collectively, our findings demon-
strate that different cerebellar cell types are regulated by distinct 
regulatory programs.

Next, we applied chromVAR (35) to calculate the relative motif 
activity at single-cell resolution. By correlating chromVAR deviation 
z scores of TF motifs with expression levels of TFs, we systematically 
deduced positive and negative TFs in the developing cerebellum 
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based on whether their expression was positively or negatively cor-
related with motif enrichment. We iterated the analysis in each stage 
and identified a total of 33 putative activators and 16 repressors 
(Fig. 5H). In support of this categorization, the majority of the TFs 
in these two groups are known transcriptional activators (29 of 33; 
87.9%) or repressors (10 of 16; 62.5%), according to the Gene 
Ontology Consortium (data S5). As the expression of these factors 
is closely correlated with the accessible chromatin region with their 
binding motifs, they may function as pioneer factors (36) and play 
crucial roles in cell fate specification in the developing cerebellum.

Identification of CREs for cell type–specific 
transcriptional programs
To find CREs, we identified chromatin-accessible peaks that cor-
related with transcription in the combined E12.5 to E14.5 ATAC-RNA 
joined cell clusters. We iterated the analysis for individual stages and 
identified a total of 44,329 peak-to-gene pairs with 31,088 unique 
accessible peaks and 7159 target genes. A total of 69.4% of the identi-
fied CRE-target pairs are specific to a particular stage, demonstrating 

the temporally dynamic activation of most CREs. The median dis-
tance between CREs and target promoters is 171.1 kb, 14.9 times 
greater than that to the closest genes (Fig. 6A). Most CREs are located 
in the intronic or distal intergenic regions (Fig. 6B), suggesting that 
the identified CREs are mostly distal elements. While 73.0% of the 
CREs are assigned to a single gene, the rest are linked to two or more 
(up to 13; Fig. 6C), showing that some CREs may regulate multiple 
genes. The median number of CREs per gene is four (Fig. 6D). The 
top 10 percentile genes with the highest numbers of CREs (>16) are 
enriched for DNA binding transcription regulator activity and reg-
ulation of neural development (Fig. 6, E and F, and data S6). The top 
eight genes—Zic5, Zic2, Pax6, Hes5, Sox9, Lhx1, Sox2, and Pax3—
are well-known TFs important for cerebellar development. These 
observations suggest that key TFs acting in early cerebellar develop-
ment are subjected to complex regulation via numerous CREs in 
agreement with a recent report (13).

Additional lines of evidence support the functional significance of 
the identified CREs. First, we detected a sharp increase in evolutionary 
conservation scores at the center of CREs (Fig. 6G). Furthermore, 
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the CREs are significantly overlapped with putative enhancers identi-
fied by The Encyclopedia of DNA Elements (ENCODE) consortium 
and Functional Annotation of the Mammalian Genome Project 5 
(FANTOM5) (Fig. 6H) (37, 38). Last, we asked whether our approach 
recovered the enhancers that had been validated by transgenic mouse 
assays. We compiled a list of the enhancers of seven genes that are 
involved in cerebellar development, including Atoh1, Fgf8, Kirrel2, 
Pax2, Pcp2, Ptf1a, and Wnt1 (39–45). All these validated enhancers 
were recovered by our study (Fig. 6I and fig. S9). Therefore, our 
integrative scRNA-seq and snATAC-seq analyses provide valuable 
information on the CREs that control the temporospatial gene ex-
pression in the developing cerebellum.

Reconstruction of GRNs governing cerebellar development
We leveraged the newly identified CREs to reverse engineer GRNs by 
applying CellOracle. For each cell type and state at E12.5 (Fig. 7A), 
we produced a GRN, which exhibits a scale-free network character-
istic for biological networks. The network entropy, indicative of the 
average undifferentiated state, decreases from progenitors (such as 
NPCs, GABA.Pro, and Glu.Pro) to postmitotic cells (such as PCs 
and GCs) as expected (Fig. 7B). We identified key regulators of each 
cell-specific GRN through network analyses (Fig. 7C, fig. S10, and 
data S7). Among the predicted top regulators of GABAergic pro-
genitors, Neurog1/2, Ptf1a, Ascl1, Olig2/3, Tfap2a/b, and Lhx1/5 have 
been shown to play crucial roles in the development of GABAergic 
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neurons in the cerebellum (23, 46–51). Similarly, in vivo studies have 
demonstrated the essential role of Atoh1, Neurod2, Barhl1, and Lhx9 
in cerebellar glutamatergic neurons as predicted by our GRN analysis 
(Fig. 7C) (52–56). In the GRN of GABAergic progenitors, the 
majority of the CREs of the inferred targets of Ascl1 and Ptf1a are 
bound by Ascl1 (76.7%) and Ptf1a (75.0%) according to a prior 
binding profile study (Fig. 7, D and E) (33).

Studying the molecular regulation of PTZ development via 
GRN simulations
To evaluate the validity and utility of the GRNs, we applied CellOracle 
to simulate how TF perturbations affect cell fate decisions. We fo-
cused on Ptf1a and Atoh1, two well-characterized master regulators 
in cerebellar development. In agreement with mouse genetic studies 
(23, 26, 52), GRN simulations predicted that the loss of Ptf1a would 
reduce GABAergic progenitors, whereas the loss of Atoh1 would 
deplete glutamatergic progenitors (Fig. 8, A and B, and fig. S11A). 
Unexpectedly, GRN simulations suggested that the loss of Ptf1a would 
enlarge the PTZ (Fig. 8, A and B). By examining a panel of PTZ 

markers, including Atoh1, Lmx1a, Hes1, Otx2, Pax6, and Reln, we 
found that the PTZ domain was notably enlarged in Ptf1a-deficient 
cerebellum at E13.5 (Fig. 8, C to E). In agreement with the previous 
findings (18), GRN simulations showed that the loss of function 
and GOF of Lmx1a would reduce or enlarge, respectively, the PTZ 
(fig. S11, B and C).

Hes1 and Hes5, which are important for NPC maintenance (57), 
are expressed in the cerebellar VZ, whereas only Hes1 is expressed 
in the PTZ (fig. S12, A and B). GRN simulations predicted that the 
loss of function or GOF of Hes1 would reduce or enlarge the PTZ, 
respectively (Fig. 8, F and G, and fig. S12C). To investigate the 
epistasis between Hes1 and Ptf1a or Lmx1a, we performed addi-
tional GRN simulations and found that Hes1 acted downstream 
to mediate the function of Ptf1a and Lmx1a on PTZ development 
(fig. S12D).

Hes1 is a well-known transcriptional target of Notch signaling 
(57). Upon activation, the Notch intracellular domain (NICD) is 
released from the cell membrane and translocated into the nucleus 
to promote Hes1 transcription (57). We predicted that an ectopic 
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expression of NICD would induce Hes1, resulting in a GOF of Hes1 
and thereby an enlargement of the PTZ. To test our hypothesis, we 
conditionally expressed NICD in the cerebellar VZ by combining 
Gbx2CreER (58) and R26NICD, in which NICD-ires-GFP is expressed 
from the Rosa26 locus upon Cre-mediated recombination (59). After 
tamoxifen administration between E8.5 and E10.5, we detected 
descendants of the Gbx2 lineage throughout the cerebellum in 
Gbx2CreER/+;R26RFP/+ embryos at E13.5 (Fig. 8H). By contrast, NICD-
expressing (NICD+) cells, which were marked by green fluorescent 
protein (GFP) immunoreactivity, were restricted to the VZ, PTZ, and 
RL in Gbx2CreER/+;R26NICD/+ embryos (Fig. 8, I and J). As expected, 
robust Hes1 expression was detected in NICD+ cells, particularly in 
the PTZ (Fig. 8, J and K). The PTZ was markedly enlarged in NICD-
GOF embryos at E13.5 (Fig. 8, H to K). These results reveal a crucial 

role of Hes1 in PTZ development and demonstrate the efficacy of 
GRN stimulations to predict the outcome of TF perturbations.

Growth of the posterior cerebellar vermis depends on  
de novo induction of the Atoh1 lineage
In contrast to the sparse contribution of progenies of Gbx2-expressing 
cells labeled at E9.5 to the choroid plexus in the control, abundant 
NICD+ cells were found in the exceedingly enlarged choroid plexus 
in E16.5 Gbx2CreER/+;R26NICD/+ embryos (Fig. 9, A to C). Although 
RFP-labeled descendants of the Gbx2 lineage abundantly contribute to 
the external granular layer (EGL), few NICD+ cells were detected in 
the EGL (Fig. 9, B and C). At the RL, the expression of NICD (GFP) 
and Atoh1 was mutually exclusive, indicating a cell-autonomous 
inhibition of Atoh1 by NICD (Fig. 9, D to D″). A gap was detected 
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between the EGL and RL in E16.5 Gbx2creER/+;R26NICD/+ embryos 
that were given tamoxifen at E8.5 or E9.5, indicating a disruption 
of the ongoing induction of Atoh1 lineage in the presence of Notch 
signaling (Fig. 9, B and C). In the cerebellar cortex, almost all NICD+ 
cells displayed the morphology and molecular features characteristic 
for Bergmann glia, including the expression of Fabp7, Mki67, Sox2, 
and Sox9 (60), indicating that Notch promotes Bergmann glia gen-
eration (Fig. 9, E and F).

As NICD was induced broadly in the cerebellar VZ of Gbx2creERR/+;​
R26NICD/+ cerebella, it was unclear whether the NICD-induced 
Bergmann glia were derived from progenitors fated to the EGL. To 
address this question, we repeated the NICD-GOF experiment with 
Atoh1-Cre. As expected, RFP+ fate-mapped Atoh1 progenies were 
predominantly found in the EGL of Atoh1-Cre;R26RFP/+ cerebellum 
at E18.5 (fig. S13, A and A′). Although a few RFP+ cells were present 
in the choroid plexus, none became Bergmann glia (fig. S13, A and 
A″). When NICD was induced in the Atoh1 lineage, many NICD+ 
cells were detected in GCs and CN neurons of Atoh1-Cre;R26NICD/+ 
embryos (Fig. 9G and fig. S13, B to C″), showing that Atoh1 lineage 
derivatives can tolerate persistent NICD expression. Therefore, the 

lack of NICD+ cells in the EGL of Gbx2creER/+;R26NICD/+ embryos 
likely results from the abnormal cell fate specification rather than a 
selective cell loss. As found in Gbx2creER/+;R26NICD/+, the EGL at the 
RL was much thinner and irregular, and nascent Atoh1+ cells were 
mutually exclusive for NICD+ cells in the Atoh1-Cre;R26NICD/+ 
cerebellum, confirming the inhibitory role of Notch in replenishing 
the Atoh1 lineage (fig. S13, D to D″). In contrast to the almost 
exclusive contribution of RFP+ cells to glutamatergic neurons in 
Atoh1-Cre;R26RFP/+ embryos, abundant NICD+ cells were found 
in the markedly expanded choroid plexus and Bergmann glia in 
Atoh1-Cre;R26NICD/+ embryos (Fig. 9, G to I). Therefore, the forced 
expression of NICD in nascent Atoh1-expressing cells respecifies the 
Atoh1 lineage to form choroid plexus epithelium and Bergmann glia.

Last, we repeated NICD-GOF experiments using Wnt1-CerER trans-
genic mice. Wnt1-expressing cells contribute to the EGL, choroid 
plexus, and Bergmann glia (61). In Wnt1-CreER;R26NICD/+ embryos 
that received tamoxifen at E8.5, NICD+ cells accumulated in the greatly 
enlarged choroid plexus, but were hardly found in the EGL (fig. S13, 
E and F). We detected abundant NICD+ cells that coexpressed Fabp7 
and Sox9 and displayed typical Bergmann glial morphology in the 
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cerebellar cortex of Wnt1-CreER;R26NICD/+ embryos (fig. S13, E and F). 
Collectively, our data show that the activation of Notch signaling 
promotes progenitors at the RL to form choroid plexus epithelium 
and Bergmann glia at the expense of the Atoh1 lineage (Fig. 9J).

In Gbx2CreER/+;R26NICD/+ mice that were given tamoxifen between 
E8.5 and E9.5, the posterior part of the cerebellum was truncated 
while the choroid plexus was greatly expanded (Fig. 9, K to M). A 
similar phenotype was found in Wnt1-CreER;R26NICD/+ cerebella 
at P15 (fig. S13, G to I). The cerebellar hypoplasia was more severe 
near the medial than the lateral region of the cerebellar vermis 
(fig. S13, H and I). Our results demonstrate that sustained replen-
ishment of de novo Atoh1 lineage is crucial for the growth of the 
posterior part of the cerebellar vermis.

Development of the PTZ may underlie the pathogenesis of DWM
DWM represents the most common congenital human cerebellar 
defects, which are defined by cerebellar vermis hypoplasia and en-
larged posterior fossa (62, 63). To investigate whether PTZ develop-
ment is involved in DWM, we examined the expression of genes 
associated with DWM among different cerebellar cell types. DWM 
candidate genes were enriched in the PTZ in both Carter’s and our 
in-house scRNA-seq data (Fig. 10, A and B). Differential expression 
and gene set enrichment analysis showed that PTZ markers were 
significantly enriched for DWM genes, including Fgf17, Flna, Lamc1, 
Nphp1, Zic4, and Zic5 (Fig. 10C). The aggregated expression of these 
six candidate genes was restricted to PTZ cells (Fig. 10D). Collec-
tively, our data suggest that abnormal development of the PTZ 
underlie the pathogenesis of DWM.

DISCUSSION
Integrated analyses of transcriptome and chromatin 
accessibility at single-cell resolution
Through scRNA-seq trajectory analyses, we have reconstructed the 
developmental dynamics of the entire cerebellar primordium and in 
individual lineages during mouse embryogenesis. We confirm the 
four different cellular populations originating from distinct com-
partments of the cerebellar VZ and infer gene expression cascades 
along their developmental trajectories. Our results provide new 

information on the molecular mechanisms that create the hetero-
geneity of glutamatergic (see next section) and GABAergic neurons. 
We suggest that Sox14+ inhibitory projection neurons of the CNs 
may originate outside the cerebellar primordium, probably from 
the basal plate of the neural tube. Together with our previous find-
ing of mesencephalon-derived Isl1+ cells (4), our results suggest that 
the migration of cells that originated outside the cerebellar anlage 
may represent an important mechanism to increase the cellular 
diversity of the cerebellum.

By applying paired single-cell RNA-ATAC analysis, we have 
systematically studied the regulome that governs cell state transition 
and lineage commitment in the developing mouse cerebellum. We 
identify 31,088 candidate CREs with their targets and predicted TFs 
that act through these candidate CREs. The reference maps of CREs 
for the mouse cerebellum will not only help to understand the 
mechanism of gene regulation in different cell types but also enable 
targeting and purifying of specific cell types. Built on the newly 
identified CREs, we have reverse engineered GRNs for individual 
cell types and demonstrate the validity and utility of the GRNs. Our 
study demonstrates that GRN simulations can be used to evaluate 
how genetic perturbations affect cell fate decisions, informing strat-
egies for cell reprograming to produce specific cerebellar cell types 
in vitro. In addition, GRN simulations can be extended to study 
multiple genes to evaluate genetic redundancy and epistasis. To this 
end, we strive to make our data broadly available to the community 
(see “Data and materials availability” statement).

Despite the notable capability of GRN analysis, the current 
method has limitations and dependencies. First, the accuracy of the 
predicted TFs based on peak-gene pairs depends on the availability 
of high-quality binding motifs. Second, when simulating TF pertur-
bation, CellOracle predicts the directionality of the fate changes in 
affected cells expressing the particular TF, but not the long-term 
consequences. Furthermore, only TFs with relatively high variability 
and expression values are available for perturbation simulations.

The cerebellar VZ contains ephemeral Atoh1-expressing 
progenitors destined to the Atoh1 lineage
Past studies have demonstrated the extraordinary cellular diversity 
of Atoh1 derivatives in the cerebellum (3, 25, 26). Atoh1-expressing 
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Fig. 10. Enrichment of DWM genes the PTZ. (A and B) Heatmap showing average expression of DWM genes in different cerebellar cell types in Carter’s E10.5 to E13.5 
(A) and in-house E12.5 (B) scRNA-seq. Note the elevated expression of DWM genes in PTZ cells (in red). (C) Histogram showing enrichment of DWM genes in PTZ cell 
markers. Line and dots show P values (Fisher’s exact test); black dashed line indicates the cutoff for significance at P = 0.01; numbers show cell-specific markers that are 
overlapped or nonoverlapped with DWM genes. (D) Expression of module scores of aggregated expression of DWM genes [shown in red in (A) and (B)] in the in-house 
E12.5 scRNA-seq. The arrow indicates the elevated expression in the PTZ.
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cells arising from the RL between E9.5 and E12.5 produce CN neu-
rons (3). It has been shown that the earliest neural precursor cells 
exit the cell cycle from the cerebellar VZ at E10.25 and contribute to 
CN neurons (64, 65). These early-born CN neurons express Irx3, 
Meis2, and Lhx2/9, and they undergo radial migration to reach the 
nuclear transitory zone (64). The relationship between the early-born 
CN neurons from the VZ and the Atoh1 lineage has never been 
determined. Here, we provide evidence that the early-born CN 
neurons present by E10.5 are probably derived from cerebellar NPCs 
with ephemeral Atoh1 expression (Fig. 2, A and B). Therefore, our 
observations reconcile the previous findings on the origin of CN 
neurons. Green et al. showed that some Atoh1-expressing cells are 
generated at the isthmus, independent of the RL, producing isthmic 
nuclei (66). Using trajectory analysis, we infer that the early-born 
Atoh1 lineage gives rise to the isthmic nuclei. However, intersectional 
genetic fate mapping or integrated lineage tracing and scRNA-seq are 
required to determine the cell fate of the transient Atoh1-expressing 
cells from the cerebellar VZ.

NPCs, including those in the anterior part of the cerebellar VZ, 
express Cre that is driven by an Atoh1 enhancer (Fig. 4). In contrast 
to the relative abundance of Cre+ cells, RFP+ fate-mapped cells arising 
from the VZ are rare and mostly negative for Cre in Atoh1-cre;R26RFP/+ 
embryos, suggesting that only a small percentage of Cre+ NPCs is 
labeled because of the ephemerality of Cre expression. Almost all 
RFP+ cells are negative for Tfap2b and Ascl1 and become positive 
for Meis2 and Cre when they reach the mantle zone (Fig. 4), indi-
cating that the NPCs that transiently express Atoh1 are committed 
to the Atoh1 lineage. Basic helix-loop-helix TFs, such as Ascl1, Hes1, 
and Olig2, are expressed in an oscillating manner to stabilize the 
stemness of NPCs (57, 67). Future studies should determine whether 
the oscillatory control of Atoh1 specifies and sustains CN progenitors 
in the cerebellar VZ.

The PTZ contains multipotent progenitor cells
The identity of the stem cell reservoir for the continuous production 
of Atoh1-expressing cells at the RL has yet to be identified. On 
the basis of the patterns of gene expression and cell proliferation, 
Yeung et al. speculated that the stem cells fated to the Atoh1 lineage 
reside in the interior side of the RL, and they express both Wls and 
Pax6 (68). However, the expression patterns of classic RL markers, 
such as Wls, Pax6, Lmx1a, and Wnt1, change over time in the devel-
oping RL (18, 61, 68, 69), and the progenitor domain marked by 
Pax6 and Wls appears larger than the morphologically defined RL 
(32, 68). In a previous scRNA-seq study (4), we identified an in-
separable NPC cluster that has the potential to form both the Atoh1 
lineage and choroid plexus epithelium and mapped that cell group 
to the posterior end of the cerebellar VZ and RL. In the current 
study, we identified the same NPC cluster by integrated single-cell 
RNA and ATAC analyses. To distinguish it from the morphologically 
defined RL, we named the VZ region occupied by this cell group as 
PTZ as we postulated that cerebellar NPCs may be recruited into 
the PTZ and transition into progenitors destined for glutamatergic 
neurons and choroid plexus epithelium.

We show that Hes1 is expressed in the PTZ, which specifically 
lacks Hes5 (fig. S11B). Through in silico and in vivo studies, we 
demonstrate that the elevated expression of Hes1, as a result of the 
loss of Ptf1a or forced expression of NICD, enlarges the PTZ and 
RL, suggesting that Hes1 is important to recruit NPCs to the RL 
through the PTZ (Fig. 8). Notch activation promotes choroid 

plexus epithelium but inhibits Atoh1 expression (Fig. 9). The latter 
is in agreement with the previous report that Notch activation in-
hibits Atoh1 expression by antagonizing bone morphogenetic protein 
signaling (70). Somewhat unexpectedly, we found that the forced 
expression of NICD induced Bergmann glia not only from Gbx2-
expressing cells but also from the Atoh1 lineage, demonstrating that 
Notch activation respecifies nascent Atoh1 cells to form Bergmann 
glia and choroid plexus. Although it is well known that Notch signal-
ing is important for Bergmann glia differentiation (71), our results 
uncover the involvement of Notch signaling in the induction of 
Bergmann glia. We have previously shown that an FGF-ERK-ETV axis 
of the mitogen-activated protein kinase (MAPK) pathway is essential 
for the transition of cerebellar radial glia to Bergmann glia (60, 72). How 
Notch interacts with the FGF-ERK-ETV axis to induce Bergmann 
glia awaits to be examined. Prior studies have shown that nascent 
Bergmann glia arise from a VZ domain, the so-called peritrigonal 
glial matrix (73), overlapping with the PTZ (72, 74, 75). As one of 
the Bergmann glia markers, Gdf10 is expressed within the PTZ (fig. 
S8C). Together, our results suggest that the PTZ represents a highly 
dynamic progenitor zone, where the balance of cell fate commitments 
is regulated by Notch signaling, in part through Hes1 (Fig. 9J).

Although PTZ cells are identified as a single-cell cluster, several 
PTZ markers display spatial gene expression gradients along the 
anteroposterior axis in the PTZ and RL (Fig. 8, D and E, and fig. S8). 
Therefore, the PTZ cell cluster may contain progenitors of different 
cell states. Further studies, especially high-resolution spatial expres-
sion and lineage tracing, are required to resolve the potentially 
different cell states within the PTZ and its relationship with the 
traditionally defined RL.

The maintenance and differentiation of PTZ cells control 
the expansion of the posterior cerebellar vermis
Disproportionate reduction in the posterior cerebellum is a hallmark 
of many human cerebellar congenital defects, including DWM and 
cerebellar vermis hypoplasia (5). It was suggested that spatiotemporal 
expansion of the RL might be specific to humans, raising the ques-
tion of whether rodents are suitable to study cerebellar malforma-
tions in humans (5, 63). In the present study, we demonstrate that 
the recruitment of NPCs into the PTZ to replenish the Atoh1 lineage 
is essential for the enlargement of the posterior cerebellar vermis. 
The NICD-GOF mice display features that clinically define DWM, 
including a hypoplastic, upwardly rotated vermis, an enlarged 
fourth ventricle, and an enlarged posterior fossa (63). Furthermore, 
mouse orthologs of the human genes that have been implicated in 
DWM are significantly enriched in the PTZ in the embryonic mouse 
cerebellum. Therefore, abnormalities in the cell fate decisions of 
PTZ cells may contribute to the DWM pathogenesis. In support of 
this notion, the loss of Foxc1, a bona fide DWM-causing gene, 
disrupts cell proliferation in cerebellar VZ and the production of 
Bergman glia (62, 76). Future studies of the maintenance and differ-
entiation of the PTZ in mice should shed light on pathological 
mechanisms underlying human cerebellar birth defects.

MATERIALS AND METHODS
Mouse and tissue preparation
All procedures involving animals were approved by the Animal Care 
Committee at the University of Connecticut Health Center (protocol 
#101849–0621) and complied with national and state laws and 
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policies. All mouse strains were maintained on CD1 outbred genetic 
background. Noon of the day on which a vaginal plug was detected 
was designated as E0.5 in the staging of embryos. Embryonic mouse 
brains were dissected in ice-cold phosphate-buffered saline and were 
fixed in 4% paraformaldehyde between 40 min and overnight. Brains 
were cryoprotected, frozen in Optimal cutting temperature compound 
(Sakura Finetek), and sectioned with cryostat microtome (Leica).

Generation and characterization of the Atoh1-Cre [B6.Cg-
Tg(Atoh1-cre)1Bfri/J, #011104] (30), Gbx2creER [Gbx2tm1.1(cre/ERT2)Jyhl/J, 
#022135], Ptf1aCreER [Ptf1atm2(cre/ESR1)Cvw/J, #019378], R26RRFP 
[B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J, #007909], R26NICD 
[Gt(ROSA)26Sortm1(Notch1)Dam/J, #008159], and Wnt1-CreER [Tg(Wnt1-
cre/​ERT)1Alj/J, #008851] alleles have been described. Primer se-
quences for polymerase chain reaction genotyping and protocols are 
described on the JAX Mice website (www.jax.org).

In situ hybridization and immunohistochemistry
Standard protocols were used for Xgal histochemistry, immuno-
fluorescence, and in situ hybridization as described previously 
(58). Detailed protocols are available on the Li Laboratory website 
(http://lilab.uchc.edu/protocols/index.html). Primary and secondary 
antibodies used in the study are listed in data S8. Standard in vitro 
transcription methods using T7 polymerase (Roche) and digoxigenin–
UTP (uridine triphosphate) RNA labeling mix (Roche) were used to 
produce antisense riboprobes. Images were collected on a Zeiss Axio 
Imager M1 microscope and processed using Photoshop or Fiji software.

Cell counting
Nuclear segmentation was performed on the basis of 4′,6-diamidino-
2-phenylindole staining using the Fiji Stardist plugin. The Fiji 
Annotater plugin was used to correct Stardist-produced segmenta-
tions and to identify markers associated with the segmented nuclei, 
manually for RFP and by using thresholding for Cre- and Meis2-
stained nuclei.

scRNA-seq and data processing
Single-cell preparation was performed as described (4), and papain 
(Worthington Biochemical) instead of Accumax was used for tissue 
digestion. Sequencing libraries of E12.5 and E14.5 cerebella were 
generated with Chromium v2 and v3 chemistry, respectively. For 
Carter’s (PRJEB23051) and Vladoiu’s (GSE118068) dataset, BAM 
files were downloaded from the European Nucleotide Archive 
and were converted to FASTQ files using the bamtofastq tool 
(10X Genomics). RNA-seq reads were aligned to the mm10 refer-
ence genome and quantified using the cellranger count function 
(CellRanger v3.1). Velocyto (v0.17.17) was used to obtain splicing-
specific count data for RNA velocity analysis. Count data were 
processed with the Seurat R package (77). From the SeuratWrapper 
package, the FastMNN function was used to integrate datasets. Dif-
ferential gene expression analysis was performed with the wilcoxauc 
function from the presto package. We removed seven cell clusters 
(a total of 3757 cells) that were presumably derived from non-
cerebellar tissues included during dissection, as they were absent 
from Carter’s and in-house data. The numbers of cells used in this 
study are summarized in table S1.

PAGA, scVelo, and CellRank analyses
To perform trajectory inference using the Scanpy (Single Cell Anal-
ysis in Python; v1.5.0) toolkit (78), we converted the Seurat object to 

AnnData using custom R scripts. PAGA based on embryonic stages 
was computed and projected using a ForceAtlas2 or hierarchical 
layout with the default setting. The dynamical model from scVelo 
(v0.2.2) was used to estimate RNA velocities and velocity graphs. 
CellRank (v1.1.0) was performed as described in (https://cellrank.
readthedocs.io/en/stable/index.html). A weighted transition matrix 
with 80% RNA velocity and 20% similarity was used. The Cluster-
ing and Filtering of Left and Right Eigenvectors (CFLARE) estima-
tor was used to compute fate probabilities. The terminal states 
were manually set on the basis of a priori knowledge. Absorption 
probabilities—how likely each cell is to transition toward each 
terminal state—were calculated. Pearson’s correlation between 
absorption probabilities and gene expression levels was computed; 
genes with high correlation were considered driver genes (data S2). 
Generalized additive models were used to fit imputed gene expres-
sion trends with default settings. The ClusterProfiler package (79) 
was used to examine the enrichment for biological process Gene 
Ontology Term and Kyoto Encyclopedia of Genes and Genomes 
pathways of the top 100 driver genes.

Codependency and mutual exclusivity analysis of scRNA-seq
The proliferative NPCs were digitally isolated from scRNA-seq data, 
and the coexpressed and mutually exclusive gene pairs were calcu-
lated (29). The gene pairs containing Atoh1 or Ascl1 with high CDI 
(CDI > 10.0) and EEI (EEI > 3.0) are shown in data S3. The Seurat 
FeatureScatter function was used to create a scatterplot of two fea-
tures across the NPCs.

snATAC-seq and data analysis
Single nucleus isolation for ATAC-seq library generation was per-
formed following the instructions of 10X Genomics. BCL files gen-
erated from sequencing were used as inputs to the 10X Genomics 
Cell Ranger ATAC pipeline (version 1.2.0). FASTQ files were gen-
erated and aligned to the mm10 reference genome using BWA. The 
resultant fragment files were loaded into the ArchR pipeline (v1.0.0) 
(80). A cell-by-bin matrix was generated for each sample by seg-
menting the genome into 500-bp windows and scoring each cell 
for reads in each window. Cells were filtered on the basis of 
log10(UMI) between 2.8 and 5.5, and the fraction of reads in pro-
moters between 12 and 45%. Bins were then filtered by removing 
those overlapping with the ENCODE blacklist, those mapped to 
“random” and Y chromosomes, and the top 5% overlapping with 
invariant features. A cell-by-cell similarity matrix was generated by 
calculating the latent semantic index (LSI) of the binarized bin 
matrix. Principal components analysis was then performed on LSI 
values, and cell clusters were identified with Leiden clustering.

Defining snATAC-seq cell cluster identity
Gene activity scores were calculated using the ArchR algorithm, 
which is primarily based on the local accessibility of the promoter 
and gene body and also takes into account the distal elements (up to 
5 kb) and the gene size (80). The gene activity scores were normalized 
by read depth across all genes to a constant of 10,000. The ArchR 
getMarkerFeatures function was used to select marker genes on the 
basis of gene activity scores with a cutoff at FDR ≤ 0.01 and log2FC 
≥ 1.25. To match snATAC-seq and scRNA-seq data, we integrated 
the derived gene activity scores with gene expression levels using 
canonical correction analysis to match cells from ATAC to their 
nearest neighbors in RNA (77). Using a modified FindTransferAnchors 

http://www.jax.org
http://lilab.uchc.edu/protocols/index.html
https://cellrank.readthedocs.io/en/stable/index.html
https://cellrank.readthedocs.io/en/stable/index.html
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function of Seurat, ArchR aligned snATAC-seq and scRNA-seq data 
of mouse cerebella at E12.5, E13.5, and E14.5. As a result, each cell 
in snATAC-seq was assigned a gene expression signature that was 
used for downstream analyses.

ATAC peak calling
Fragments from cells were grouped by cluster, and 501-bp 
fixed-width peaks were called on all cluster fragments using 
MACS2 (https://github.com/taoliu/MACS) with the parameters 
“--nomodel --shift -37 --ext 73 --qval 1e-2 -B -- SPMR --call-summits.” 
Peaks from each cluster were then combined to form a master peak 
set, and a cell-by-peak matrix was constructed. This matrix was 
binarized for all downstream applications.

Comparison of the global structure of UMAP embedding 
for RNA and ATAC cells
To avoid confounding batch effects, we focused on the E12.5 data, 
which reproduced all trajectories of the combined dataset (E12.5 to 
E14.5). As described previously, we aligned snATAC-seq and 
scRNA-seq data using the ArchR FindTransferAnchors function. 
The snATAC-seq object was converted to a Seurat object using 
custom R scripts. Latent time values from RNA cells were trans-
ferred to their nearest ATAC cell neighbors. The Seurat FeaturePlot 
function was used to create plots for fig. S8 (A and B).

Determination of differentially accessible peaks and 
cluster-specific peaks
The ArchR getMarkerFeatures function was used to identify differ-
entially accessible peaks for each cluster with a cutoff at FDR ≤ 0.01 
and log2FC ≥ 1.0.

TF motif enrichment analysis
Using motif information from CIS-BP (database 2.0), we used the 
ArchR addMotifAnnotations function to convert the peak-by-cell 
matrix into a motif-by-cell binary matrix based on the motif present 
in the peak. The peakAnnoEnrichment function was used to calculate 
enrichment for known TF motifs in cluster-specific peaks. To eval-
uate motif enrichments at the single-cell level based on chromVAR 
(35), the ArchR addDeviationsMatrix function was used to compute 
per-cell motif deviations.

Identification and validation of CREs of embryonic  
mouse cerebellum
The ArchR addPeak2GeneLinks function was used to identify peak-
to-gene links with the default settings except for changing the max-
imal distance between the peak and gene to 500 kb. After identifying 
71,162 peak-to-gene links from the merged snATAC-seq dataset, we 
iterated the analysis and identified additional peak-to-gene links that 
were specific to each stage (18,158/all; 42,464/E12.5 only; 16,794/
E13.5 only; 49,192/E14.5 only), resulting in a total of 197,299 unique 
peak-to-gene pairs.

The evolutionary conservation scores, phastCons60way and 
phyloP60way, were retrieved from the UCSC Genome Browser data 
portal. The average conservation scores in 2 kb centering CRE mid-
point were computed using the aggregate function of bwtool 
(version 1.0) (81). Random genomic regions were created by shuf-
fling the original CREs. The proximal enhancer–like (72,794) and 
distal enhancer–like (209,040) of all mouse CREs (38) were down-
loaded from the SCREEN database (https://screen.encodeproject.org). 

Permutation tests of overlapping between CREs and other genomic 
features were performed using the regioneR package.

Generation and simulation of GRNs with CellOracle
Reconstruction and simulation of GRNs were performed with CellOracle 
(v0.6.2) following the authors’ instructions (https://morris-lab.github.io/
CellOracle.documentation/). On the basis of the inferred CRE-target 
list, we extracted all potential connections between TFs and targets 
using the GimmeMotifs motif database with a false-positive rate 
threshold of 0.02. Top GRN genes were selected and ranked using 
a combined score of degree centrality, betweenness centrality, and 
eigenvector centrality. These network scores were normalized be-
tween 0 and 1—divided all values by the maximum of the corre-
sponding scores. The average of the scaled scores was used to rank 
genes in the GRN of each cell type. Cell state transitions resulting 
from the perturbation of specific TFs were simulated through 5× 
iterations. For the simulation of the knockout of Atoh1, Ptf1a, or 
Hes1, we set the expression of the corresponding gene at 0. For the 
simulation of the GOF of Hes1, we set the Hes1 expression value at 
3.0, which was a twofold increase of the detected Hes1 expression.

Disease enrichment analysis
The DWM gene list was downloaded from ToppGene Suite. The 
human genes were converted to the mouse orthologs. The Seurat 
AverageExpression function was used to output average expression 
matrix of different cerebellar cell types. The pheatmap R package 
was used to create heatmaps of the cell type expression of DWM 
genes. Enrichment testing was performed with Fisher’s exact tests 
using custom R scripts. The Seurat AddModuleScore function was 
used to summarize six DWM genes (Fgf17, Flna, Lamc1, Nphp1, Zic4, 
and Zic5), which are highly expressed in the PTZ, and the aggregated 
expression—average relative expression as DWM feature—was 
plotted on UMAP.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abl9156

View/request a protocol for this paper from Bio-protocol.
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