
Towards Edge-Based Deep Learning in Industrial Internet of
Things

Fan Liang*, Wei Yu*, Xing Liu*, David Griffith†, Nada Golmie†

*Towson University, USA

†National Institute of Standards and Technology (NIST), USA

Abstract

As a typical application of the Internet of Things (IoT), the Industrial Internet of Things (IIoT)

connects all the related IoT sensing and actuating devices ubiquitously so that the monitoring

and control of numerous industrial systems can be realized. Deep learning, as one viable way

to carry out big data-driven modeling and analysis, could be integrated in IIoT systems to aid

the automation and intelligence of IIoT systems. As deep learning requires large computation

power, it is commonly deployed in cloud servers. Thus, the data collected by IoT devices must be

transmitted to the cloud for training process, contributing to network congestion and affecting the

IoT network performance as well as the supported applications. To address this issue, in this paper

we leverage fog/edge computing paradigm and propose an edge computing-based deep learning

model, which utilizes edge computing to migrate the deep learning process from cloud servers

to edge nodes, reducing data transmission demands in the IIoT network and mitigating network

congestion. Since edge nodes have limited computation ability compared to servers, we design a

mechanism to optimize the deep learning model so that its requirements for computational power

can be reduced. To evaluate our proposed solution, we design a testbed implemented in the Google

cloud and deploy the proposed Convolutional Neural Network (CNN) model, utilizing a real-world

IIoT dataset to evaluate our approach1. Our experimental results confirm the effectiveness of our

approach, which can not only reduce the network traffic overhead for IIoT, but also maintain the

classification accuracy in comparison with several baseline schemes.

Keywords

Industrial IoT; Edge Computing; Fog Computing; Distributed deep learning

I. INTRODUCTION

The fourth industrial revolution, known as Industrial Internet of Things (IIoT), is a

realization of the Internet of Things (IoT) [1], [2] in a variety of manufacturing systems,

introducing a massive number of IoT devices and computation nodes in production lines

1Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure
adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and
Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

{fliang1,xliu10}@students.towson.edu .

Author Manuscript
Accepted for publication in a peer-reviewed journal

National Institute of Standards and Technology • U.S. Department of Commerce

Published in final edited form as:
IEEE Internet Things J. 2020 May ; 7(5): . doi:10.1109/jiot.2019.2963635.N

IS
T

 A
uthor M

anuscript
N

IS
T

 A
uthor M

anuscript
N

IS
T

 A
uthor M

anuscript

and manufacturing processes so that the monitoring and control of manufacturing systems

can be realized. In an IIoT system, as a typical cyber physical system, the key to realizing

automation and intelligence is through big data analysis driven by big computing and big

modeling provided by learning techniques such as deep learning [3]. In a traditional way,

IoT devices collect data and send it to servers that have high computing capabilities for

performing deep learning process. Then, the servers analyze the data and send control

messages to IoT devices [4]. Due to the interactions between servers and IoT devices,

massive amounts of data need to be transmitted through the IoT network, raising significant

data transmission overhead to the network. As a number of IIoT systems are time sensitive,

the large increase in network traffic causes high network latency and large packet loss,

significantly affecting the performance of IIoT systems. Thus, how to optimize network

performance while providing sufficient big data analytics becomes a critical problem in IIoT

systems.

Edge (or Fog) computing has emerged as a new paradigm to offload computation tasks

from the cloud to the edge. Unlike traditional cloud computing, in which tasks are offloaded

to remote cloud datacenters, edge computing assigns computation tasks to multiple edge

nodes that are deployed close to end users. Thus, edge computing is capable of reducing

data transmission and network traffic between cloud servers and IoT devices (sensors,

actuators, etc.) [5], [6], [7]. In an IIoT system, we can utilize edge computing to offload the

computation tasks and reduce the network traffic as well. Although there are some existing

studies toward increasing the network bandwidth or optimizing the data transmission, there

is lack of research on how to carry out computing task offloading in IIoT.

Deep learning, as the useful big data-driven analytics scheme, has shown great potential in a

number of areas, including image/video recognition, robotics, and natural language analysis,

among others [8], [9]. Nonetheless, as deep learning requires high computation power to

analyze the datasets, it is generally deployed in cloud servers, which have high computation

capabilities. In addition, to obtain accurate results, large datasets are generally required.

Thus, when deploying deep learning in the cloud to support IIoT systems, the massive data

exchanged between servers and IoT devices could cause network congestion and affect IIoT

systems that are commonly latency-sensitive. While deploying deep learning to the edge is a

natural solution, it raises new challenges due to the limited computing ability of edge nodes.

Thus, it is critical to design an effective deep learning model that can be used on edge nodes.

To address the aforementioned issues, in this paper we propose to leverage edge computing

to conduct deep learning on edge nodes in IIoT systems. To demonstrate our idea, we design

an IIoT scenario that utilizes the deep learning technique to classify different industrial

components. We focus on offloading the deep learning process from the cloud to the

edge so that network traffic congestion can be mitigated in IIoT systems. We design the

edge-based Convolutional Neural Network (CNN) by leveraging the CNN model to classify

the components. We propose a distributed CNN model where we deploy to edge nodes. The

edge nodes execute the CNN training process and send the training results to the parameter

server in the cloud. Using our designed model, we can significantly reduce the amount of the

data transmitted through the network, leading to the improvement of network performance.

Liang et al. Page 2

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

In our study, we make the following contributions:

First, we propose a novel edge-based CNN model to offload computation tasks. By doing

this, IoT devices do not need to send raw data to a centralized server, thereby significantly

reducing network traffic. Furthermore, in order to deploy the CNN model to the edge, we

optimize the existing CNN model in Section IV. We also mathematically evaluate the time

complexity of the proposed model and develop a mathematical model to illustrate how to

deploy the proposed CNN model to edge computing nodes in Section IV.

Second, we evaluate network performance in an IIoT system. We design a mathematical

model to analyze the network delay and packet loss rate in both edge-based CNN and

centralized CNN cases. Overall, based on the specific IIoT scenario, we propose an edge-

based CNN model to improve system performance. Since finding the optimal deep neural

network configuration for a particular data set mathematically remains an open question,

we leverage a combination of mathematical and experimental approaches to confirm the

superiority of our model.

Third, we design an experimental testbed in Google Cloud to simulate the distributed

environment in Section VI. To ensure a fair experimental comparison, we calculate the

computation capability of edge nodes in the testbed. Thus, based on the calculation of time

complexity for the different CNN models and the computation capability of the edge nodes,

we can systematically analyze the performance of each CNN model and obtain meaningful

results.

The remainder of this paper is organized as follows: In Section II, we conduct a brief

literature review of related studies on IIoT systems and deep learning techniques. In Section

III, we brief the key techniques of IIoT, edge computing, and deep learning. In Section IV,

we introduce our approach in detail. In Section V, we define the scenario, introduce the

testbed settings and experimental design, and define the evaluation metrics. In Section VI,

we present the evaluation results. In Section VII, we discuss some further issues. Finally, we

summarize the paper in Section VIII.

II. RELATED WORKS

In the following, we review some existing research works that are relevant to our study. In

the smart manufacturing system, the digital twin is a digital copy of real physical systems

[10]. It is easy for operators and managers to emulate the operations on this digital system

to avoid unexpected results. The key concept of the digital twin is utilizing massive data

to create the digital model. For example, Qi et al. [11] reviewed massive data and digital

twin, and compared differences between massive data and digital twin in manufacturing.

Likewise, Canedo et al. [12] proposed a digital twin model to simulate the life-cycle of

IIoT systems, which simulates IIoT services, objects, and the communications between the

objects. Likewise, Tao et al. [13] proposed a framework of digital twin-driven product design

and conducted a case study to evaluate its effectiveness.

Related to computing aspects of IIoT, fog/edge computing has been considered as a viable

computing infrastructure to offload computation tasks in IoT [14]. For example, Peralte

Liang et al. Page 3

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

et al. [15] proposed a fog computing-based scheme that introduces a low complexity

computational layer between the cloud and IoT nodes. Yu et al. [5] conducted a

comprehensive survey on edge computing and clarified how to leverage edge computing to

support IoT. Li et al. [16] introduced the software defined network (SDN) to incorporate

with edge computing and proposed an adaptive transmission architecture to improve

network latency. Likewise, to optimize cloud computing in IIoT systems, Xu et al. [17]

proposed a cloud-based architecture for IIoT systems and provided key services defined in

different layers that are arranged in a cloud structure so that on-demand computing services

with high reliability, scalability and availability can be supported.

Control of large-scale heterogeneous industrial systems remain a challenging problem so

that powerful and efficient computation platforms and data analysis methods are necessary.

As one of the most popular data-driven big modeling methods, deep learning techniques

have been widely used in IoT and some existing studies have focused on utilizing deep

learning techniques to assist in network control in IIoT systems. For example, Jiang et al.
[18] utilized the deep learning techniques to improve the performance of the networks,

such as massive Multiple Input Multiple Output (MIMO) antennas, ultra-dense small cell

network, device-to-device communications, and so on. Likewise, Zhu et al. [19] utilized

Q-learning to optimize the packet transmission schedule for IIoT applications. Furthermore,

some research efforts aim to utilize the deep learning techniques to improve the performance

of IoT applications. For instance, Mocanu et al. [20] designed different machine learning

models to predict and classify the energy disaggregation task. Likewise, Huang et al. [21]

investigated a deep learning-based scheme to perform forecasting of electrical loads.

In addition, some studies have been devoted to optimizing the performance of deep

learning models, such as reducing time complexity and increasing accuracy, among others.

For example, Zhang et al. [22] utilized the tensor-train deep computation model to

compress hierarchical features so that more features can be trained in limited tensor space.

Specifically, the tensor-train deep computation model compresses the features by converting

the conventional dense weights to tensor-train format. By doing this, the proposed model

could improve training efficiency and reduce memory space. Moreover, addressing the issue

related to a lack of training samples, Zhang et al. [23] proposed an adaptive dropout to

prevent deep learning models from overfitting, which is caused by a lack training samples.

They designed a distribution function to determine the dropout rate of each layer. Then,

a maximum entropy-based outsourcing selection algorithm was designed for selecting

appropriate samples. Finally, they optimized the existing supervised learning model to fit

the adopted adaptive dropout algorithm.

In contrast, two unsolved problems are tackled in our study. First, we focus on offloading

the deep learning tasks from cloud servers to edge nodes, which reduces the amount of

network traffic. Meanwhile, we optimize the deep learning model to reduce computation

requirements and improve execution on edge nodes. Second, we utilize the distributed deep

learning model to address the manufacturing components classification problem. We design

an IIoT scenario and select the real-world dataset to validate the effectiveness of our model.

Liang et al. Page 4

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

III. PRELIMINARIES

In this section, we introduce the topics of IIoT, edge computing, and deep learning.

IIoT:

Generally speaking, IIoT provides the network infrastructure for connecting IoT devices

so that the monitoring and control of industrial manufacturing systems can be supported.

From a cyber-physical system perspective, it is composed of both the physical subsystem

and the cyber subsystem, which interact with each other so that the manufacturing process

can be monitored and controlled with the aid of advanced information communication

techniques. By interacting with computing and networked objects in the physical subsystem,

IoT devices (sensors, actuators, etc.) collect data, utilize the network subsystem to transmit

the data to the operation center, in which the data will be further analyzed to assist

system decision making, and receive data to conduct actuation and modification of physical

assets. As a kind of distributed system [24], all IoT devices in IIoT systems connect via

communication networks. In IIoT, as numerous applications are time-sensitive, network

performance is the key factor that affects the performance of IIoT applications. Nonetheless,

to support automation and intelligence for IIoT applications, a large amount of data will be

collected and analyzed. While more data can provide better intelligence to IIoT applications,

transmitting massive data through the network could lead to network congestion and further

affect the monitoring and control performance of IIoT applications.

Edge Computing:

Edge computing, with a similar scope to fog computing, which extends cloud computing

to the network edge, is a distributed computing architecture to offload computation tasks

from the cloud to edge nodes that are close to end-users [5], [6]. Moreover, edge computing

offers latency reduction benefits for some time-sensitive applications. Thus, it is viable

to leverage edge computing to support IIoT so that big data analysis tasks can be

offloaded and the amount traffic transmission can be reduced. Nonetheless, edge nodes

have limited computation power and generally cannot handle highly extensive computation

tasks. Furthermore, the communication and synchronization of edge nodes could affect the

performance of edge computing, as computation tasks are distributed to heterogeneous edge

nodes that must cooperate. Thus, how to reduce the computation demand and transmitted

traffic overhead to the network are key issues for edge computing-based IIoT systems.

Deep Learning:

As we discussed above, the key to automation and intelligence for IIoT is data analysis.

One of the most popular data-driven modeling technique is deep learning. A number

of deep learning techniques have been widely deployed in regression, classification, and

forecasting [8], [25], and have shown greater potential compared with other data analysis

schemes. Generally speaking, the deep learning model is fed a training dataset and

utilizes various methods of gradient descent. Nonetheless, the complexity, diversity, and

integrity of the training dataset could significantly affect training results. Training with

sufficiently larger datasets could result in more accurate output from equivalent models

Liang et al. Page 5

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

(shape, layers, and activation, among others). Nonetheless, training on large datasets requires

high computational power.

Furthermore, the data is continuously collected and increasing, and the demands of

computation increase accordingly. Thus, it is difficult to handle such a task with only

one computation node. There are two possible ways to tackle this issue. One way is to

optimize the deep learning model so that the computation requirement can be reduced. The

other is to distribute the deep learning model to a group of computation nodes, in which

distributed learning is conducted. As the computation can be subdivided and distributed, the

computation time in total could be improved.

IV. OUR APPROACH

In this section, we introduce our approach in detail. Particularly, we first outline the design

rationale, detail the system models, and compare the performance of cloud-based and edge-

based deep learning schemes. We then propose our edge-based deep learning model. Table I

lists key notations in this paper.

A. Design Rationale

Based on the discussion above, we formalize the problem of IIoT systems. Fig. 1 illustrates

the problem space of IIoT systems, which consists of three dimensions (i.e., network,

computation, and system structure). The solid blue sectors in the figure indicate our area of

focus. In this study, we focus on utilizing edge computing to offload deep learning from the

cloud, as it can reduce network traffic and mitigate congestion. Furthermore, we optimize

the deep learning model and reduce the computation requirements of the deep learning

process to deal with edge nodes that have less computation power than cloud servers. Our

goal is to design an optimized deep learning model that is tailored to the edge computing

platform so that both computation time and network latency can be reduced.

We now introduce our design rationale which focuses on the following issues:

Network Performance: The network system in IIoT provides communication

infrastructure for the data exchange between subsystems. Moreover, in the centralized IIoT

system, both control and data analysis processes are maintained in the datacenter cloud,

which is denoted as the cloud-based system. In such a system, the raw datasets need to

be uploaded to the datacenter, resulting in large data flows that can occupy the network

resources and affect control signal transmission. As the control signal is the core heartbeat

in the IIoT system, variability in the transmission of control signals could significantly affect

the entire IIoT system. Thus, the effectiveness of the network system directly affects the

performance of the IIoT system as a whole and is a key factor in IIoT. To this end, we focus

on the design of an edge computing-based system to offload the data analysis process from

the cloud to the edge so that the amount of network traffic can be reduced.

Deep Learning Model Performance: Deep learning is a popular data-driven modeling

scheme, which has shown great potential in IIoT systems. Powerful computation support is

required for the training process of deep learning models, in order to obtain accurate results.

Liang et al. Page 6

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Commonly speaking, edge nodes have less computation power than the centralized cloud

servers. If the data analysis process is moved from cloud to edge, we need to optimize

the deep learning model so that the demands of computation power can be reduced.

The complexity of deep learning model implementation determines the computation

requirements in the training process. For instance, in the CNN model, the number of

convolutional layers affect the complexity directly. Thus, we focus on reducing the number

of convolutional layers and optimizing their size to reduce the complexity of the CNN model

while maintaining equivalent performance.

System Performance: As we discussed above, deploying deep learning to the edge and

reducing the computation requirements of the deep learning model are two viable directions

to improve the performance of the IIoT system. As each approach could affect system

performance, to improve the entire system performance, we need to realize both approaches

simultaneously.

In the following, we first propose an optimized CNN model to reduce computation cost. We

then deploy the proposed CNN model to the edge node and compare its performance with

the cloud-based CNN model as a baseline for comparison.

B. Deep Learning Model

1) Dataset Selection: In an IIoT environment, one important task is the detection and

identification of different industrial objects from images and video, which may be produced

in a variety of applications. To evaluate the performance of the proposed model, we choose

the T-Less dataset [26], which is a set of images of different industrial components. The

T-Less dataset is a public dataset of 6D posed texture-less rigid objects. The T-Less dataset

includes over 105 images with 30 different industrial components captured by cameras with

fixed angles. Each component includes 1,260 ‘.png’ image files at 480 × 480 pixels each.

The training images contain each individual object with a black background, while the test

images show twenty table-top scenes with arbitrarily arranged objects [26]. The images

show different angles of each component with RGB channels. Fig. 2 shows some samples

from the dataset. From these examples, we can see that some components have similar

shapes or sizes, such as objects 5, 6 and 10. In addition, some components are assembled

by other components, such a0s object 9, which is assembled from objects 6 and 10. This

is common in industrial environments, where some components are parts of others. This

unique characteristic of the dataset can help us evaluate the applicability of our algorithms in

real-world industrial environments.

2) CNN Model Design: We now introduce the CNN model design. First, we identify

the deep learning model. As illustrated above, the training datasets are images in our case,

and utilizing the CNN model is one of the general approaches for image processing [27].

Thus, based on the conventional CNN model, we propose our optimized model in our IIoT

scenario. Since the training process of the CNN model is a black box process [28], we

need to define and optimize the parameters of the model. The number of convolutional

layers is an important parameter in a CNN model, affecting performance directly [29]. To

find an effective neural network structure, we create several models with different numbers

Liang et al. Page 7

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

of convolutional layers and compare the performance. Also, the learning rate is another

important parameter for the CNN model that we need to tune, as it affects the convergence

speed of the model. Identifying a suitable learning rate for a CNN model could enable faster

convergence and desirable accuracy. In the following, we discuss the details of parameter

optimization.

Number of Convolutional Layers: Figs. 3 and 4 illustrate the performance of the CNN

models with different numbers of layers. Particularly, Fig. 3 shows the classification

accuracy of the CNN models with different numbers of convolutional layers. Here,

the x-axis represents the number of convolutional layers and the y-axis represents the

classification accuracy. Note that the popular CNN model, LeNet-5 [30], has 6 convolutional

layers and 2 full-connection layers, and another popular CNN model, VGG-16 [31], has

16 convolutional layers and 1 full-connection layer. It is also worth noting that existing

studies have shown that these CNN models perform better than most on image processing

tasks [32], [33]. Thus, we use VGG-16 as a baseline model, which is known as one of the

most accurate CNN model [31]. The experimental results of our comparison illustrate that

classification accuracy increases rapidly when the number of convolutional layers increases

from ‘1’ to ‘4’. When the number of convolutional layers is larger than ‘4’, the classification

accuracy observes no significant change. Fig. 4 illustrates the relationship between the

training speed and the number of convolutional layers. We find that the training speed

continually drops as the number of convolutional layers increases, but the rate of decrease

drops as well. Thus, based on the performance, we identify the number of convolutional

layers for our case is ‘4’.

Learning Rate: The learning rate is another important parameter in the CNN model that

controls how much the model can adjust the weights of the neural network with respect to

the loss gradient. Table II illustrates the identification process for the learning rate. Setting

the learning rate to ‘0.05’ and ‘0.01’ results in the gradient divergence, making the loss of

the model approach infinity (NaN). In the opposite, setting the learning rate between ‘0.005’

to ‘0.001’, the convergence speed decreases. From the table, we observe that, while setting

the learning rate to ‘0.005’ obtains the faster convergence speed, the convergence process is

not stable. Thus, we set the learning rate to ‘0.004’ for our model.

3) CNN Model Analysis: In the following, we analyze the proposed CNN model in

detail.

Time Complexity: We now analyze the time complexity of the proposed CNN model.

Fig. 5 illustrates the structure of the CNN model. As we mentioned before, we select four

convolutional layers to extract feature maps. Moreover, we deploy a pooling layer in the

model following each convolutional layer (i.e., the total number of pooling layers is four), in

order to further compress the feature maps. Based on the mathematical definition of both the

convolutional and pooling layers, the total computation cost of the CNN model is

T = ∑i = 1
n c ⋅ LKi

2 + 1 ⋅ LIi
2 + LIi + 1/LPi

2 ⋅ mi .

Liang et al. Page 8

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

(1)

Here, we formalize the computation cost of the CNN model by utilizing the number of RGB
channels for the input images, the number of filters, and the number of the convolutional

layers (all symbols in the equation have been defined in Table I). Meanwhile, we assume the

length of the convolutional kernel is LKi and the length of the input features is LIi, where i
represents the number of inputs. Also, we denote LPi as the size of the pooling layer. From

Equation (1), the time complexity of the CNN model can be represented by

O ∑i = 1
n LKi

2 ⋅ LIi
2 ⋅ mi .

(2)

By utilizing Equation (1), we are able to evaluate the number of computations required for

each CNN model. The proposed CNN model has 4 convolutional layers and the number of

calculations for the proposed CNN model is approximately 2 million per image. In addition,

the LeNet-5 model has 6 convolutional layers and VGG-16 model has 16 convolutional

layers. Based on the calculation, the number of computations for LeNet-5 and VGG-16 are

approximately 7.5 million calculations per image and 31 million calculations per image,

respectively. The results clearly show that the number of computations carried out by the

proposed CNN model is the lowest, directly correlating to a reduction in computation

overhead.

Forward Propagation: We analyze the forward propagation of the proposed CNN model.

The CNN model consists of two components: one is the convolutional layer and the other

is the fully connected layer. The forward propagation for the convolutional layer can be

denoted as

ℂn + 1 = f ∑s = 0
m − n ∑s = 0

n I(n, n)
(s, s + n) ⊙ K(n, n) + b ,

(3)

Pn + 1 = max Cn + 1 ,

f(z) = softmax(z) = ezi

∑j = 1
k ezi

.

Here, ℂn + 1 denotes the results after the prior convolutional layer, I denotes the input and m
denotes the size of the input, K denotes the convolution kernel, and n denotes the size of

the convolution kernel. The expression I(n, n)
(s, s + n) ⊙ K(n, n) represents convolution operation, and

the operator " ⊙″ is the dot product for each element at the corresponding location in matrix

I and K. Also, s indicates the start location of the convolution calculation and f(z) is the

softmax function, where k is the length of z. We assume that the step size is ‘1’ and b

Liang et al. Page 9

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

indicates the bias. We utilize the maximum pooling function to further compression the

feature size.

The forward propagation for the full connect layer can be represented by

zn + 1 = wn + 1an + bn + 1,

(4)

an + 1 = f zn + 1 ,

f(z) = ReLU(z) = max 0, z .

Here, we denote n as the layer number, z as input, a as output, and f(z) as activation

function. We use the Rectified Linear Unit function (ReLU) as the activation function.

Backward Propagation: Backward propagation is one key feature for deep learning, as

it updates the weights and bias in order to tune the model and obtain accurate results. The

backward propagation is related to the partial derivative. For the proposed CNN model, the

backward propagation of our CNN model can be represented by

δn − 1 = δn
∂zn

∂zn − 1
= δn ⋅ rot180 Kn, n ⊙ f′ zn − 1 .

(5)

Here, rot180 indicates the rotation of the convolution kernel by 180 degrees.

The backward propagation for the fully connected layer is the partial derivative for the

softmax regression, which can be represented by

∂aj
∂zi

= ∂
∂zi

ezj

∑k = 1
T ezk

=
aj 1 − aj , if j = i;

−ajai, if j ≠ i .

(6)

Note that the above equation can be simplified in two cases, i.e., j = 1 and j ≠ i.

4) Edge-Based CNN Model: Based on our proposed CNN model, we tailor the model

to operate in a distributed manner and deploy the model in edge computing nodes. The

new model is denoted as the edge-based CNN model. Generally speaking, the proposed

edge-based CNN model is essentially a data parallel distributed CNN model that generates

a CNN graph and assigns it to edge nodes. By doing this, all the edge nodes utilize the

same CNN graph and are fed with different data subsets. Then, the training parameters are

uploaded to the parameter server (i.e., aggregation node) to update the model. Thus, the

Liang et al. Page 10

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

edge-based CNN model can offload the data analysis process from the cloud to the edge so

that the network traffic in the IIoT network can be reduced.

In this study, we utilize synchronous stochastic gradient descent to update the ‘weights’ and

‘bias’ for all the workers as edge nodes. We set n as the number of workers and m as the

number of samples trained on one worker. In the following, we show that the edge-based

CNN model has the same convergence process as the cloud-based CNN model.

Here, we use the following equation to represent the mathematical calculation of the

synchronous stochastic gradient descent, which executes the training on a single machine,

Ki + 1 = Ki − α
n ⋅ m ∑j = 1

n ⋅ m ∂Lossj
∂Ki

.

(7)

Here, data size is n ⋅ m and the learning rate is α . Also, we distribute the model to n nodes

and assign dataset blocks of size m. Thus, we obtain

Ki + 1 = 1
n ∑w = 1

n Ki + 1, w,

(8)

= 1
n ∑w = 1

n Ki − α
m ∑

j = (w − 1)m + 1

wm ∂Lossj
∂Ki

,

(9)

= Ki − α
n ⋅ m ∑

j = 1

n ⋅ m ∂Lossj
∂Ki

.

(10)

C. Performance Analysis

We now analyze the performance of the cloud-based and edge-based models. In our case, we

use the total processing time as the metric for system performance. The total processing time

consists of two parts: (i) computation process time, and (ii) network transmission time. In

the following, we will model and analyze these two parts individually.

1) System Latency: To measure network performance, we measure the system latency,

which is defined as the total time of data transmission and deep learning processing for both

models. Our analysis shows the edge-based models always has less delay than cloud-based

model.

Cloud-Based Model: For the cloud-based model, the system latency can be represented by

Liang et al. Page 11

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Td = T c + T t1 + T r + T t2 + T p,

(11)

T t1 = Ds
R1

,

T t2 = n ⋅ Ds
R2

,

T p = f mn ⋅ Ds + cr .

We assume the collection time T c and receiving time T r are constant and can be represented

by T c = cc and T r = cr. We also denote Ds as the amount of data that is collected by each

sensor, and R1 as the data rate of the upload link from the sensor to the edge node. Finally,

we denote m as the number of edge nodes and obtain the process time T p, and further denote

f(x) as the time complexity of the deep learning algorithm. Recall that, Td, T c, T t1 , T r, T t2, and

T p have been defined in Table I.

Edge-Based Model: For the edge-based model, we offload the deep learning from the

cloud to the edge. Thus, the edge nodes execute the deep learning algorithm instead of the

cloud server. This can be formalized by

Td
e = T c + T t1 + T p

e + T t2
e + T r

e,

(12)

T p
e = cr + (m + 1)f n ⋅ Ds ,

T t2
e = De

R2
.

Similar to the cloud-based model that we have already defined, Td
e is the system delay.

The differences are that T p
e represents the process time on edge nodes and T r

e represents the

receiving time cost for the cloud server, which is a constant cr
e. In the edge-based model, T p

e

equals the sum of the receiving time cr and the training time. De represents the output data

size for each edge node, and R2 is the data rate of the link from the edge node to the cloud.

Thus, the transmission time T t2
e is the data amount divided by data rate.

2) Network Overhead: In our case, the data transmission time can be represented by

Liang et al. Page 12

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

ΔTnet = T t2
e − T t2 .

(13)

We compare the network overhead of the two models by computing the difference ΔTnet

between them. Because the proposed CNN model reduces the input image size as we

discussed in Section IV-B3, De is always smaller than nDs , and ΔTnet < 0, indicating that the

edge-based model achieves better network performance than the cloud-based model.

3) Computation Overhead: In the edge-based model, the computation time T com
e is

T com
e = T p

e + T r
e = cr + (m + 1)f n ⋅ Ds + cr

e,

(14)

In the cloud-based model, the computation time T com is

T com = T r + T p = cr + f mn ⋅ Ds + cr .

(15)

According to Equation (2) in Section IV-B3, the time complexity of our deep learning

algorithm f(x) equals θ(n2). Then, we compare the system latency of two models by

computing the difference ΔT between these two models, which can be represented by

ΔT = T com
e − T com,

(16)

= (m + 1)f n ⋅ Ds − f mn ⋅ Ds + cr
e − cr ,

(17)

= (m + 1)n2Ds
2 − m2n2Ds

2 + cr
e − cr ,

(18)

= − m − 1
2

2
nDs

2 + 5
4 nDs

2 + cr
e − cr ,

(19)

= − nDs
2 m − 1

2
2

− 5
4 − cr

e − cr

nDs
2 .

Liang et al. Page 13

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

(20)

Thus, we have

∀m ∈ ℕ ∧ m > cr
e − cr

n2Ds
2

+ 5
4 + 1

2 :

(21)

(m + 1)n2Ds
2 − m2n2Ds

2 − cr
e − cr < 0.

This indicates that when m > cr
e − cr

n2D2 + 5
4 + 1

2 , the edge-based model always has better

performance than the cloud-based model.

V. IMPLEMENTATION AND EXPERIMENTAL DESIGN

In this section, we introduce the implementation and experiments to validate our approach in

detail. In the following, we first define the scenario, and setup the testbed on Google Cloud

Instances [34] based on the scenario. Then, we design a set of experiments to evaluate the

performance of the proposed model. Finally, we describe several evaluation metrics of the

experiments.

A. Scenario

According to Section IV, we now define one representative scenario in IIoT. In a smart

factory, ‘30’ different kinds of components are produced by different production lines and

the system is required to classify the different components in the assembly center so that

the product can be assembled properly. To do this, the cameras are deployed in different

production lines, taking the images of components and sending the images to gateways. We

denote those gateways as edge nodes. Then, edge nodes send all the images to the cloud

for further analysis in order to prepare the classification. In this case, sending all the images

to the cloud could result in significant network traffic congestion by consuming substantial

network resources. Furthermore, uploading all the data to the cloud increases the total data

processing time significantly because of the transmission time cost.

In our scenario, we focus on offloading the data analysis process from cloud to edge

nodes (i.e., gateways). We involve a total of ‘3’ edge nodes and each node receives

images from ‘10’ different production lines. Specifically, components ‘1’ through ‘10’ are

processed by Edge Node ‘1’, components ‘11’ through ‘20’ are processed by Edge Node

‘2’, and components ‘21’ through ‘30’ are processed by Edge Node ‘3’. All edge nodes

are connected by wired networks. After receiving the images from the production lines, the

edge nodes begin with the data analysis process and upload only the analytical results to

the cloud instead of the raw dataset. In our case, the training process of the CNN model is

offloaded to the edge computing nodes and the edge nodes obtain the well-trained model

Liang et al. Page 14

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

after training. Then, the nodes send the well-trained models to the cloud, and the cloud

classifies the different components by using the well-trained models.

B. Testbed Settings

To implement the scenario and proposed edge-based CNN model, a suitable and high-

performance computing platform is important. Recall that the proposed model in Section

IV-B requires an edge computing platform and high computation power for each computing

node. Furthermore, to compare the training performance between cloud-based and edge-

based deep learning, the computation power should be flexible and adjustable. Based on the

requirements, we utilize Google Cloud Instances [34] and configure a group of instances to

form a hierarchical computing network.

Computing Node Configuration: We utilize five Google Cloud Instances as the

computing nodes in our testbed. Three are defined as edge nodes and the others are defined

as cloud servers, which are shown in Fig. 6. Meanwhile, according to the different roles of

the computing nodes in distributed deep learning, we define one of the cloud servers as the

parameter server and the other as the master node. The three edge nodes are worker nodes.

All the instances are configured with 8 core Intel CPU, 32GB memory and each instance is

running Ubuntu 18.04 Long Term Support (LTS) operating system. We selected TensorFlow

Application Programming Interface (API) and Python to realize the proposed model. We

installed Anaconda 3, which is a popular Python distribution for deep learning and data

science on the Linux platform. The TensorFlow virtual running environment has built using

TensorFlow 1.12, Keras 2.2.4, and Python 3.6. Finally, we deployed the Python code to the

different nodes.

Network Configuration: As we discussed in Section IV-B, the workers in the distributed

CNN model need to connect with the parameter server and the master node in order to

exchange weights w and bias b. The IP address 10.132.0.1 is configured as the gateway.

Then, we assign the computing nodes with IP addresses in the network segment to ensure all

nodes are able to connect with the others. The instances in the Google cloud are organized

by wired network, and we define the roles (parameter server and worker) of the different

instances in the Python code and assign IP addresses accordingly.

Computation Power Estimation: Since the computation power is difficult to calculate

and the performance depends on the hardware and software, to be fair, we utilize the

proposed CNN model to estimate the computation power for several Google Cloud Instances

with different hardware. In particular, we first set the instance with a 4 core CPU and 16GB

memory at the beginning and execute the CNN model to obtain the running speed. After

that, we update the CPU to 8 cores and to 32GB memory, and then increase the number

of cores and memory size until reaching 32 cores and 128GB memory. Fig. 7 illustrates

the results of computing speed for several Google Cloud Instances with various hardware

configurations. The x-axis is the hardware configuration and the y-axis shows the number of

training steps completed in one second. As we configure the edge-based testbed with three

edge nodes (workers), to compare the performance between the edge-based architecture

and cloud-based architecture, the total computation power should be the same for both

Liang et al. Page 15

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

architectures. Based on our configuration for the edge-based testbed that has 8 CPU cores

and 32GB memory, according to the estimation shown in Fig. 7, we select 32 core CPU and

128GB memory for the cloud-based testbed.

C. Experimental Design

Following the testbed setup and configuration, we design experiments to evaluate our edge-

based CNN architecture. In the following, we introduce the design of experiments in detail.

We first focus on the defined IIoT scenario, which utilizes the industrial components dataset

for training and testing. We then optimize the edge-based CNN model and evaluate its

performance.

1) Data Preparation: Based on the T-Less dataset that we described in Section IV-B and

the designed testbed, we first compress the images to 128 × 128 pixels, in order to reduce

the computation pressure on the computing nodes. Furthermore, since all the images have

black backgrounds and the objects are located in the center of the image with no texture

and color, we transform all the images from three-channel RGB to single-channel grayscale

images. The preprocessing is able to significantly reduce the data size and the computation

amount. Then, we randomly select 1000 images as the training dataset and 260 images as the

testing dataset from each component. After identifying the training and testing datasets, we

use the labels ‘1’ through ‘30’ to mark the different components. For the cloud-based model,

we utilize all ‘30’ components as the training and testing datasets, while for the edge-based

model, we divide the dataset into three parts: labels ‘1’ to ‘10’, labels ‘11’ to ‘20’, and labels

‘21’ to ‘30’. We then use the different training and testing datasets to train the different edge

computing nodes. Finally, the standardization input dataset ‘tfrecord’ files are generated by

the Python program.

2) Deployed Models: We now present the deployed models. First, we implement the

CNN model on a single Google Cloud Instance as the cloud-based CNN model. We set

the instance with ‘3’ CPUs, where each CPU has ‘8’ cores and the total system memory

is 128GB, the same computation power as the three edge workers in the edge-based CNN

model described in Section V-B. We evaluate the performance of the cloud-based CNN

model, which we utilize as a baseline for comparison. Then, we deploy the edge-based

CNN model on the testbed and compare its performance with the baseline model. Second,

we modify several mature CNN models, such as LeNet-5 [30] and VGG-16 [35], to run in

a distributed manner, and deploy them in the testbed. We then compare the performance

between our proposed CNN model and the existing CNN models.

D. Metrics

Based on the outlined scope and experimental design, we consider the following

performance metrics to evaluate the proposed CNN model.

Training Loss: The training loss is one important metric for deep learning models. We

select the softmax function to classify the image and the cross entropy loss function to

evaluate the total loss. The softmax regression can be represented by P j = eaj

∑k = 1
T eak

, which

Liang et al. Page 16

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

indicates the probability that the output belongs to the jtℎ classification. Here, T indicates

the number of the classifications, aj is the jtℎ element in the T × 1 vector, and in our scenario,

T is set to 10. Then, we obtain the cross entropy loss function: Loss = − ∑i = 1
T yi, In ai where

yi represents the real value and ai represents the result from the softmax regression. In

general, a smaller loss value indicates a better model.

Classification Accuracy: The classification accuracy is another important metric for

evaluating deep learning models and represents the success rate of the classification. Higher

classification accuracy means better performance of the model. In our evaluation, we select

classification accuracy as the evaluation metric to measure the performance of the purposed

CNN model.

Time Cost: Another important metric for the evaluation is the total time cost. Recall in our

edge-based model, we define the total processing time Td
e = T c + T t1 + T p

e + T t2 + T r
e, and the

time cost difference between cloud-based and edge-based models appears in both training

time T p
′ and transmission time T t2. The training time represents the efficiency of the CNN

model, while the transmission time represents the output size of the CNN model. Thus, both

the training time and transmission time are key metrics to quantify the performance of the

CNN model.

VI. EVALUATION RESULTS

We now detail the evaluation results of the experiments outlined in Section V. In the

following, we first present the comparison of cross entropy loss and classification accuracy

between the cloud-based and edge-based CNN models. We then present a comparison

of results obtained from the proposed edge-based CNN model and several existing

CNN models. Because of the program initializes ‘weights’ and ‘bias’ randomly in the

experimentation. Thus, the experiment results may be different. To be fair regarding the

experimental results, we run the program 10 times and obtain experimental results to draw

the error bar with 95% confidence intervals. Finally, we show the training time consumption

for different models.

A. Cloud-Based CNN Model vs. Edge-Based CNN Model

As we discussed in Section V-C, we deploy the proposed CNN model in both cloud-based

and edge-based environments. For the fairness of comparison, the computation power of

the two environments is the same. Fig. 8 illustrates the comparison of cross entropy loss

between cloud-based and edge-based CNN models. In the experiments, we execute the

edge-based CNN model 10 times and set the confidence interval. Because the initialization

of the CNN model assigns weights and bias randomly in the Python code, the training

results may differ upon each execution of the CNN model. The evaluation results show that

the edge-based CNN model achieves larger loss values before 500 training steps, and then

the loss of the two CNN models is approximately the same. The loss value in the 3000th

step is 0.00135 for the cloud-based model and 0.00151 for the edge-based model. Thus, the

two models have equivalent performance, the only difference is that the edge-based model

achieves convergence at a slower speed prior to 500 training steps.

Liang et al. Page 17

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Fig. 9 illustrates the classification accuracy for the two models, which we have divided into

three parts: (i) training steps 0 to 500, (ii) training steps 500 to 2000, and (iii) training

steps 2000 to 3000. In the first part, the cloud-based model achieves higher accuracy than

the edge-based model. This is because the cloud-based model can utilize the complete and

complex training dataset, rather than a limited subset of the data available to each edge

node. Thus, the accuracy increases faster than the edge-based model. In the second part, the

workers have trained enough datasets and uploaded the parameters to the server. Further, the

different workers are fed by different subsets of the total dataset which is equivalent to data

sampling, and it obtains better performance than the cloud-based model in this stage. During

the steps 2000 to 3000, the two models show the same performance, matching the theoretical

analysis in Section IV-B4.

B. Proposed CNN Model vs. Existing CNN Models

After the evaluation between cloud-based and edge-based models, we deploy several

existing CNN models to the edge nodes and compare their performance. We utilize existing

code implementations [36] and modify the code with TensorFlow distribution methods.

Thus, all the existing CNN models are implemented in the distributed manner in order

to make a fair comparison between the proposed CNN models. Fig. 10 illustrates the cross-

entropy loss for each CNN model. The losses for all the models have similar patterns. The

losses decrease rapidly before the 500th step and are stable after the 500th step. The results

illustrate that the proposed CNN model achieves the same loss performance compared with

the existing CNN models. Furthermore, Fig. 11 illustrates the classification accuracy for all

the CNN models. The performance of the proposed CNN and the VGG-16 models reach

approximately 95% accuracy, while the LeNet-5 model reaches 89.6% accuracy. It clearly

confirms that the proposed CNN model and the VGG-16 model have similar classification

accuracy and their performance is better than the LeNet-5 model.

C. Training Time Consumption Comparison

We also compare the training times for different CNN models. Fig. 12 illustrates the time

costs of four CNN models: the proposed edge-based model, the VGG-16 model [35], the

LeNet5 model [30], and the cloud-based model from the training process. Here, the x-axis

represents the different CNN models and the y-axis indicates the total time cost in minutes.

Further, each model is executed 10 times and we utilize 95% confidence intervals. The

evaluation results show that the training time cost for the cloud-based model is over 85

minutes, while the edge-based model is less than 35 minutes, approximately 38% of the time

cost for cloud-based model. Meanwhile, we obtain the time cost for the distributed LeNet5

and VGG-16 models as well. From the figure, we observe that our model benefits from the

parameter optimization on this specific dataset, as our proposed model achieves the smallest

computation time in the convolutional layers to abstract the features, leading to the shortest

computation time of all the schemes.

To summarize, our proposed edge-based CNN model can not only reduce the training

time, but also maintain equivalent performance, compared to the existing CNN models.

Furthermore, as discussed in Sections IV-C and IV-B, reducing the output feature size could

improve the network performance. Thus, the proposed edge-based CNN model reduces both

Liang et al. Page 18

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

network traffic overhead and CNN training time simultaneously, and our proposed CNN

model improves the system performance for our IIoT scenario.

VII. DISCUSSION

In this study, we propose an edge-based CNN model which is deployed on edge nodes to

offload the training process from the cloud to the edge, thereby avoiding the data exchanges

between servers and IoT devices and reducing network traffic in IIoT. As possible extensions

of our work, we consider possible future directions toward improving IIoT with respect

to extending learning models, security concerns, and the codesign of control, networking,

computing, and learning.

Learning Model Extension:

In this paper, we have validated that the proposed edge-based CNN model achieves

better performance than existing CNN models on the particular T-Less dataset. However,

the applicability and extensibility of the proposed model remains unexplored. Generally

speaking, as the deep learning process is a black-box process, a deep learning model is

generally configured and optimized only for the specific training dataset that it was trained

on. When the training dataset changes, the system has to reconfigure, or retrain, the deep

learning model to obtain accurate results. Thus, how to design a generalized learning model

to handle different datasets and achieve accurate results remains a challenging problem. As

ongoing research, we plan to extend our work to apply different types of datasets to our

proposed model, and design a generic learning model to adopt multiple datasets.

As IIoT is a dynamic system, the system generates new data constantly over time. Thus,

the CNN model needs to retrain to maintain model accuracy when the system receives new

data. The training cost increases constantly, since the size of the training dataset increases

constantly. To handle this, an online learning strategy should be considered. Online learning

utilizes model updating instead of retraining to process the new data, which means the

model only utilizes the new datasets to train the model instead of utilizing the entire dataset

(including old and new data), which reduces the training time. Thus, it is possible to utilize

the online learning strategy to optimize the proposed edge-based CNN model to adapt to

the dynamic IIoT environment. Specifically, the parameter server maintains and manages

the well-trained model. Also, it defines a suitable threshold for the classification accuracy.

As the system changes dynamically, such as through the addition of new parameters or new

productions in the system, the accuracy of the old model will certainly drop. When the

accuracy drops below the threshold, the edge workers should update the edge-based model

by training with the newly generated datasets. To do so, we can reduce the learning overhead

and increase the flexibility of the deep learning model for the dynamics system.

IIoT Security:

The security of the IIoT system is important, how to leverage system identification,

vulnerability analysis, and resilience operations to mitigate the network risk is one critical

issue to be addressed [37], [38], [39], [40]. In particular, as mentioned above, the automation

and intelligence of IIoT is based upon the efficacy of data analysis. Compromising the data

Liang et al. Page 19

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

analysis causes the system to instigate improper control and obtain unexpected results. To

this end, there are credible threats to the data analysis process. One possible mechanism

is that an adversary could tamper with the labels of the datasets affect the training process

and yield incorrect analysis results when the model is deployed [41]. Furthermore, the

adversary could tamper with the parameters for the deep learning model, which also affects

the training results [42]. Since the deep learning process is a black box process, it requires

extensive experiments to determine the level of impact of different threats on IIoT by

involving a set of metrics to conduct systematic risk assessment. Based on such experiments,

how to design effective defensive techniques to protect the deep learning process remains

another challenging issue, which is another research direction.

To mitigate the risks of attacks, we consider several possible solutions. First, it is critical to

improve the security of machine learning algorithms and models. Indeed, existing research

efforts have shown that adversarial learning can compromise most machine learning models,

including CNNs, DNNs, and others [43], [44], [45]. Thus, strengthening the security of

machine learning itself is a necessary goal. Second, because of the wide use of machine

learning in IIoT, the security risks of machine learning inevitably affect the security of IIoT

systems. Adversaries could launch attacks against machine learning algorithms deployed

in IIoT systems so that the performance of IoT systems could be reduced or altered. As

a typical distributed system, data in IIoT is collected by sensors in different locations and

transmitted to servers for further analysis. We categorize the data collection process into

three phases: data collection, transmission, and processing. In fact, adversaries could launch

attacks against any or all phases (e.g., injecting false data in the data collection phase).

Thus, an effective end-to-end defense solution must be designed to not only protect machine

learning models and mechanisms, but also to protect the data in the collection, transmission,

and storage processes. It is also necessary to develop recovery mechanisms to restore IIoT

systems when they are under attack or compromised.

Co-design of Control, Networking, Computing, and Learning:

The control, networking, and data analysis are the key components of IIoT [1]. This is

equally true for IIoT, which presents its own unique challenges and opportunities. Thus, how

to leverage these three components in IIoT systems to optimize the existing industrial model

is critical. The control system in an IIoT environment plays a crucial role in controlling

and operating critical infrastructures, which not only requires the network system support to

transmit the control signal, but also requires data analysis support to make correct decisions

and increase the control accuracy. Indeed, designing the three sub-systems of control,

communication, and data analysis independently creates problems. For instance, the control

system may be operated manually by the manager/controller according to the data analysis

results, which is a gap in the IIoT automation closed loop. Further, the network system takes

the responsibility of transmitting the datasets and control signals, and the performance of the

network system directly impacts the performance of every other system. Thus, it is necessary

to co-design these subsystems to interoperate cohesively.

Nonetheless, many critical issues are still open at this stage. From the control point of view,

how to manage and control various facilities is a challenging problem. First, recall that

Liang et al. Page 20

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

IoT provides ubiquitous connections, and thus integration of control hardware and software

is difficult. Also, the control system is time sensitive, and how to guarantee the control

signal is timely and accurate is challenging. From the network point of view, the existing

network protocols do not fit low-power IoT devices. Thus, how to integrate new network

technologies such as 5G [46], [47], machine-to-machine (M2M) communications [48], [49],

and SDN [50] with IoT remains an open issue. Another challenge is network deployment,

which includes identification, network structure, consideration for densification, distribution,

and mobility. Finally, how to improve the efficiency of the data analysis and how to reduce

the computation requirements of the analysis process are critical issues.

In an IIoT system, edge computing, as a new distributed computing paradigm, can offload

computation tasks from computing centers to the network edge, so that the latency of

transmitting data collected from sensors to data analysis components can be reduced, as

edge nodes are much closer to sensors. In the same way, decisions can be quickly delivered

from edge nodes to actuators. To make accurate and rapid decisions, machine learning can

be deployed at edge nodes. Nonetheless, edge nodes have limited computation resources,

it is necessary to design cost-effective machine learning schemes that can support edge

computing-based data analytics to aid decisionmaking in IIoT systems. While machine

learning has achieved great success in a number of applications, such as image/video

recognition, natural language process, and others, the design of machine learning techniques

that can deal with the exceptional requirements of IIoT systems in terms of safety, accuracy,

and real-time response must be realized.

VIII. FINAL REMARKS

In this paper, we formalized the problem space for IIoT in network, computation, and

structure, and focused on the offloading of the deep learning from cloud servers to edge

nodes in order to avoid the massive amount of data exchanged between servers and IoT

devices. Based on our problem formalization, we proposed an edge-based CNN model,

which moves the CNN model used to classify the manufacturing components in IIoT, from

the cloud servers to the edge nodes. To deploy the proposed CNN model to the edge nodes,

we optimized the parameters of the CNN model to reduce the training time and computation

time of the model. Based on the system model, we analyzed the performance between the

cloud-based CNN model and our proposed edge-based model. To evaluate the proposed

CNN model, we designed a comprehensive simulation based on the Google Cloud Instance.

We also created an edge computing testbed on Google Cloud and deployed the proposed

model to the testbed. Extensive experimental results indicate that our proposed edge-based

CNN model is capable of not only offloading the computation to avoid massive and costly

data exchanges between cloud servers and IoT devices, but also reducing the training time

while obtaining the similar classification accuracy comparing to several baseline schemes.

REFERENCES

[1]. Xu H, Yu W, Griffith D, and Golmie N, “A survey on industrial internet of things: A cyber-
physical systems perspective,” IEEE Access, vol. 6, pp. 78238–78259, 2018.

[2]. Jeschke S, Brecher C, Song H, and Rawat DB, Industrial Internet of Things: Cybermanufacturing
Systems. Springer, 2017.

Liang et al. Page 21

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

[3]. Dartmann G, Song H, and Schmeink A, Big Data Analytics for Cyber-Physical Systems: Machine
Learning for the Internet of Things. Elsevier, 2019.

[4]. Liang F, Yu W, An D, Yang Q, Fu X, and Zhao W, “A survey on big data market: Pricing, trading
and protection,” IEEE Access, vol. 6, pp. 15132–15154, 2018.

[5]. Yu W, Liang F, He X, Hatcher WG, Lu C, Lin J, and Yang X, “A survey on the edge computing for
the internet of things,” IEEE access, vol. 6, pp. 6900–6919, 2018.

[6]. Shi W, Cao J, Zhang Q, Li Y, and Xu L, “Edge computing: Vision and challenges,” IEEE Internet
of Things Journal, vol. 3, no. 5, pp.637–646, Oct 2016.

[7]. Jeschke S, Brecher C, Meisen T, zdemir D, and Eschert T, Industrial Internet of Things
and Cyber Manufacturing Systems, ser. Springer Series in Wireless Technology. Cham:
Springer International Publishing, 2016, pp. 3–19. [Online]. Available: https://publications.rwth-
aachen.de/record/689897

[8]. Hatcher WG and Yu W, “A survey of deep learning: Platforms, applications and emerging research
trends,” IEEE Access, vol. 6, pp. 24411–24432, 2018.

[9]. Mohammadi M, Al-Fuqaha A, Sorour S, and Guizani M, “Deep learning for iot big data and
streaming analytics: A survey,” IEEE Communications Surveys Tutorials, vol. 20, no. 4, pp.
2923–2960, Fourthquarter 2018.

[10]. Boschert S and Rosen R, “Digital twinthe simulation aspect,” in Mechatronic Futures. Springer,
2016, pp. 59–74.

[11]. Qi Q and Tao F, “Digital twin and big data towards smart manufacturing and industry 4.0: 360
degree comparison,” IEEE Access, vol. 6, pp. 3585–3593, 2018.

[12]. Canedo A, “Industrial iot lifecycle via digital twins,” in 2016 International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ ISSS). IEEE, 2016, pp. 1–1.

[13]. Tao F, Sui F, Liu A, Qi Q, Zhang M, Song B, Guo Z, Lu SC-Y, and Nee A, “Digital twin-driven
product design framework,” International Journal of Production Research, pp. 1–19, 2018.

[14]. Thoben K-D, Wiesner S, and Wuest T, “industrie 4.0 and smart manufacturing-a review of
research issues and application examples,” International Journal of Automation Technology, vol.
11, no. 1, pp. 4–16, 2017.

[15]. Peralta G, Iglesias-Urkia M, Barcelo M, Gomez R, Moran A, and Bilbao J, “Fog computing
based efficient iot scheme for the industry 4.0,” in 2017 IEEE International Workshop of
Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM).
IEEE, 2017, pp. 1–6.

[16]. Li X, Li D, Wan J, Liu C, and Imran M, “Adaptive transmission optimization in sdn-based
industrial internet of things with edge computing,” IEEE Internet of Things Journal, vol. 5, no. 3,
pp. 1351–1360, 2018.

[17]. Xu X, “From cloud computing to cloud manufacturing,” Robotics and computer-integrated
manufacturing, vol. 28, no. 1, pp. 75–86, 2012.

[18]. Jiang C, Zhang H, Ren Y, Han Z, Chen K-C, and Hanzo L, “Machine learning paradigms for
next-generation wireless networks,” IEEE Wireless Communications, vol. 24, no. 2, pp. 98–105,
2017.

[19]. Zhu J, Song Y, Jiang D, and Song H, “A new deep-q-learning-based transmission scheduling
mechanism for the cognitive internet of things,” IEEE Internet of Things Journal, vol. 5, no. 4,
pp. 2375–2385, 2018.

[20]. Mocanu DC, Mocanu E, Nguyen PH, Gibescu M, and Liotta A, “Big iot data mining for real-
time energy disaggregation in buildings,” in 2016 IEEE International Conference on Systems,
Man, and Cybernetics (SMC). IEEE, 2016, pp. 003765–003769.

[21]. Huang Y, Ma X, Fan X, Liu J, and Gong W, “When deep learning meets edge computing,” in
2017 IEEE 25th International Conference on Network Protocols (ICNP). IEEE, 2017, pp. 1–2.

[22]. Zhang Q, Yang LT, Chen Z, and Li P, “A tensor-train deep computation model for industry
informatics big data feature learning,” IEEE Transactions on Industrial Informatics, vol. 14, no.
7, pp. 3197– 3204, 2018.

[23]. Zhang Q, Yang LT, Chen Z, Li P, and Bu F, “An adaptive dropout deep computation model for
industrial iot big data learning with crowdsourcing to cloud computing,” IEEE Transactions on
Industrial Informatics, vol. 15, no. 4, pp. 2330–2337, 2018.

Liang et al. Page 22

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

https://publications.rwth-aachen.de/record/689897
https://publications.rwth-aachen.de/record/689897

[24]. Ghobakhloo M, “The future of manufacturing industry: A strategic roadmap toward industry
4.0,” Journal of Manufacturing Technology Management, vol. 29, no. 6, pp. 910–936, 2018.

[25]. LeCun Y, Bengio Y, and Hinton G, “Deep learning,” nature, vol. 521, no. 7553, p. 436, 2015.
[PubMed: 26017442]

[26]. Hodaň T, Haluza P, Obdržálek Š, Matas J, Lourakis M, and Zabulis X, “T-LESS: An RGB-D
dataset for 6D pose estimation of texture-less objects,” IEEE Winter Conference on Applications
of Computer Vision (WACV), 2017.

[27]. Gidaris S and Komodakis N, “Object detection via a multi-region and semantic segmentation-
aware cnn model,” in Proceedings of the IEEE international conference on computer vision,
2015, pp. 1134–1142.

[28]. Lipton ZC, “The mythos of model interpretability,” arXiv preprint arXiv:1606.03490, 2016.

[29]. Sze V, Chen Y-H, Yang T-J, and Emer JS, “Efficient processing of deep neural networks: A
tutorial and survey,” Proceedings of the IEEE, vol. 105, no. 12, pp. 2295–2329, 2017.

[30]. El-Sawy A, Hazem E-B, and Loey M, “Cnn for handwritten arabic digits recognition based on
lenet-5,” in International Conference on Advanced Intelligent Systems and Informatics. Springer,
2016, pp. 566–575.

[31]. Qassim H, Verma A, and Feinzimer D, “Compressed residual-vgg16 cnn model for big data
places image recognition,” in 2018 IEEE 8th Annual Computing and Communication Workshop
and Conference (CCWC). IEEE, 2018, pp. 169–175.

[32]. Zhang C, Wu D, Sun J, Sun G, Luo G, and Cong J, “Energy-efficient cnn implementation on
a deeply pipelined fpga cluster,” in Proceedings of the 2016 International Symposium on Low
Power Electronics and Design. ACM, 2016, pp. 326–331.

[33]. Zhao W, Fu H, Luk W, Yu T, Wang S, Feng B, Ma Y, and Yang G, “F-cnn An fpga-
based framework for training convolutional neural networks,” in 2016 IEEE 27th International
Conference on Application-specific Systems, Architectures and Processors (ASAP). IEEE, 2016,
pp. 107–114.

[34]. Google Cloud, https://cloud.google.com/.

[35]. Han S, Pool J, Tran J, and Dally W, “Learning both weights and connections for efficient neural
network,” in Advances in neural information processing systems, 2015, pp. 1135–1143.

[36]. Deep Learning Documents, http://deeplearning.net/tutorial/lenet.html/.

[37]. Liu X, Qian C, Hatcher WG, Xu H, Liao W, and Yu W, “Secure internet of things (iot)-based
smart-world critical infrastructures: Survey, case study and research opportunities,” IEEE Access,
pp. 1–1, 2019.

[38]. Lin J, Yu W, Zhang N, Yang X, Zhang H, and Zhao W, “A survey on internet of things:
Architecture, enabling technologies, security and privacy, and applications,” IEEE Internet of
Things Journal, vol. 4, no. 5, pp. 1125–1142, Oct 2017.

[39]. Tuptuk N and Hailes S, “Security of smart manufacturing systems,” Journal of Manufacturing
Systems, vol. 47, pp. 93–106, April 2018.

[40]. Ling Z, Luo J, Xu Y, Gao C, Wu K, and Fu X, “Security vulnerabilities of internet of things:
A case study of the smart plug system,” IEEE Internet of Things Journal, vol. 4, no. 6, pp.
1899–1909, Dec 2017.

[41]. Yu D and Deng L, “Deep learning and its applications to signal and information processing
[exploratory dsp],” IEEE Signal Processing Magazine, vol. 28, no. 1, pp. 145–154, 2010.

[42]. Hu W and Tan Y, “Generating adversarial malware examples for black-box attacks based on
gan,” arXiv preprint arXiv:1702.05983, 2017.

[43]. Tzeng E, Hoffman J, Saenko K, and Darrell T, “Adversarial discriminative domain adaptation,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp.
7167–7176.

[44]. Papernot N, McDaniel P, Jha S, Fredrikson M, Celik ZB, and Swami A, “The limitations of deep
learning in adversarial settings,” in 2016 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 2016, pp. 372–387.

[45]. Liang F, Hatcher WG, Liao W, Gao W, and Yu W, “Machine learning for security and the internet
of things: The good, the bad, and the ugly,” IEEE Access, vol. 7, pp. 158126–158147, 2019.

Liang et al. Page 23

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

https://cloud.google.com/
http://deeplearning.net/tutorial/lenet.html/

[46]. Agiwal M, Roy A, and Saxena N, “Next generation 5g wireless networks: A comprehensive
survey,” IEEE Communications Surveys Tutorials, vol. 18, no. 3, pp. 1617–1655, thirdquarter
2016.

[47]. Yu W, Xu H, Zhang H, Griffith D, and Golmie N, “Ultra-dense networks: Survey of state of the
art and future directions,” in 2016 25th International Conference on Computer Communication
and Networks (ICCCN), Aug 2016, pp. 1–10.

[48]. Wu Y, Yu W, Griffith DW, and Golmie N, “Modeling and performance assessment of
dynamic rate adaptation for m2m communications,” IEEE Transactions on Network Science
and Engineering, pp. 1–1, 2018.

[49]. Kim J, Lee J, Kim J, and Yun J, “M2m service platforms: Survey, issues, and enabling
technologies,” IEEE Communications Surveys Tutorials, vol. 16, no. 1, pp. 61–76, First 2014.

[50]. Kreutz D, Ramos FMV, Verssimo PE, Rothenberg CE, Azodolmolky S, and Uhlig S, “Software-
defined networking: A comprehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp.
14–76, Jan 2015.

Liang et al. Page 24

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Fig. 1.
The Problem Space of the IIoT

Liang et al. Page 25

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Fig. 2.
Examples of the T-Less Dataset

Liang et al. Page 26

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Fig. 3.
Test Accuracy for Different Number of CNN Layers

Liang et al. Page 27

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Fig. 4.
Training Speed for Different Number of CNN Layers

Liang et al. Page 28

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Fig. 5.
Structure of CNN Model

Liang et al. Page 29

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Fig. 6.
Testbed Structure

Liang et al. Page 30

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Fig. 7.
Computation Power Estimation, with 95% confidence intervals shown

Liang et al. Page 31

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Fig. 8.
Loss Comparison Between Cloud-Based and Edge-Based Model, with 95% confidence

intervals shown

Liang et al. Page 32

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Fig. 9.
Accuracy Comparison Between Cloud-Based and Edge-Based Model, with 95% confidence

intervals shown

Liang et al. Page 33

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Fig. 10.
Loss Comparison for Different CNN Models, with 95% confidence intervals shown

Liang et al. Page 34

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Fig. 11.
Accuracy Comparison for Different CNN Models, with 95% confidence intervals shown

Liang et al. Page 35

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Fig. 12.
Training Time for Different CNN Models, with 95% confidence intervals shown

Liang et al. Page 36

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Liang et al. Page 37

TABLE I

NOTATIONS

Symbols Descriptions

T Computation time for CNN model

c Number of image channels

m Number of convolutional filters

ℂ Results from prior convolutional layer

I, K Input of CNN model and convolution kernel

P Pooling result

z, w, b Forward propagation result, weight, and bias

δn − 1 Backward propagation result for layer n − 1
Lossj The loss value after layer j

α Learning rate

Td System delay for cloud-based model

T c Data collection time

T t1 Transmission time (sensors to edge nodes)

T r Data receiving time for edge nodes

T t2 Transmission time (edge nodes to servers)

T p Data analysis time for cloud-based model

Ds Data size collected by each sensor

De Data size received by each edge node

Td
e System delay for edge-based model

T p
e Data analytical time for edge-based model

T r
e Data receiving time for the server

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Liang et al. Page 38

TABLE II

LEARNING RATE IDENTIFICATION

Learning Rate Training Steps Training Loss

0.05 15 NaN

0.01 107 NaN

0.005 1500 0.086

0.004 1500 0.083

0.003 1500 0.081

0.002 1500 0.073

0.001 1500 0.068

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

	Abstract
	Introduction
	Related Works
	Preliminaries
	IIoT:
	Edge Computing:
	Deep Learning:

	Our Approach
	Design Rationale
	Network Performance:
	Deep Learning Model Performance:
	System Performance:

	Deep Learning Model
	Dataset Selection:
	CNN Model Design:
	Number of Convolutional Layers:
	Learning Rate:

	CNN Model Analysis:
	Time Complexity:
	Forward Propagation:
	Backward Propagation:

	Edge-Based CNN Model:

	Performance Analysis
	System Latency:
	Cloud-Based Model:
	Edge-Based Model:

	Network Overhead:
	Computation Overhead:

	Implementation and Experimental Design
	Scenario
	Testbed Settings
	Computing Node Configuration:
	Network Configuration:
	Computation Power Estimation:

	Experimental Design
	Data Preparation:
	Deployed Models:

	Metrics
	Training Loss:
	Classification Accuracy:
	Time Cost:

	Evaluation Results
	Cloud-Based CNN Model vs. Edge-Based CNN Model
	Proposed CNN Model vs. Existing CNN Models
	Training Time Consumption Comparison

	Discussion
	Learning Model Extension:
	IIoT Security:
	Co-design of Control, Networking, Computing, and Learning:

	Final Remarks
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Fig. 9.
	Fig. 10.
	Fig. 11.
	Fig. 12.
	TABLE I
	TABLE II

