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Abstract

As a typical application of the Internet of Things (IoT), the Industrial Internet of Things (IIoT) 

connects all the related IoT sensing and actuating devices ubiquitously so that the monitoring 

and control of numerous industrial systems can be realized. Deep learning, as one viable way 

to carry out big data-driven modeling and analysis, could be integrated in IIoT systems to aid 

the automation and intelligence of IIoT systems. As deep learning requires large computation 

power, it is commonly deployed in cloud servers. Thus, the data collected by IoT devices must be 

transmitted to the cloud for training process, contributing to network congestion and affecting the 

IoT network performance as well as the supported applications. To address this issue, in this paper 

we leverage fog/edge computing paradigm and propose an edge computing-based deep learning 

model, which utilizes edge computing to migrate the deep learning process from cloud servers 

to edge nodes, reducing data transmission demands in the IIoT network and mitigating network 

congestion. Since edge nodes have limited computation ability compared to servers, we design a 

mechanism to optimize the deep learning model so that its requirements for computational power 

can be reduced. To evaluate our proposed solution, we design a testbed implemented in the Google 

cloud and deploy the proposed Convolutional Neural Network (CNN) model, utilizing a real-world 

IIoT dataset to evaluate our approach1. Our experimental results confirm the effectiveness of our 

approach, which can not only reduce the network traffic overhead for IIoT, but also maintain the 

classification accuracy in comparison with several baseline schemes.
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I. INTRODUCTION

The fourth industrial revolution, known as Industrial Internet of Things (IIoT), is a 

realization of the Internet of Things (IoT) [1], [2] in a variety of manufacturing systems, 

introducing a massive number of IoT devices and computation nodes in production lines 

1Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure 
adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and 
Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.
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and manufacturing processes so that the monitoring and control of manufacturing systems 

can be realized. In an IIoT system, as a typical cyber physical system, the key to realizing 

automation and intelligence is through big data analysis driven by big computing and big 

modeling provided by learning techniques such as deep learning [3]. In a traditional way, 

IoT devices collect data and send it to servers that have high computing capabilities for 

performing deep learning process. Then, the servers analyze the data and send control 

messages to IoT devices [4]. Due to the interactions between servers and IoT devices, 

massive amounts of data need to be transmitted through the IoT network, raising significant 

data transmission overhead to the network. As a number of IIoT systems are time sensitive, 

the large increase in network traffic causes high network latency and large packet loss, 

significantly affecting the performance of IIoT systems. Thus, how to optimize network 

performance while providing sufficient big data analytics becomes a critical problem in IIoT 

systems.

Edge (or Fog) computing has emerged as a new paradigm to offload computation tasks 

from the cloud to the edge. Unlike traditional cloud computing, in which tasks are offloaded 

to remote cloud datacenters, edge computing assigns computation tasks to multiple edge 

nodes that are deployed close to end users. Thus, edge computing is capable of reducing 

data transmission and network traffic between cloud servers and IoT devices (sensors, 

actuators, etc.) [5], [6], [7]. In an IIoT system, we can utilize edge computing to offload the 

computation tasks and reduce the network traffic as well. Although there are some existing 

studies toward increasing the network bandwidth or optimizing the data transmission, there 

is lack of research on how to carry out computing task offloading in IIoT.

Deep learning, as the useful big data-driven analytics scheme, has shown great potential in a 

number of areas, including image/video recognition, robotics, and natural language analysis, 

among others [8], [9]. Nonetheless, as deep learning requires high computation power to 

analyze the datasets, it is generally deployed in cloud servers, which have high computation 

capabilities. In addition, to obtain accurate results, large datasets are generally required. 

Thus, when deploying deep learning in the cloud to support IIoT systems, the massive data 

exchanged between servers and IoT devices could cause network congestion and affect IIoT 

systems that are commonly latency-sensitive. While deploying deep learning to the edge is a 

natural solution, it raises new challenges due to the limited computing ability of edge nodes. 

Thus, it is critical to design an effective deep learning model that can be used on edge nodes.

To address the aforementioned issues, in this paper we propose to leverage edge computing 

to conduct deep learning on edge nodes in IIoT systems. To demonstrate our idea, we design 

an IIoT scenario that utilizes the deep learning technique to classify different industrial 

components. We focus on offloading the deep learning process from the cloud to the 

edge so that network traffic congestion can be mitigated in IIoT systems. We design the 

edge-based Convolutional Neural Network (CNN) by leveraging the CNN model to classify 

the components. We propose a distributed CNN model where we deploy to edge nodes. The 

edge nodes execute the CNN training process and send the training results to the parameter 

server in the cloud. Using our designed model, we can significantly reduce the amount of the 

data transmitted through the network, leading to the improvement of network performance.
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In our study, we make the following contributions:

First, we propose a novel edge-based CNN model to offload computation tasks. By doing 

this, IoT devices do not need to send raw data to a centralized server, thereby significantly 

reducing network traffic. Furthermore, in order to deploy the CNN model to the edge, we 

optimize the existing CNN model in Section IV. We also mathematically evaluate the time 

complexity of the proposed model and develop a mathematical model to illustrate how to 

deploy the proposed CNN model to edge computing nodes in Section IV.

Second, we evaluate network performance in an IIoT system. We design a mathematical 

model to analyze the network delay and packet loss rate in both edge-based CNN and 

centralized CNN cases. Overall, based on the specific IIoT scenario, we propose an edge-

based CNN model to improve system performance. Since finding the optimal deep neural 

network configuration for a particular data set mathematically remains an open question, 

we leverage a combination of mathematical and experimental approaches to confirm the 

superiority of our model.

Third, we design an experimental testbed in Google Cloud to simulate the distributed 

environment in Section VI. To ensure a fair experimental comparison, we calculate the 

computation capability of edge nodes in the testbed. Thus, based on the calculation of time 

complexity for the different CNN models and the computation capability of the edge nodes, 

we can systematically analyze the performance of each CNN model and obtain meaningful 

results.

The remainder of this paper is organized as follows: In Section II, we conduct a brief 

literature review of related studies on IIoT systems and deep learning techniques. In Section 

III, we brief the key techniques of IIoT, edge computing, and deep learning. In Section IV, 

we introduce our approach in detail. In Section V, we define the scenario, introduce the 

testbed settings and experimental design, and define the evaluation metrics. In Section VI, 

we present the evaluation results. In Section VII, we discuss some further issues. Finally, we 

summarize the paper in Section VIII.

II. RELATED WORKS

In the following, we review some existing research works that are relevant to our study. In 

the smart manufacturing system, the digital twin is a digital copy of real physical systems 

[10]. It is easy for operators and managers to emulate the operations on this digital system 

to avoid unexpected results. The key concept of the digital twin is utilizing massive data 

to create the digital model. For example, Qi et al. [11] reviewed massive data and digital 

twin, and compared differences between massive data and digital twin in manufacturing. 

Likewise, Canedo et al. [12] proposed a digital twin model to simulate the life-cycle of 

IIoT systems, which simulates IIoT services, objects, and the communications between the 

objects. Likewise, Tao et al. [13] proposed a framework of digital twin-driven product design 

and conducted a case study to evaluate its effectiveness.

Related to computing aspects of IIoT, fog/edge computing has been considered as a viable 

computing infrastructure to offload computation tasks in IoT [14]. For example, Peralte 
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et al. [15] proposed a fog computing-based scheme that introduces a low complexity 

computational layer between the cloud and IoT nodes. Yu et al. [5] conducted a 

comprehensive survey on edge computing and clarified how to leverage edge computing to 

support IoT. Li et al. [16] introduced the software defined network (SDN) to incorporate 

with edge computing and proposed an adaptive transmission architecture to improve 

network latency. Likewise, to optimize cloud computing in IIoT systems, Xu et al. [17] 

proposed a cloud-based architecture for IIoT systems and provided key services defined in 

different layers that are arranged in a cloud structure so that on-demand computing services 

with high reliability, scalability and availability can be supported.

Control of large-scale heterogeneous industrial systems remain a challenging problem so 

that powerful and efficient computation platforms and data analysis methods are necessary. 

As one of the most popular data-driven big modeling methods, deep learning techniques 

have been widely used in IoT and some existing studies have focused on utilizing deep 

learning techniques to assist in network control in IIoT systems. For example, Jiang et al. 
[18] utilized the deep learning techniques to improve the performance of the networks, 

such as massive Multiple Input Multiple Output (MIMO) antennas, ultra-dense small cell 

network, device-to-device communications, and so on. Likewise, Zhu et al. [19] utilized 

Q-learning to optimize the packet transmission schedule for IIoT applications. Furthermore, 

some research efforts aim to utilize the deep learning techniques to improve the performance 

of IoT applications. For instance, Mocanu et al. [20] designed different machine learning 

models to predict and classify the energy disaggregation task. Likewise, Huang et al. [21] 

investigated a deep learning-based scheme to perform forecasting of electrical loads.

In addition, some studies have been devoted to optimizing the performance of deep 

learning models, such as reducing time complexity and increasing accuracy, among others. 

For example, Zhang et al. [22] utilized the tensor-train deep computation model to 

compress hierarchical features so that more features can be trained in limited tensor space. 

Specifically, the tensor-train deep computation model compresses the features by converting 

the conventional dense weights to tensor-train format. By doing this, the proposed model 

could improve training efficiency and reduce memory space. Moreover, addressing the issue 

related to a lack of training samples, Zhang et al. [23] proposed an adaptive dropout to 

prevent deep learning models from overfitting, which is caused by a lack training samples. 

They designed a distribution function to determine the dropout rate of each layer. Then, 

a maximum entropy-based outsourcing selection algorithm was designed for selecting 

appropriate samples. Finally, they optimized the existing supervised learning model to fit 

the adopted adaptive dropout algorithm.

In contrast, two unsolved problems are tackled in our study. First, we focus on offloading 

the deep learning tasks from cloud servers to edge nodes, which reduces the amount of 

network traffic. Meanwhile, we optimize the deep learning model to reduce computation 

requirements and improve execution on edge nodes. Second, we utilize the distributed deep 

learning model to address the manufacturing components classification problem. We design 

an IIoT scenario and select the real-world dataset to validate the effectiveness of our model.
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III. PRELIMINARIES

In this section, we introduce the topics of IIoT, edge computing, and deep learning.

IIoT:

Generally speaking, IIoT provides the network infrastructure for connecting IoT devices 

so that the monitoring and control of industrial manufacturing systems can be supported. 

From a cyber-physical system perspective, it is composed of both the physical subsystem 

and the cyber subsystem, which interact with each other so that the manufacturing process 

can be monitored and controlled with the aid of advanced information communication 

techniques. By interacting with computing and networked objects in the physical subsystem, 

IoT devices (sensors, actuators, etc.) collect data, utilize the network subsystem to transmit 

the data to the operation center, in which the data will be further analyzed to assist 

system decision making, and receive data to conduct actuation and modification of physical 

assets. As a kind of distributed system [24], all IoT devices in IIoT systems connect via 

communication networks. In IIoT, as numerous applications are time-sensitive, network 

performance is the key factor that affects the performance of IIoT applications. Nonetheless, 

to support automation and intelligence for IIoT applications, a large amount of data will be 

collected and analyzed. While more data can provide better intelligence to IIoT applications, 

transmitting massive data through the network could lead to network congestion and further 

affect the monitoring and control performance of IIoT applications.

Edge Computing:

Edge computing, with a similar scope to fog computing, which extends cloud computing 

to the network edge, is a distributed computing architecture to offload computation tasks 

from the cloud to edge nodes that are close to end-users [5], [6]. Moreover, edge computing 

offers latency reduction benefits for some time-sensitive applications. Thus, it is viable 

to leverage edge computing to support IIoT so that big data analysis tasks can be 

offloaded and the amount traffic transmission can be reduced. Nonetheless, edge nodes 

have limited computation power and generally cannot handle highly extensive computation 

tasks. Furthermore, the communication and synchronization of edge nodes could affect the 

performance of edge computing, as computation tasks are distributed to heterogeneous edge 

nodes that must cooperate. Thus, how to reduce the computation demand and transmitted 

traffic overhead to the network are key issues for edge computing-based IIoT systems.

Deep Learning:

As we discussed above, the key to automation and intelligence for IIoT is data analysis. 

One of the most popular data-driven modeling technique is deep learning. A number 

of deep learning techniques have been widely deployed in regression, classification, and 

forecasting [8], [25], and have shown greater potential compared with other data analysis 

schemes. Generally speaking, the deep learning model is fed a training dataset and 

utilizes various methods of gradient descent. Nonetheless, the complexity, diversity, and 

integrity of the training dataset could significantly affect training results. Training with 

sufficiently larger datasets could result in more accurate output from equivalent models 
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(shape, layers, and activation, among others). Nonetheless, training on large datasets requires 

high computational power.

Furthermore, the data is continuously collected and increasing, and the demands of 

computation increase accordingly. Thus, it is difficult to handle such a task with only 

one computation node. There are two possible ways to tackle this issue. One way is to 

optimize the deep learning model so that the computation requirement can be reduced. The 

other is to distribute the deep learning model to a group of computation nodes, in which 

distributed learning is conducted. As the computation can be subdivided and distributed, the 

computation time in total could be improved.

IV. OUR APPROACH

In this section, we introduce our approach in detail. Particularly, we first outline the design 

rationale, detail the system models, and compare the performance of cloud-based and edge-

based deep learning schemes. We then propose our edge-based deep learning model. Table I 

lists key notations in this paper.

A. Design Rationale

Based on the discussion above, we formalize the problem of IIoT systems. Fig. 1 illustrates 

the problem space of IIoT systems, which consists of three dimensions (i.e., network, 

computation, and system structure). The solid blue sectors in the figure indicate our area of 

focus. In this study, we focus on utilizing edge computing to offload deep learning from the 

cloud, as it can reduce network traffic and mitigate congestion. Furthermore, we optimize 

the deep learning model and reduce the computation requirements of the deep learning 

process to deal with edge nodes that have less computation power than cloud servers. Our 

goal is to design an optimized deep learning model that is tailored to the edge computing 

platform so that both computation time and network latency can be reduced.

We now introduce our design rationale which focuses on the following issues:

Network Performance: The network system in IIoT provides communication 

infrastructure for the data exchange between subsystems. Moreover, in the centralized IIoT 

system, both control and data analysis processes are maintained in the datacenter cloud, 

which is denoted as the cloud-based system. In such a system, the raw datasets need to 

be uploaded to the datacenter, resulting in large data flows that can occupy the network 

resources and affect control signal transmission. As the control signal is the core heartbeat 

in the IIoT system, variability in the transmission of control signals could significantly affect 

the entire IIoT system. Thus, the effectiveness of the network system directly affects the 

performance of the IIoT system as a whole and is a key factor in IIoT. To this end, we focus 

on the design of an edge computing-based system to offload the data analysis process from 

the cloud to the edge so that the amount of network traffic can be reduced.

Deep Learning Model Performance: Deep learning is a popular data-driven modeling 

scheme, which has shown great potential in IIoT systems. Powerful computation support is 

required for the training process of deep learning models, in order to obtain accurate results. 
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Commonly speaking, edge nodes have less computation power than the centralized cloud 

servers. If the data analysis process is moved from cloud to edge, we need to optimize 

the deep learning model so that the demands of computation power can be reduced. 

The complexity of deep learning model implementation determines the computation 

requirements in the training process. For instance, in the CNN model, the number of 

convolutional layers affect the complexity directly. Thus, we focus on reducing the number 

of convolutional layers and optimizing their size to reduce the complexity of the CNN model 

while maintaining equivalent performance.

System Performance: As we discussed above, deploying deep learning to the edge and 

reducing the computation requirements of the deep learning model are two viable directions 

to improve the performance of the IIoT system. As each approach could affect system 

performance, to improve the entire system performance, we need to realize both approaches 

simultaneously.

In the following, we first propose an optimized CNN model to reduce computation cost. We 

then deploy the proposed CNN model to the edge node and compare its performance with 

the cloud-based CNN model as a baseline for comparison.

B. Deep Learning Model

1) Dataset Selection: In an IIoT environment, one important task is the detection and 

identification of different industrial objects from images and video, which may be produced 

in a variety of applications. To evaluate the performance of the proposed model, we choose 

the T-Less dataset [26], which is a set of images of different industrial components. The 

T-Less dataset is a public dataset of 6D posed texture-less rigid objects. The T-Less dataset 

includes over 105 images with 30 different industrial components captured by cameras with 

fixed angles. Each component includes 1,260 ‘.png’ image files at 480 × 480 pixels each. 

The training images contain each individual object with a black background, while the test 

images show twenty table-top scenes with arbitrarily arranged objects [26]. The images 

show different angles of each component with RGB channels. Fig. 2 shows some samples 

from the dataset. From these examples, we can see that some components have similar 

shapes or sizes, such as objects 5, 6 and 10. In addition, some components are assembled 

by other components, such a0s object 9, which is assembled from objects 6 and 10. This 

is common in industrial environments, where some components are parts of others. This 

unique characteristic of the dataset can help us evaluate the applicability of our algorithms in 

real-world industrial environments.

2) CNN Model Design: We now introduce the CNN model design. First, we identify 

the deep learning model. As illustrated above, the training datasets are images in our case, 

and utilizing the CNN model is one of the general approaches for image processing [27]. 

Thus, based on the conventional CNN model, we propose our optimized model in our IIoT 

scenario. Since the training process of the CNN model is a black box process [28], we 

need to define and optimize the parameters of the model. The number of convolutional 

layers is an important parameter in a CNN model, affecting performance directly [29]. To 

find an effective neural network structure, we create several models with different numbers 

Liang et al. Page 7

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



of convolutional layers and compare the performance. Also, the learning rate is another 

important parameter for the CNN model that we need to tune, as it affects the convergence 

speed of the model. Identifying a suitable learning rate for a CNN model could enable faster 

convergence and desirable accuracy. In the following, we discuss the details of parameter 

optimization.

Number of Convolutional Layers:  Figs. 3 and 4 illustrate the performance of the CNN 

models with different numbers of layers. Particularly, Fig. 3 shows the classification 

accuracy of the CNN models with different numbers of convolutional layers. Here, 

the x-axis represents the number of convolutional layers and the y-axis represents the 

classification accuracy. Note that the popular CNN model, LeNet-5 [30], has 6 convolutional 

layers and 2 full-connection layers, and another popular CNN model, VGG-16 [31], has 

16 convolutional layers and 1 full-connection layer. It is also worth noting that existing 

studies have shown that these CNN models perform better than most on image processing 

tasks [32], [33]. Thus, we use VGG-16 as a baseline model, which is known as one of the 

most accurate CNN model [31]. The experimental results of our comparison illustrate that 

classification accuracy increases rapidly when the number of convolutional layers increases 

from ‘1’ to ‘4’. When the number of convolutional layers is larger than ‘4’, the classification 

accuracy observes no significant change. Fig. 4 illustrates the relationship between the 

training speed and the number of convolutional layers. We find that the training speed 

continually drops as the number of convolutional layers increases, but the rate of decrease 

drops as well. Thus, based on the performance, we identify the number of convolutional 

layers for our case is ‘4’.

Learning Rate:  The learning rate is another important parameter in the CNN model that 

controls how much the model can adjust the weights of the neural network with respect to 

the loss gradient. Table II illustrates the identification process for the learning rate. Setting 

the learning rate to ‘0.05’ and ‘0.01’ results in the gradient divergence, making the loss of 

the model approach infinity (NaN). In the opposite, setting the learning rate between ‘0.005’ 

to ‘0.001’, the convergence speed decreases. From the table, we observe that, while setting 

the learning rate to ‘0.005’ obtains the faster convergence speed, the convergence process is 

not stable. Thus, we set the learning rate to ‘0.004’ for our model.

3) CNN Model Analysis: In the following, we analyze the proposed CNN model in 

detail.

Time Complexity:  We now analyze the time complexity of the proposed CNN model. 

Fig. 5 illustrates the structure of the CNN model. As we mentioned before, we select four 

convolutional layers to extract feature maps. Moreover, we deploy a pooling layer in the 

model following each convolutional layer (i.e., the total number of pooling layers is four), in 

order to further compress the feature maps. Based on the mathematical definition of both the 

convolutional and pooling layers, the total computation cost of the CNN model is

T = ∑i = 1
n c ⋅ LKi

2 + 1 ⋅ LIi
2 + LIi + 1/LPi

2 ⋅ mi .
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(1)

Here, we formalize the computation cost of the CNN model by utilizing the number of RGB
channels for the input images, the number of filters, and the number of the convolutional 

layers (all symbols in the equation have been defined in Table I). Meanwhile, we assume the 

length of the convolutional kernel is LKi and the length of the input features is LIi, where i
represents the number of inputs. Also, we denote LPi as the size of the pooling layer. From 

Equation (1), the time complexity of the CNN model can be represented by

O ∑i = 1
n LKi

2 ⋅ LIi
2 ⋅ mi .

(2)

By utilizing Equation (1), we are able to evaluate the number of computations required for 

each CNN model. The proposed CNN model has 4 convolutional layers and the number of 

calculations for the proposed CNN model is approximately 2 million per image. In addition, 

the LeNet-5 model has 6 convolutional layers and VGG-16 model has 16 convolutional 

layers. Based on the calculation, the number of computations for LeNet-5 and VGG-16 are 

approximately 7.5 million calculations per image and 31 million calculations per image, 

respectively. The results clearly show that the number of computations carried out by the 

proposed CNN model is the lowest, directly correlating to a reduction in computation 

overhead.

Forward Propagation:  We analyze the forward propagation of the proposed CNN model. 

The CNN model consists of two components: one is the convolutional layer and the other 

is the fully connected layer. The forward propagation for the convolutional layer can be 

denoted as

ℂn + 1 = f ∑s = 0
m − n ∑s = 0

n I(n, n)
(s, s + n) ⊙ K(n, n) + b ,

(3)

Pn + 1 = max Cn + 1 ,

f(z) = softmax(z) = ezi

∑j = 1
k ezi

.

Here, ℂn + 1 denotes the results after the prior convolutional layer, I denotes the input and m
denotes the size of the input, K denotes the convolution kernel, and n denotes the size of 

the convolution kernel. The expression I(n, n)
(s, s + n) ⊙ K(n, n) represents convolution operation, and 

the operator " ⊙″ is the dot product for each element at the corresponding location in matrix 

I and K. Also, s indicates the start location of the convolution calculation and f(z) is the 

softmax function, where k is the length of z. We assume that the step size is ‘1’ and b
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indicates the bias. We utilize the maximum pooling function to further compression the 

feature size.

The forward propagation for the full connect layer can be represented by

zn + 1 = wn + 1an + bn + 1,

(4)

an + 1 = f zn + 1 ,

f(z) = ReLU(z) = max 0, z .

Here, we denote n as the layer number, z as input, a as output, and f(z) as activation 

function. We use the Rectified Linear Unit function (ReLU) as the activation function.

Backward Propagation:  Backward propagation is one key feature for deep learning, as 

it updates the weights and bias in order to tune the model and obtain accurate results. The 

backward propagation is related to the partial derivative. For the proposed CNN model, the 

backward propagation of our CNN model can be represented by

δn − 1 = δn
∂zn

∂zn − 1
= δn ⋅ rot180 Kn, n ⊙ f′ zn − 1 .

(5)

Here, rot180 indicates the rotation of the convolution kernel by 180 degrees.

The backward propagation for the fully connected layer is the partial derivative for the 

softmax regression, which can be represented by

∂aj
∂zi

= ∂
∂zi

ezj

∑k = 1
T ezk

=
aj 1 − aj , if   j = i;

−ajai, if   j ≠ i .

(6)

Note that the above equation can be simplified in two cases, i.e., j = 1 and j ≠ i.

4) Edge-Based CNN Model: Based on our proposed CNN model, we tailor the model 

to operate in a distributed manner and deploy the model in edge computing nodes. The 

new model is denoted as the edge-based CNN model. Generally speaking, the proposed 

edge-based CNN model is essentially a data parallel distributed CNN model that generates 

a CNN graph and assigns it to edge nodes. By doing this, all the edge nodes utilize the 

same CNN graph and are fed with different data subsets. Then, the training parameters are 

uploaded to the parameter server (i.e., aggregation node) to update the model. Thus, the 
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edge-based CNN model can offload the data analysis process from the cloud to the edge so 

that the network traffic in the IIoT network can be reduced.

In this study, we utilize synchronous stochastic gradient descent to update the ‘weights’ and 

‘bias’ for all the workers as edge nodes. We set n as the number of workers and m as the 

number of samples trained on one worker. In the following, we show that the edge-based 

CNN model has the same convergence process as the cloud-based CNN model.

Here, we use the following equation to represent the mathematical calculation of the 

synchronous stochastic gradient descent, which executes the training on a single machine,

Ki + 1 = Ki − α
n ⋅ m ∑j = 1

n ⋅ m ∂Lossj
∂Ki

.

(7)

Here, data size is n ⋅ m and the learning rate is α . Also, we distribute the model to n nodes 

and assign dataset blocks of size m. Thus, we obtain

Ki + 1 = 1
n ∑w = 1

n Ki + 1, w,

(8)

= 1
n ∑w = 1

n Ki − α
m ∑

j = (w − 1)m + 1

wm ∂Lossj
∂Ki

,

(9)

= Ki − α
n ⋅ m ∑

j = 1

n ⋅ m ∂Lossj
∂Ki

.

(10)

C. Performance Analysis

We now analyze the performance of the cloud-based and edge-based models. In our case, we 

use the total processing time as the metric for system performance. The total processing time 

consists of two parts: (i) computation process time, and (ii) network transmission time. In 

the following, we will model and analyze these two parts individually.

1) System Latency: To measure network performance, we measure the system latency, 

which is defined as the total time of data transmission and deep learning processing for both 

models. Our analysis shows the edge-based models always has less delay than cloud-based 

model.

Cloud-Based Model:  For the cloud-based model, the system latency can be represented by
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Td = T c + T t1 + T r + T t2 + T p,

(11)

T t1 = Ds
R1

,

T t2 = n ⋅ Ds
R2

,

T p = f mn ⋅ Ds + cr .

We assume the collection time T c and receiving time T r are constant and can be represented 

by T c = cc and T r = cr. We also denote Ds as the amount of data that is collected by each 

sensor, and R1 as the data rate of the upload link from the sensor to the edge node. Finally, 

we denote m as the number of edge nodes and obtain the process time T p, and further denote 

f(x) as the time complexity of the deep learning algorithm. Recall that, Td, T c, T t1 , T r, T t2, and 

T p have been defined in Table I.

Edge-Based Model:  For the edge-based model, we offload the deep learning from the 

cloud to the edge. Thus, the edge nodes execute the deep learning algorithm instead of the 

cloud server. This can be formalized by

Td
e = T c + T t1 + T p

e + T t2
e + T r

e,

(12)

T p
e = cr + (m + 1)f n ⋅ Ds ,

T t2
e = De

R2
.

Similar to the cloud-based model that we have already defined, Td
e is the system delay. 

The differences are that T p
e represents the process time on edge nodes and T r

e represents the 

receiving time cost for the cloud server, which is a constant cr
e. In the edge-based model, T p

e

equals the sum of the receiving time cr and the training time. De represents the output data 

size for each edge node, and R2 is the data rate of the link from the edge node to the cloud. 

Thus, the transmission time T t2
e  is the data amount divided by data rate.

2) Network Overhead: In our case, the data transmission time can be represented by
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ΔTnet = T t2
e − T t2 .

(13)

We compare the network overhead of the two models by computing the difference ΔTnet

between them. Because the proposed CNN model reduces the input image size as we 

discussed in Section IV-B3, De is always smaller than nDs , and ΔTnet < 0, indicating that the 

edge-based model achieves better network performance than the cloud-based model.

3) Computation Overhead: In the edge-based model, the computation time T com
e  is

T com
e = T p

e + T r
e = cr + (m + 1)f n ⋅ Ds + cr

e,

(14)

In the cloud-based model, the computation time T com is

T com = T r + T p = cr + f mn ⋅ Ds + cr .

(15)

According to Equation (2) in Section IV-B3, the time complexity of our deep learning 

algorithm f(x) equals θ(n2). Then, we compare the system latency of two models by 

computing the difference ΔT  between these two models, which can be represented by

ΔT = T com
e − T com,

(16)

= (m + 1)f n ⋅ Ds − f mn ⋅ Ds + cr
e − cr ,

(17)

= (m + 1)n2Ds
2 − m2n2Ds

2 + cr
e − cr ,

(18)

= − m − 1
2

2
nDs

2 + 5
4 nDs

2 + cr
e − cr ,

(19)

= − nDs
2 m − 1

2
2

− 5
4 − cr

e − cr

nDs
2 .
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(20)

Thus, we have

∀m ∈ ℕ ∧ m > cr
e − cr

n2Ds
2

+ 5
4 + 1

2 :

(21)

(m + 1)n2Ds
2 − m2n2Ds

2 − cr
e − cr < 0.

This indicates that when m > cr
e − cr

n2D2 + 5
4 + 1

2 , the edge-based model always has better 

performance than the cloud-based model.

V. IMPLEMENTATION AND EXPERIMENTAL DESIGN

In this section, we introduce the implementation and experiments to validate our approach in 

detail. In the following, we first define the scenario, and setup the testbed on Google Cloud 

Instances [34] based on the scenario. Then, we design a set of experiments to evaluate the 

performance of the proposed model. Finally, we describe several evaluation metrics of the 

experiments.

A. Scenario

According to Section IV, we now define one representative scenario in IIoT. In a smart 

factory, ‘30’ different kinds of components are produced by different production lines and 

the system is required to classify the different components in the assembly center so that 

the product can be assembled properly. To do this, the cameras are deployed in different 

production lines, taking the images of components and sending the images to gateways. We 

denote those gateways as edge nodes. Then, edge nodes send all the images to the cloud 

for further analysis in order to prepare the classification. In this case, sending all the images 

to the cloud could result in significant network traffic congestion by consuming substantial 

network resources. Furthermore, uploading all the data to the cloud increases the total data 

processing time significantly because of the transmission time cost.

In our scenario, we focus on offloading the data analysis process from cloud to edge 

nodes (i.e., gateways). We involve a total of ‘3’ edge nodes and each node receives 

images from ‘10’ different production lines. Specifically, components ‘1’ through ‘10’ are 

processed by Edge Node ‘1’, components ‘11’ through ‘20’ are processed by Edge Node 

‘2’, and components ‘21’ through ‘30’ are processed by Edge Node ‘3’. All edge nodes 

are connected by wired networks. After receiving the images from the production lines, the 

edge nodes begin with the data analysis process and upload only the analytical results to 

the cloud instead of the raw dataset. In our case, the training process of the CNN model is 

offloaded to the edge computing nodes and the edge nodes obtain the well-trained model 
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after training. Then, the nodes send the well-trained models to the cloud, and the cloud 

classifies the different components by using the well-trained models.

B. Testbed Settings

To implement the scenario and proposed edge-based CNN model, a suitable and high-

performance computing platform is important. Recall that the proposed model in Section 

IV-B requires an edge computing platform and high computation power for each computing 

node. Furthermore, to compare the training performance between cloud-based and edge-

based deep learning, the computation power should be flexible and adjustable. Based on the 

requirements, we utilize Google Cloud Instances [34] and configure a group of instances to 

form a hierarchical computing network.

Computing Node Configuration: We utilize five Google Cloud Instances as the 

computing nodes in our testbed. Three are defined as edge nodes and the others are defined 

as cloud servers, which are shown in Fig. 6. Meanwhile, according to the different roles of 

the computing nodes in distributed deep learning, we define one of the cloud servers as the 

parameter server and the other as the master node. The three edge nodes are worker nodes. 

All the instances are configured with 8 core Intel CPU, 32GB memory and each instance is 

running Ubuntu 18.04 Long Term Support (LTS) operating system. We selected TensorFlow 

Application Programming Interface (API) and Python to realize the proposed model. We 

installed Anaconda 3, which is a popular Python distribution for deep learning and data 

science on the Linux platform. The TensorFlow virtual running environment has built using 

TensorFlow 1.12, Keras 2.2.4, and Python 3.6. Finally, we deployed the Python code to the 

different nodes.

Network Configuration: As we discussed in Section IV-B, the workers in the distributed 

CNN model need to connect with the parameter server and the master node in order to 

exchange weights w and bias b. The IP address 10.132.0.1 is configured as the gateway. 

Then, we assign the computing nodes with IP addresses in the network segment to ensure all 

nodes are able to connect with the others. The instances in the Google cloud are organized 

by wired network, and we define the roles (parameter server and worker) of the different 

instances in the Python code and assign IP addresses accordingly.

Computation Power Estimation: Since the computation power is difficult to calculate 

and the performance depends on the hardware and software, to be fair, we utilize the 

proposed CNN model to estimate the computation power for several Google Cloud Instances 

with different hardware. In particular, we first set the instance with a 4 core CPU and 16GB 

memory at the beginning and execute the CNN model to obtain the running speed. After 

that, we update the CPU to 8 cores and to 32GB memory, and then increase the number 

of cores and memory size until reaching 32 cores and 128GB memory. Fig. 7 illustrates 

the results of computing speed for several Google Cloud Instances with various hardware 

configurations. The x-axis is the hardware configuration and the y-axis shows the number of 

training steps completed in one second. As we configure the edge-based testbed with three 

edge nodes (workers), to compare the performance between the edge-based architecture 

and cloud-based architecture, the total computation power should be the same for both 
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architectures. Based on our configuration for the edge-based testbed that has 8 CPU cores 

and 32GB memory, according to the estimation shown in Fig. 7, we select 32 core CPU and 

128GB memory for the cloud-based testbed.

C. Experimental Design

Following the testbed setup and configuration, we design experiments to evaluate our edge-

based CNN architecture. In the following, we introduce the design of experiments in detail. 

We first focus on the defined IIoT scenario, which utilizes the industrial components dataset 

for training and testing. We then optimize the edge-based CNN model and evaluate its 

performance.

1) Data Preparation: Based on the T-Less dataset that we described in Section IV-B and 

the designed testbed, we first compress the images to 128 × 128 pixels, in order to reduce 

the computation pressure on the computing nodes. Furthermore, since all the images have 

black backgrounds and the objects are located in the center of the image with no texture 

and color, we transform all the images from three-channel RGB to single-channel grayscale 

images. The preprocessing is able to significantly reduce the data size and the computation 

amount. Then, we randomly select 1000 images as the training dataset and 260 images as the 

testing dataset from each component. After identifying the training and testing datasets, we 

use the labels ‘1’ through ‘30’ to mark the different components. For the cloud-based model, 

we utilize all ‘30’ components as the training and testing datasets, while for the edge-based 

model, we divide the dataset into three parts: labels ‘1’ to ‘10’, labels ‘11’ to ‘20’, and labels 

‘21’ to ‘30’. We then use the different training and testing datasets to train the different edge 

computing nodes. Finally, the standardization input dataset ‘tfrecord’ files are generated by 

the Python program.

2) Deployed Models: We now present the deployed models. First, we implement the 

CNN model on a single Google Cloud Instance as the cloud-based CNN model. We set 

the instance with ‘3’ CPUs, where each CPU has ‘8’ cores and the total system memory 

is 128GB, the same computation power as the three edge workers in the edge-based CNN 

model described in Section V-B. We evaluate the performance of the cloud-based CNN 

model, which we utilize as a baseline for comparison. Then, we deploy the edge-based 

CNN model on the testbed and compare its performance with the baseline model. Second, 

we modify several mature CNN models, such as LeNet-5 [30] and VGG-16 [35], to run in 

a distributed manner, and deploy them in the testbed. We then compare the performance 

between our proposed CNN model and the existing CNN models.

D. Metrics

Based on the outlined scope and experimental design, we consider the following 

performance metrics to evaluate the proposed CNN model.

Training Loss: The training loss is one important metric for deep learning models. We 

select the softmax function to classify the image and the cross entropy loss function to 

evaluate the total loss. The softmax regression can be represented by P j = eaj

∑k = 1
T eak

, which 
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indicates the probability that the output belongs to the jtℎ classification. Here, T  indicates 

the number of the classifications, aj is the jtℎ element in the T × 1 vector, and in our scenario, 

T  is set to 10. Then, we obtain the cross entropy loss function: Loss = − ∑i = 1
T yi, In ai where 

yi represents the real value and ai represents the result from the softmax regression. In 

general, a smaller loss value indicates a better model.

Classification Accuracy: The classification accuracy is another important metric for 

evaluating deep learning models and represents the success rate of the classification. Higher 

classification accuracy means better performance of the model. In our evaluation, we select 

classification accuracy as the evaluation metric to measure the performance of the purposed 

CNN model.

Time Cost: Another important metric for the evaluation is the total time cost. Recall in our 

edge-based model, we define the total processing time Td
e = T c + T t1 + T p

e + T t2 + T r
e, and the 

time cost difference between cloud-based and edge-based models appears in both training 

time T p
′  and transmission time T t2. The training time represents the efficiency of the CNN 

model, while the transmission time represents the output size of the CNN model. Thus, both 

the training time and transmission time are key metrics to quantify the performance of the 

CNN model.

VI. EVALUATION RESULTS

We now detail the evaluation results of the experiments outlined in Section V. In the 

following, we first present the comparison of cross entropy loss and classification accuracy 

between the cloud-based and edge-based CNN models. We then present a comparison 

of results obtained from the proposed edge-based CNN model and several existing 

CNN models. Because of the program initializes ‘weights’ and ‘bias’ randomly in the 

experimentation. Thus, the experiment results may be different. To be fair regarding the 

experimental results, we run the program 10 times and obtain experimental results to draw 

the error bar with 95% confidence intervals. Finally, we show the training time consumption 

for different models.

A. Cloud-Based CNN Model vs. Edge-Based CNN Model

As we discussed in Section V-C, we deploy the proposed CNN model in both cloud-based 

and edge-based environments. For the fairness of comparison, the computation power of 

the two environments is the same. Fig. 8 illustrates the comparison of cross entropy loss 

between cloud-based and edge-based CNN models. In the experiments, we execute the 

edge-based CNN model 10 times and set the confidence interval. Because the initialization 

of the CNN model assigns weights and bias randomly in the Python code, the training 

results may differ upon each execution of the CNN model. The evaluation results show that 

the edge-based CNN model achieves larger loss values before 500 training steps, and then 

the loss of the two CNN models is approximately the same. The loss value in the 3000th 

step is 0.00135 for the cloud-based model and 0.00151 for the edge-based model. Thus, the 

two models have equivalent performance, the only difference is that the edge-based model 

achieves convergence at a slower speed prior to 500 training steps.
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Fig. 9 illustrates the classification accuracy for the two models, which we have divided into 

three parts: (i) training steps 0 to 500, (ii) training steps 500 to 2000, and (iii) training 

steps 2000 to 3000. In the first part, the cloud-based model achieves higher accuracy than 

the edge-based model. This is because the cloud-based model can utilize the complete and 

complex training dataset, rather than a limited subset of the data available to each edge 

node. Thus, the accuracy increases faster than the edge-based model. In the second part, the 

workers have trained enough datasets and uploaded the parameters to the server. Further, the 

different workers are fed by different subsets of the total dataset which is equivalent to data 

sampling, and it obtains better performance than the cloud-based model in this stage. During 

the steps 2000 to 3000, the two models show the same performance, matching the theoretical 

analysis in Section IV-B4.

B. Proposed CNN Model vs. Existing CNN Models

After the evaluation between cloud-based and edge-based models, we deploy several 

existing CNN models to the edge nodes and compare their performance. We utilize existing 

code implementations [36] and modify the code with TensorFlow distribution methods. 

Thus, all the existing CNN models are implemented in the distributed manner in order 

to make a fair comparison between the proposed CNN models. Fig. 10 illustrates the cross-

entropy loss for each CNN model. The losses for all the models have similar patterns. The 

losses decrease rapidly before the 500th step and are stable after the 500th step. The results 

illustrate that the proposed CNN model achieves the same loss performance compared with 

the existing CNN models. Furthermore, Fig. 11 illustrates the classification accuracy for all 

the CNN models. The performance of the proposed CNN and the VGG-16 models reach 

approximately 95% accuracy, while the LeNet-5 model reaches 89.6% accuracy. It clearly 

confirms that the proposed CNN model and the VGG-16 model have similar classification 

accuracy and their performance is better than the LeNet-5 model.

C. Training Time Consumption Comparison

We also compare the training times for different CNN models. Fig. 12 illustrates the time 

costs of four CNN models: the proposed edge-based model, the VGG-16 model [35], the 

LeNet5 model [30], and the cloud-based model from the training process. Here, the x-axis 

represents the different CNN models and the y-axis indicates the total time cost in minutes. 

Further, each model is executed 10 times and we utilize 95% confidence intervals. The 

evaluation results show that the training time cost for the cloud-based model is over 85 

minutes, while the edge-based model is less than 35 minutes, approximately 38% of the time 

cost for cloud-based model. Meanwhile, we obtain the time cost for the distributed LeNet5 

and VGG-16 models as well. From the figure, we observe that our model benefits from the 

parameter optimization on this specific dataset, as our proposed model achieves the smallest 

computation time in the convolutional layers to abstract the features, leading to the shortest 

computation time of all the schemes.

To summarize, our proposed edge-based CNN model can not only reduce the training 

time, but also maintain equivalent performance, compared to the existing CNN models. 

Furthermore, as discussed in Sections IV-C and IV-B, reducing the output feature size could 

improve the network performance. Thus, the proposed edge-based CNN model reduces both 
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network traffic overhead and CNN training time simultaneously, and our proposed CNN 

model improves the system performance for our IIoT scenario.

VII. DISCUSSION

In this study, we propose an edge-based CNN model which is deployed on edge nodes to 

offload the training process from the cloud to the edge, thereby avoiding the data exchanges 

between servers and IoT devices and reducing network traffic in IIoT. As possible extensions 

of our work, we consider possible future directions toward improving IIoT with respect 

to extending learning models, security concerns, and the codesign of control, networking, 

computing, and learning.

Learning Model Extension:

In this paper, we have validated that the proposed edge-based CNN model achieves 

better performance than existing CNN models on the particular T-Less dataset. However, 

the applicability and extensibility of the proposed model remains unexplored. Generally 

speaking, as the deep learning process is a black-box process, a deep learning model is 

generally configured and optimized only for the specific training dataset that it was trained 

on. When the training dataset changes, the system has to reconfigure, or retrain, the deep 

learning model to obtain accurate results. Thus, how to design a generalized learning model 

to handle different datasets and achieve accurate results remains a challenging problem. As 

ongoing research, we plan to extend our work to apply different types of datasets to our 

proposed model, and design a generic learning model to adopt multiple datasets.

As IIoT is a dynamic system, the system generates new data constantly over time. Thus, 

the CNN model needs to retrain to maintain model accuracy when the system receives new 

data. The training cost increases constantly, since the size of the training dataset increases 

constantly. To handle this, an online learning strategy should be considered. Online learning 

utilizes model updating instead of retraining to process the new data, which means the 

model only utilizes the new datasets to train the model instead of utilizing the entire dataset 

(including old and new data), which reduces the training time. Thus, it is possible to utilize 

the online learning strategy to optimize the proposed edge-based CNN model to adapt to 

the dynamic IIoT environment. Specifically, the parameter server maintains and manages 

the well-trained model. Also, it defines a suitable threshold for the classification accuracy. 

As the system changes dynamically, such as through the addition of new parameters or new 

productions in the system, the accuracy of the old model will certainly drop. When the 

accuracy drops below the threshold, the edge workers should update the edge-based model 

by training with the newly generated datasets. To do so, we can reduce the learning overhead 

and increase the flexibility of the deep learning model for the dynamics system.

IIoT Security:

The security of the IIoT system is important, how to leverage system identification, 

vulnerability analysis, and resilience operations to mitigate the network risk is one critical 

issue to be addressed [37], [38], [39], [40]. In particular, as mentioned above, the automation 

and intelligence of IIoT is based upon the efficacy of data analysis. Compromising the data 
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analysis causes the system to instigate improper control and obtain unexpected results. To 

this end, there are credible threats to the data analysis process. One possible mechanism 

is that an adversary could tamper with the labels of the datasets affect the training process 

and yield incorrect analysis results when the model is deployed [41]. Furthermore, the 

adversary could tamper with the parameters for the deep learning model, which also affects 

the training results [42]. Since the deep learning process is a black box process, it requires 

extensive experiments to determine the level of impact of different threats on IIoT by 

involving a set of metrics to conduct systematic risk assessment. Based on such experiments, 

how to design effective defensive techniques to protect the deep learning process remains 

another challenging issue, which is another research direction.

To mitigate the risks of attacks, we consider several possible solutions. First, it is critical to 

improve the security of machine learning algorithms and models. Indeed, existing research 

efforts have shown that adversarial learning can compromise most machine learning models, 

including CNNs, DNNs, and others [43], [44], [45]. Thus, strengthening the security of 

machine learning itself is a necessary goal. Second, because of the wide use of machine 

learning in IIoT, the security risks of machine learning inevitably affect the security of IIoT 

systems. Adversaries could launch attacks against machine learning algorithms deployed 

in IIoT systems so that the performance of IoT systems could be reduced or altered. As 

a typical distributed system, data in IIoT is collected by sensors in different locations and 

transmitted to servers for further analysis. We categorize the data collection process into 

three phases: data collection, transmission, and processing. In fact, adversaries could launch 

attacks against any or all phases (e.g., injecting false data in the data collection phase). 

Thus, an effective end-to-end defense solution must be designed to not only protect machine 

learning models and mechanisms, but also to protect the data in the collection, transmission, 

and storage processes. It is also necessary to develop recovery mechanisms to restore IIoT 

systems when they are under attack or compromised.

Co-design of Control, Networking, Computing, and Learning:

The control, networking, and data analysis are the key components of IIoT [1]. This is 

equally true for IIoT, which presents its own unique challenges and opportunities. Thus, how 

to leverage these three components in IIoT systems to optimize the existing industrial model 

is critical. The control system in an IIoT environment plays a crucial role in controlling 

and operating critical infrastructures, which not only requires the network system support to 

transmit the control signal, but also requires data analysis support to make correct decisions 

and increase the control accuracy. Indeed, designing the three sub-systems of control, 

communication, and data analysis independently creates problems. For instance, the control 

system may be operated manually by the manager/controller according to the data analysis 

results, which is a gap in the IIoT automation closed loop. Further, the network system takes 

the responsibility of transmitting the datasets and control signals, and the performance of the 

network system directly impacts the performance of every other system. Thus, it is necessary 

to co-design these subsystems to interoperate cohesively.

Nonetheless, many critical issues are still open at this stage. From the control point of view, 

how to manage and control various facilities is a challenging problem. First, recall that 
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IoT provides ubiquitous connections, and thus integration of control hardware and software 

is difficult. Also, the control system is time sensitive, and how to guarantee the control 

signal is timely and accurate is challenging. From the network point of view, the existing 

network protocols do not fit low-power IoT devices. Thus, how to integrate new network 

technologies such as 5G [46], [47], machine-to-machine (M2M) communications [48], [49], 

and SDN [50] with IoT remains an open issue. Another challenge is network deployment, 

which includes identification, network structure, consideration for densification, distribution, 

and mobility. Finally, how to improve the efficiency of the data analysis and how to reduce 

the computation requirements of the analysis process are critical issues.

In an IIoT system, edge computing, as a new distributed computing paradigm, can offload 

computation tasks from computing centers to the network edge, so that the latency of 

transmitting data collected from sensors to data analysis components can be reduced, as 

edge nodes are much closer to sensors. In the same way, decisions can be quickly delivered 

from edge nodes to actuators. To make accurate and rapid decisions, machine learning can 

be deployed at edge nodes. Nonetheless, edge nodes have limited computation resources, 

it is necessary to design cost-effective machine learning schemes that can support edge 

computing-based data analytics to aid decisionmaking in IIoT systems. While machine 

learning has achieved great success in a number of applications, such as image/video 

recognition, natural language process, and others, the design of machine learning techniques 

that can deal with the exceptional requirements of IIoT systems in terms of safety, accuracy, 

and real-time response must be realized.

VIII. FINAL REMARKS

In this paper, we formalized the problem space for IIoT in network, computation, and 

structure, and focused on the offloading of the deep learning from cloud servers to edge 

nodes in order to avoid the massive amount of data exchanged between servers and IoT 

devices. Based on our problem formalization, we proposed an edge-based CNN model, 

which moves the CNN model used to classify the manufacturing components in IIoT, from 

the cloud servers to the edge nodes. To deploy the proposed CNN model to the edge nodes, 

we optimized the parameters of the CNN model to reduce the training time and computation 

time of the model. Based on the system model, we analyzed the performance between the 

cloud-based CNN model and our proposed edge-based model. To evaluate the proposed 

CNN model, we designed a comprehensive simulation based on the Google Cloud Instance. 

We also created an edge computing testbed on Google Cloud and deployed the proposed 

model to the testbed. Extensive experimental results indicate that our proposed edge-based 

CNN model is capable of not only offloading the computation to avoid massive and costly 

data exchanges between cloud servers and IoT devices, but also reducing the training time 

while obtaining the similar classification accuracy comparing to several baseline schemes.
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Fig. 1. 
The Problem Space of the IIoT
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Fig. 2. 
Examples of the T-Less Dataset
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Fig. 3. 
Test Accuracy for Different Number of CNN Layers
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Fig. 4. 
Training Speed for Different Number of CNN Layers
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Fig. 5. 
Structure of CNN Model
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Fig. 6. 
Testbed Structure

Liang et al. Page 30

IEEE Internet Things J. Author manuscript; available in PMC 2024 March 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Fig. 7. 
Computation Power Estimation, with 95% confidence intervals shown
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Fig. 8. 
Loss Comparison Between Cloud-Based and Edge-Based Model, with 95% confidence 

intervals shown
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Fig. 9. 
Accuracy Comparison Between Cloud-Based and Edge-Based Model, with 95% confidence 

intervals shown
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Fig. 10. 
Loss Comparison for Different CNN Models, with 95% confidence intervals shown
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Fig. 11. 
Accuracy Comparison for Different CNN Models, with 95% confidence intervals shown
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Fig. 12. 
Training Time for Different CNN Models, with 95% confidence intervals shown
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TABLE I

NOTATIONS

Symbols Descriptions

T Computation time for CNN model

c Number of image channels

m Number of convolutional filters

ℂ Results from prior convolutional layer

I, K Input of CNN model and convolution kernel

P Pooling result

z, w, b Forward propagation result, weight, and bias

δn − 1 Backward propagation result for layer n − 1
Lossj The loss value after layer j

α Learning rate

Td System delay for cloud-based model

T c Data collection time

T t1 Transmission time (sensors to edge nodes)

T r Data receiving time for edge nodes

T t2 Transmission time (edge nodes to servers)

T p Data analysis time for cloud-based model

Ds Data size collected by each sensor

De Data size received by each edge node

Td
e System delay for edge-based model

T p
e Data analytical time for edge-based model

T r
e Data receiving time for the server
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TABLE II

LEARNING RATE IDENTIFICATION

Learning Rate Training Steps Training Loss

0.05 15 NaN

0.01 107 NaN

0.005 1500 0.086

0.004 1500 0.083

0.003 1500 0.081

0.002 1500 0.073

0.001 1500 0.068
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