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Abstract

Complex living systems are thought to exist at the “edge of chaos” separating the ordered 

dynamics of robust function from the disordered dynamics of rapid environmental adaptation. 

Here, a deeper inspection of 72 experimentally supported discrete dynamical models of cell 

processes reveals previously unobserved order on long time scales, suggesting greater rigidity in 

these systems than was previously conjectured. We find that propagation of internal perturbations 

is transient in most cases, and that even when large perturbation cascades persist, their phenotypic 

effects are often minimal. Moreover, we find evidence that stochasticity and desynchronization 

can lead to increased recovery from regulatory perturbation cascades. Our analysis relies on new 

measures that quantify the tendency of perturbations to spread through a discrete dynamical 

system. Computing these measures was not feasible using current methodology; thus, we 

developed a multipurpose CUDA-based simulation tool, which we have made available as the 

open-source Python library CUBEWALKERS. Based on novel measures and simulations, our results 

suggest that—contrary to current theory—cell processes are ordered and far from the edge of 

chaos.

I. INTRODUCTION

“The edge of chaos,” a term coined by Packard in 1988 [1], refers to the tendency of 

adaptive systems to evolve toward a dynamical regime that lies between order and disorder. 

In systems biology, this is often referred to as the criticality hypothesis [2], and it is closely 
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related to work by Kauffman [3,4] and Derrida [5,6], who demonstrated that simple tunable 

models of gene regulation exhibit an order-to-chaos phase transition. Near this transition, 

it is conjectured, living systems optimally balance the rigidity required to function in a 

noisy environment with the flexibility required to undergo developmental, metabolic, and 

evolutionary processes that depend on cellular context. Dynamically, the boundary between 

order and disorder is often understood through the lens of trajectory separation; here, we 

seek to understand it through the lens of phenotypic fragility and its inverse counterpart, 

robustness.

The fragility of a cellular phenotype describes how easily it transitions to a different 

phenotype, and determines, for example, a cell’s ability to differentiate, its susceptibility to 

oncogenesis, and the fidelity of its signal processing. This has been measured experimentally 

by genetically or pharmacologically perturbing genes and measuring the impact on cellular 

phenotypes [7–9]. In the context of dynamical models of biomolecular networks governing 

cell processes, the traditional approach to understanding phenotypic fragility is inspired by 

the analysis of random Boolean networks (RBNs), and it considers the propagation of a 

large, temporary disruption to an individual component of the system (e.g., the depletion of 

a protein) [4]. In other words, an initial perturbation, on average, decays to extinction in the 

long-term dynamics of ordered (robust) systems, but it grows and spreads globally in the 

disordered (fragile) case.

In RBNs, the average short-term propagation of initial perturbations, as measured by the 

Derrida coefficient, is sufficient to determine the average long-term spreading behavior 

[5,6]. The Derrida coefficient measures one aspect of a defining feature of chaos: extreme 

dependence on initial conditions. It is closely related to the sensitivity of a Boolean network 

[10], and its logarithm can be interpreted as a discrete analog of the Lyapunov exponent 

[11]. For infinite-size Kauffman RBNs there is a rigorous connection between the Derrida 

coefficient and the long-term trajectory separation, which serves as an order parameter 

[11]. The Derrida coefficient thus indicates the critical boundary between the ordered and 

disordered dynamical regimes in RBNs, which occurs when its value is 1 [10].

Nonrandom, experimentally supported Boolean networks are popular tools for modeling 

biomolecular functional modules (regulatory mechanisms and pathways governing specific 

cell processes) [12,13]. As more of these models are constructed, one can ask whether 

an ensemble of such models exhibits properties similar to those of RBNs. In fact, 

many do have Derrida coefficients near 1 [14–16]. This observation lends support to the 

criticality hypothesis, but some caution is required; in the context of finite (and especially 

nonrandom) Boolean networks, the terms “order” and “chaos” are somewhat ill-defined. 

Unfortunately, there is no universally agreed-upon definition for these terms that is fully 

agnostic to the modeling framework (e.g., that applies equally to deterministic ODEs 

and to stochastically updated Boolean networks). Traditionally, the Derrida coefficient 

has been used to distinguish the ordered and chaotic regimes in the context of both 

thermodynamic RBNs and experimentally supported finite Boolean networks [5,6,10,14,17–

19]. Alas, the connection between short-term and long-term sensitivity to initial conditions 

in thermodynamic RBNs does not necessarily generalize to finite systems or to ensembles 

of nonrandom systems. Thus, one must assess the Derrida coefficient’s ability to describe 
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whether a finite, nonrandom (and possibly externally driven or stochastic) system exhibits 

characteristics typical of chaotic systems. Chief among these characteristics is sensitivity 

to initial conditions on long time scales. With this in mind, we consider that a finite 

nonrandom Boolean network is more ordered if its long-term behavior is less sensitive to 

initial conditions, and more chaotic or disordered if a perturbation to initial states shows 

long-term growth on average.

In this work, we challenge the assertion that existing nonrandom Boolean models cluster 

on the boundary between order and disorder by using biologically grounded measures 

of phenotypic fragility. Our analysis of these models reveals highly ordered perturbation 

responses that are obfuscated in the usual approach based on the Derrida coefficient and 

trajectory separation. We show that the criticality hypothesis is not valid in a battery of 

experimentally supported models of biomolecular networks, which represent the state-of-

the-art in causal modeling in systems biology (see below). Because these networks model 

subsystems of whole organisms studied in isolation, our results suggest that for the criticality 

hypothesis to be true, criticality of living systems must arise as a mesoscale phenomenon, 

through the coupling of (ordered) functional modules.

Our testbed for this study is a curated collection of 72 experimentally supported, peer-

reviewed Boolean network models of biomolecular functional modules found in the Cell 

Collective database [13], which represents the independent efforts of dozens of research 

groups. In all of these models, each included regulatory interaction is tagged with an 

experimental justification from the systems biology literature. Each node in these Boolean 

networks corresponds to a specific biomolecular entity (e.g., gene, protein, or cellular 

subprocess). These nodes each have two possible states at any given time step, which 

represent the activity or inactivity of the corresponding entity (e.g., transcription of a gene, 

phosphorylation of a protein, or initiation of a cellular process). The states of the nodes are 

governed by Boolean update functions, which convert the states of a node’s regulators into 

a binary output. Time is usually modeled as an implicit variable in these systems, and there 

are various methods for scheduling the update of variables. Though the steady states of the 

network are independent of update scheme, the oscillatory behavior of the system is not 

[20–22].

Indeed, the update scheme has a dramatic impact on the long-term dynamics of random 

networks along the order-to-chaos critical boundary [23–25]. In nonrandom models, 

however, rich dynamical behaviors can persist across update schemes, as illustrated in [26], 

though to our knowledge this has not previously been studied systematically. By thoroughly 

examining the impact of the update scheme on experimentally supported models, we 

characterize their response to perturbations in the timing and synchronization of regulatory 

events to explore population-level order and robustness in these systems.

In this work, we consider two extreme (and quite common) schemes: synchronous update 

and asynchronous update. These schemes have various tradeoffs, and either can be valid or 

invalid depending on modeling context. In the synchronous update, every node updates 

its state every time step. In other words, the state of each node at time t + 1 is 

determined by the state of its regulators at time t. This scheme produces fully deterministic 

Park et al. Page 3

PRX Life. Author manuscript; available in PMC 2024 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dynamics. Due to various analytical and computational conveniences, synchronous update is 

a popular scheme for very large random models. Synchronous update treats all biomolecular 

events (e.g., gene transcription) as simultaneous, which can sometimes lead to spurious 

oscillations. A common approach to removing these oscillations is to consider asynchronous 

update schemes, though this risks destroying meaningful oscillations as well. Here, we 

consider a stochastic, asynchronous update scheme in which a single variable is randomly 

selected (uniformly) at each time step to be updated. This random selection introduces 

stochasticity into the dynamics and destabilizes delay-sensitive oscillations [21,22]. Thus, 

the asynchronous update can be viewed as a kind of timing perturbation introduced to the 

synchronous update.

We also take special care in handling the effect of source nodes, which usually codify 

a cellular context or signals external to the model. Though such nodes are common in 

the modeling literature, we demonstrate that they are statistically rare in random models. 

Moreover, we show that source nodes have a large impact on various measures of order in 

Boolean networks. From a dynamical perspective, a “temporary” perturbation to a source 

node is unique in that it will always become permanent; this stands in contrast to the 

behavior of constant nodes, which recover immediately after perturbation and are common 

in both random and experimentally derived models. In many biological applications, a 

perturbation to a source node is fundamentally different from a perturbation within the 

core of the network because source nodes often summarize the collective activity of many 

external components.

We consider various measures of short-term and long-term perturbation spread in both 

synchronous and asynchronous update schemes and in the context of fixed or perturbable 

source nodes using simulations. Previous work has focused on the use of short-term 

perturbation dynamics and statistical arguments as an avenue to estimate long-term 

dynamics in large networks because of the immense computational burden of ensuring 

that long-term perturbation measurements converge [5,17,27,28]. To meet this challenge 

and directly measure long-term perturbation growth in nonrandom models, we developed 

CUBEWALKERS, a highly parallel GPU-based simulation toolkit, allowing us to quickly 

simulate many thousands of trajectories in a network simultaneously. Our software 

innovations, combined with the dramatic improvements in computational power over the 

past several decades, enable high-fidelity measurements of long-term perturbation dynamics 

in real-world Boolean networks with hundreds of nodes or more. These measurements 

are fundamental to demonstrating the true dynamical regime of experimentally supported 

biomolecular networks.

II. METHODS

A. Boolean network dynamics at the individual and population level

Boolean networks describe the regulatory dynamics of each node X by specifying its value 

following update, X⋆, according to a Boolean update function FX : {0, 1}N {0, 1}. In this 

work, we apply a common abuse of notation in which the form of FX is expressed via X⋆, 

because the subscript notation becomes cumbersome with long, biologically informative 
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variable names. We define two special types of node that have unique effects on the 

dynamics: constant nodes, which have update functions of the form X⋆ = 0 or X⋆ = 1, 

and source nodes, which have update functions of the form X⋆ = X. More generally, update 

functions utilize the logical operations “AND,” “OR,” and “NOT,” which we denote by 

∧ , ∨, and ¬, respectively. Each Boolean system with N nodes induces a state transition 

graph whose 2N nodes represent all possible system states and whose directed edges indicate 

that the parent state can be updated in one time step to attain the child (successor) state. 

The attractors of a Boolean system are the terminal strongly connected components of the 

state transition graph (i.e., they have no edges that exit the component). Point attractors (also 

called steady states) consist of a single state, and oscillatory attractors (also called complex 

attractors) contain more than one state. The simplest type of oscillatory attractor is a limit 

cycle, in which the system revisits states in a deterministic order. The states that can reach an 

attractor via edges or paths in the state transition graph make up the basin of attraction of the 

attractor. In each network, the set of possible attractors can strongly depend on the update 

scheme used. Indeed, one of the most fundamental biomolecular circuit motifs, namely 

mutual inhibition, exhibits such behavior. Consider two mutually inhibiting genes, A and B, 

described by the simple Boolean network with update functions,

A⋆ = ¬B, B⋆ = ¬A .

(1)

In the asynchronous update scheme, there are only two attractors: the steady states 

(A, B) = (1,0) and (A, B) = (0, 1). In the synchronous update scheme, however, there is an 

additional oscillatory attractor that cycles between the states (A, B) = (0, 0) and (A, B) = (1, 1). 
Thus, the behavior of an individual instance of a model (i.e., a single cell) is highly sensitive 

to the timing of the node update. This example highlights, however, that the average 
behavior of many instances (i.e., the population-level behavior) can be robust to update 

timing even when individual instances (cells) are not. To see this, consider the average 

activation value of gene A (by symmetry, the same analysis applies identically to gene B). 

Assuming uniformly sampled initial conditions and allowing enough time for convergence 

into an attractor, we observe that in the asynchronous scheme, an individual cell has a 

50% probability of being in the (A, B) = (1, 0) steady state and a 50% probability of being 

in the (A, B) = (0, 1) steady state; thus, overall, the average value of A in the ensemble is 

0.5. In the case of a synchronous update, the system has a 25% probability of being in 

either steady state, and 50% probability of being in the oscillatory attractor. The average 

value of A (and also of B) in the oscillatory attractor, however, is 0.5, and thus, overall, the 

average value of A in the synchronous update is also 0.5, just as it is in the asynchronous 

case. This behavior need not hold in general. To quantify the extent to which this behavior 

occurs in the test models considered, we compare the converged average node values under 

synchronous and asynchronous update schemes, and we compute the root-mean-squared 

(RMS) difference between the synchronous and asynchronous average node values across all 

nodes of a model, which we discuss in detail in Sec. III A 2.
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B. Models considered

Throughout this work, we consider 72 models from the Cell Collective [13] and their 

dynamical properties. In some cases, nodes whose update functions are constants in the 

originally published version of a model have been reinterpreted as source nodes in the 

Cell Collective, or multiple source nodes have been merged. In such cases, we defer to 

the original publication; in most cases, this results in replacing the update functions for 

several source nodes with constant-value update functions. In addition, we correct a few 

typographical errors in the models, remove isolated nodes, and enforce constraints that were 

not previously enforced when multiple nodes encode more than two values of a single 

entity (e.g., low, medium, or high concentration of a protein). In all, 18 models are affected 

in some way. We use these modified versions of the models here in an attempt to more 

accurately capture the biology represented in these models. Overall, we observe very little 

difference in the distributions of the measures considered when compared to the unaltered 

Cell Collective ensemble, though for some measures, the differences in individual models 

can be large for measures that emphasize the role of source nodes (comparisons provided in 

Fig. 13 in Appendix F).

We also highlight several models with particularly interesting dynamical features. 

Throughout this work, these highlighted models are indicated by colored symbols. The 

shape of the symbols in various plots (whether highlighted or not) describes the biological 

category of the model whose parameters are plotted. This correspondence is summarized in 

Fig. 1.

C. Simulation and analysis software

To compute various dynamical measures, including those introduced here, we developed the 

CUBEWALKERS Python library, a CUDA-based Boolean network simulator. It supports various 

update schemes (including user-specified schemes), node and edge control interventions, 

and probabilistic update rules. To simulate Boolean networks, CUBEWALKERS parses Boolean 

update functions given either in algebraic form or as lookup tables. Parsed rules are 

compiled into a CUDA kernel via the Python interface CUPY [29]. During simulation, 

CUBEWALKERS executes this kernel on an array of state vectors, with each state vector 

representing the values of the nodes in a single network instance, or “walker.” Updates for 

the nodes of each walker are computed in parallel on the GPU for each time step according 

to the chosen update scheme. We obtain a speed-up of up to approximately 11 000 times 

compared to previous tools [30,31] (see Appendix A for benchmarks).

In most experiments, we use at least W = 2500 independent simulations (walkers) to 

obtain an expected standard deviation in the average node values of less than 0.01. This 

convergence is remarkable because it reveals that average node values can be accurately 

calculated in large network models using a relatively small sample size. In a network with 

50 nodes, for example, a sample of W = 2500 initial states represents just over two trillionths 

of the state space, but is sufficient to calculate average node values at a given time step 

to within a few percent. Other measures we compute require more walkers to achieve the 

same desired accuracy; in the most extreme case, we used W = 800000 walkers. We chose 

the number of time steps to simulate such that the largest per-node disagreement across 
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four equal averaging subintervals was acceptably low for all Cell Collective models (below 

0.0066 in the worst case, and significantly lower in most cases). In most cases, 55N + 6000
time steps were sufficient, but three Cell Collective models required additional simulation 

time. Further details and numerical tests supporting the simulation parameters used are 

provided in Appendix B.

D. Dynamical measures

The growth of small perturbations in Boolean networks is widely viewed as the hallmark 

of chaos in these systems [27]. In random models, this is often studied using the Derrida 

map, which relates the size of a perturbation at time t0 to the size of a perturbation at 

time t0 + 1. The Derrida map can be computed by sampling many pairs of initial states that 

differ in ℎ variable values and evolving each pair of states using one synchronous time step. 

The average separation (Hamming distance) of the pairs becomes the numerical estimate 

for the value of the Derrida map at h [5,6]. In principle, the states reached after one time 

step might not be distributed uniformly in the state space, so the Derrida map does not 

necessarily predict whether small perturbations grow or shrink in the long term. In random 

Boolean networks in the thermodynamic limit (N ∞), however, whether the fixed point of 

the Derrida map is a finite fraction of the network is determined by the value of the map 

at ℎ = 1. This value is called the Derrida coefficient and is equal to the average sensitivity 

of the network [10,14]. Perturbations tend to spread to a finite fraction of the network 

only if the Derrida coefficient is greater than 1; this corresponds to the chaotic regime. 

When the Derrida coefficient is less than 1, the system is in the ordered regime in which 

perturbations tend to die out. A phase transition occurs on the critical boundary where the 

Derrida coefficient is equal to 1. Dynamically, the Derrida coefficient can be defined as

δ = 1
N ∑

i = 0

N − 1
‖X(tf) − X(¬i)(tf)‖1

X ∈ T

.

(2)

In this formula, X is a time-dependent vector of node states, T is the set of all trajectories 

in the system, and ⟨ ⋅ ⟩X ∈ T denotes the average taken over all possible trajectories, where 

the initial conditions and update schedules are sampled uniformly. The trajectory X(¬i)(t)
is the trajectory that initially differs from X(t) only in position i and is updated in the 

same way as X(t) at every time step (this is important in stochastic update schemes). 

The comparison time tf is chosen such that N node updates are performed, and thus is 

equal to 1 in the synchronous update and to N in the asynchronous update. The summand 

∥ X tf − X(¬i) tf ∥1 is the L1-norm (absolute difference summed, or, for Boolean inputs, the 

Hamming distance) between X(¬i) tf  and X tf  at time tf.

In addition to the Derrida coefficient, δ, we consider three other measures to describe the 

response of systems to small (single-node) perturbations: final (average) Hamming distance 

ℎ∞, quasicoherence q, and fragility φ. We illustrate the intuitive meaning of these measures 

in the case of a single-node oscillator A⋆ = ¬A in Fig. 2.
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The final Hamming distance ℎ∞ is a direct measure of the long-term separation between 

trajectories that initially differ in a single node’s value. It is defined as

ℎ∞ = 1
N ∑

i = 0

N − 1
〈‖X(t) − X(¬i)(t)‖1 t ∞

X ∈ T

.

(3)

Here, ⟨ ⋅ ⟩t ∞ indicates the average taken from any finite initial time t = t0 to t = ∞; note that 

the value of the time average does not depend on the value of t0. Intuitively, ℎ∞ measures 

the asymptotic separation (on average) between all trajectory pairs that initially differ in only 

one node value. Note that the Hamming distance ∥ X(t) − X(¬i)(t) ∥1 does not necessarily 

converge for large t (it may oscillate), necessitating the time average calculation.

The ℎ∞ measure is sensitive to phase shifts; if X(t) and X(¬i)(t) converge to the same limit 

cycle, for example, but are offset, ∥ X(t) − X(¬i)(t) ∥1 can be nonzero for all time even though 

the trajectories have the same long-term behavior. To distinguish this case from the case 

when X(t) and X(¬i)(t) converge to different attractors, we propose two additional measures.

The first of these is the fragility φ, which we define as

φ = 1
N ∑

i = 0

N − 1
‖〈X(t)〉t ∞ − 〈X(¬i)(t)〉t ∞‖1

X ∈ T

.

(4)

It is expressed in the same way as ℎ∞, but the time averaging occurs inside the L1-norm, 

rather than outside it. This removes sensitivity to phase shift, and it can be interpreted 

as a measure of separation in average values, rather than as an average separation. From 

a biological standpoint, this is desirable when a pair of trajectories with a high average 

separation but the same average behavior (as happens if the trajectories are time-shifted 

but otherwise identical) should be interpreted as phenotypically equivalent. Such trajectories 

may represent cells that are at different points of otherwise identical cell cycles. As a 

simple example, consider the system A⋆ = ¬A; B⋆ = B. Here, there are only two attractors 

in either update scheme: A will always oscillate, and B can be fixed in either value. If B
is perturbed, the original and perturbed trajectories will always agree in A and differ in B, 

while if A is perturbed, the opposite is true and the system simplifies to the example of Fig. 

2. This conclusion holds in both synchronous and asynchronous update schemes because, 

in the latter, we constrain the selection of the update node to always be the same in both 

trajectories. Thus, ℎ∞ = 1 for this system in both update schemes. In the case when A is 

perturbed, however, the average value of A does not differ between the two trajectories, 

and thus, as in the case of Fig. 2, this perturbation contributes 0 to φ. As perturbations to 

B do alter the average value of B, they contribute 1 to φ and we therefore find φ = 0.5 in 

this system overall. This indicates that half of the long-term trajectory separation due to 
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single-node perturbations stems from time-lag effects, which are not necessarily biologically 

relevant. Some caution is required in this interpretation, however, as it is possible that two 

distinct attractors may have the same average behavior at the node level. We note that such 

differences would likely be extremely difficult to distinguish in a laboratory setting, and we 

do not observe any such attractor pairs in the networks studied here.

Another measure that can distinguish phenotypic differences from phase shifts is the 

quasicoherence q, which is closely related to the coherence measure introduced in [32]. 

Coherence is defined as the fraction of X(t), X(¬i)(t)  pairs that converge to the same 

attractor; in [32], coherence was defined only for synchronous update, but the extension to 

the asynchronous case is trivial. The primary barrier to adopting coherence as a measure 

is that attractor identification can be computationally expensive, sometimes prohibitively 

so. We therefore define and adopt quasicoherence as an alternative, which is defined 

as the fraction of X(t), X(¬i)(t)  pairs that converge to the same quasiattractor. Slightly 

modifying the convention of [33], we define a quasiattractor to be a pattern of fixed-

node values and oscillating nodes exhibited by an attractor. Two (or more) attractors 

may correspond to the same quasiattractor if they share the same set of active nodes, 

the same set of inactive nodes, and the same set of oscillating nodes. As a simple 

example, consider A⋆ = B; B⋆ = C; C⋆ = A. In the synchronous update, this system has 

four attractors: {000}, {111}, {001,010,100}, and {110,101,011}. In contrast, there are only 

three quasiattractors: 000, 111, and ⋆ ⋆ ⋆, where ⋆ denotes that the node oscillates in all 

attractors that correspond to the quasiattractor. The quasicoherence can be written as

q = 1
N ∑

i = 0

N − 1
Q(〈X(t)〉t ∞, 〈X(¬i)(t)〉t ∞)

X ∈ T

,

(5)

where Q : [0, 1]N × [0, 1]N {0, 1} is defined such that Q(X, Y ) is 1 if for all indices 

i, it holds that Xi = 1 Y i = 1 and Xi = 0 Y i = 0; otherwise Q(X, Y ) is zero. The 

quasicoherence is 1 if all perturbed trajectories converge to the same quasiattractor as their 

unperturbed counterparts, and it is 0 if an initial perturbation to a single node always results 

in a different quasiattractor.

The quasicoherence, unlike the final Hamming distance and fragility, does not distinguish 

between the case when trajectories converge to very similar (but not equal) steady states 

from the case when they converge to very different steady states. Because the time averaging 

is conducted before comparison, it is not sensitive to phase shifts either. The quasicoherence 

is useful when long-term changes in the expression of even a small number of genes are 

phenotypically important. The fragility and quasicoherence are related to each other in that 

the fragility can be interpreted as a rescaled “fuzzy” version of the quasicoherence, as 

explained in Appendix C.

We compute these dynamical measures ℎ∞, q, and φ  numerically for each network in the 

Cell Collective using a simulation-based approach. First, we sample 2500N initial states, 
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produce a copy of each, and perturb each copy in exactly one node (for a total of 5000N
initial states). Each initial state is evolved forward in time for T = T b + Tw time steps, and the 

various time averages are taken over the last Tw time steps, as described in Appendix B. This 

is done in both the synchronous and asynchronous update schemes. The Derrida coefficient 

is computed using one synchronous time step or N asynchronous time steps using 100 000 

initial samples (for a total of 200 000 initial states when considering the perturbation).

In addition, to probe the effect of source nodes (nodes whose update functions are of 

the form A⋆ = A) in Boolean networks, we consider “fixed source” versions of these five 

measures in which the perturbed nodes may not be source nodes and in which all instances 

of N in the formulas are replaced by the number of nodes that are not source nodes. 

Importantly, constant nodes remain perturbable in these cases, as do nodes that become fixed 

as a direct consequence of the source node values. All other parameters are unchanged.

Taken together, this results in four variations of each measure: two possible choices of 

update, indicated by a subscript s for synchronous and a for asynchronous, and two possible 

choices for how to treat source nodes, indicated by subscript f or p for fixed source nodes 

or perturbable source nodes, respectively. For example, φs, f indicates the fragility computed 

using the synchronous update and not allowing for source nodes to be perturbed, while 

φa, p indicates the fragility computed using the asynchronous update and allowing source 

nodes to be perturbed. In total, we consider 16 measures of node perturbation response. 

The four variants of the Derrida coefficient δ measure short-term perturbation response. The 

four variants of the final Hamming distance ℎ∞ measure long-term perturbation response 

in a manner that is sensitive to phase shifts. The four variants of the fragility φ measure 

long-term perturbation response in a manner that is insensitive to phase shifts. Finally, the 

four variants of the quasicoherence q measure the probability that a node perturbation does 

not induce a long-term change in quasiattractor.

III. RESULTS

A. The effects of synchronization perturbation

We first consider the effects of perturbations to the synchrony of biomolecular events. By 

comparing network dynamics under synchronous and asynchronous update, we consider 

an extreme version of this timing perturbation in which no two node states can update 

simultaneously. We study this at the level of single networks (akin to studying individual 

cells) and at the level of network populations (akin to studying populations of cells). At 

the level of individual networks, we examine the effect of perturbations on the range of 

possible long-term behaviors, whereby a reduction of this range corresponds to increased 

order. At the population level, a synchronously updated network is timing robust if it retains 

the average population-level behavior even when the synchrony of the biomolecular events 

it encodes is disrupted. In other words, a Boolean network exhibits a robust and ordered 

response to timing perturbations at the population level if its average node values do not 

depend (much) on the choice of update scheme.
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1. Synchrony perturbation confers order by destroying attractors—The 

attractor repertoire of Boolean models (and specifically, the oscillatory attractors) depends 

on the update scheme [20,22]. In general, there are more attractors under synchronous 

update than under asynchronous update. As synchronous update is deterministic, its 

oscillatory attractors are always limit cycles. Attractors that only exist for synchronous 

update rely on the exact timing of updates (such that multiple nodes change state at the 

same time), and they disappear in the case of variations of the update timing, causing the 

system to have more orderly behavior [21]. We identify several models in the Cell Collective 

with this property and characterize the mechanisms underlying it by studying simplified 

models that are obtained by percolating the fixed value of source nodes, on eliminating 

a self-edge-free node and plugging in its update function into the function of its targets 

[34,35], and on merging nodes with similar regulatory roles.

In Appendix D, we discuss several models in detail, with an emphasis on the biological 

implications of their update scheme dependence or robustness. Three update-scheme 

dependent models relevant to this section are the Cell Cycle Transcription by Coupled 

CDK and Network Oscillators ( ) [36], Aurora Kinase A in Neuroblastoma ( ) [37], and 

Regulation of the L-arabinose operon in Escherichia coli ( ) [38] models. These have 

attractors under synchronous update that vanish under asynchronous update. In the first 

two models, these attractors are biologically meaningful and arise from a delay-dependent 

interaction between a positive and negative feedback loop. In the third model, the additional 

attractors under synchronous update are biologically spurious [38] and arise from a positive 

feedback loop in a manner similar to the example of Eq. (1). These models illustrate that 

the biological interpretation of a Boolean network can depend strongly on update scheme. 

Timing perturbations can destabilize oscillations that depend on specific delays between 

events by making them stochastic. This can lead to a decrease in the range of behaviors 

available to individual cells, ultimately resulting in dynamics that are more constrained and 

orderly.

2. Timing-robust order emerges in cell populations—Though the attractor 

repertoire of models can be sensitive to the update scheme at the level of individual cells, 

we observe that robustness to timing perturbations typically emerges at the cell population 

level. This suggests that populations of cells exhibit order that is not necessarily observable 

at the individual level. In almost all cases, the difference between the converged average 

node values in the synchronous and asynchronous updates is extremely small (see Fig. 3). 

Notable exceptions include the Colitis-associated Colon Cancer ( ), Aurora Kinase A in 

Neuroblastoma ( ), and Cortical Area Development ( ) models. These three models have 

the three highest values of RMS difference and thus exhibit the least orderly response to 

timing perturbation.

Models with no difference at all between update schemes, such as the Toll Pathway of 

Drosophila Signaling Pathway model [39], exhibit a kind of monostability in which only 

a single globally stable fixed point exists for each combination of source node values, 

regardless of update scheme; these models are highly ordered. In some cases, a model is 

monostable for some, but not all, of its source node configurations; the Regulation of the 

L-arabinose operon in the Escherichia coli ( ) model [38] is one such example, and it 
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illustrates that a low RMS difference is possible in models with update-dependent attractors. 

The model is monostable for 11 of the 12 biologically meaningful configurations of its 

source nodes (which encode three levels of external arabinose, the presence or absence of 

external glucose, and bound/unbound AraC protein). In the last combination, there are two 

point attractors and four update-dependent attractors. Despite this, as in the example of Eq. 

(1), the average node values are not affected by the additional attractors. Similarity between 

update schemes can also arise in more subtle ways. For example, the Metabolic Interactions 

in the Gut Microbiome ( ) model [40] is primarily driven by a small, update-independent 

subnetwork. This results in an update-independent attractor that dominates the state space, 

with the remaining state space split between two similar attractors (see Appendix D for 

details).

In cases when timing robustness fails to emerge, the network typically has a large number 

of states that can evolve to more than one attractor in the asynchronous update. Under 

synchronous update, each of these states must deterministically evolve to only one attractor. 

When these states are heavily biased toward one attractor over another, the network can 

exhibit desynchronization sensitivity. The phenomenon explains the most extreme case 

of average node value sensitivity to update scheme that we have observed: the Colitis-

associated colon cancer ( ) model [41]. In this case, the behavior is driven by a small 

three-node subnetwork that is highly update-dependent; we analyze this subnetwork in detail 

in Appendix D, where we also examine the update dependence of the full Cortical Area 

Development ( ) model [42], together with an improved version also presented in [42].

We caution that careful consideration of the underlying biology is always important when 

analyzing these models and selecting an update scheme, even when population-level average 

node values are fairly robust to timing perturbations. For example, the Apoptosis Network 

( ) model [43] has an RMS difference in average node values that, though higher than 

the median, is low in absolute terms (near 0.1; see Fig. 3). Despite this, the likelihood of 

achieving apoptosis in this model strongly depends on update scheme: apoptosis is twice as 

likely under asynchronous update (see Appendix D for details).

Though cases of update scheme dependence often highlight interesting regulatory 

mechanisms, we emphasize that population-level desynchronization robustness is by far 

more common in the Cell Collective. In combination with the results of the previous section, 

this points to an order in the average states of nodes that is hidden when these biomolecular 

networks are viewed as isolated entities but that is revealed when they are viewed as 

members of an ensemble.

B. The effects of transient state perturbations

In the previous section, we discussed the effects of timing perturbations in Cell Collective 

models; we now consider the effects of transient node perturbations in which the state of 

a variable is temporarily altered. We emphasize the comparison between the short-term 

response measured by the Derrida coefficient (δ) and long-term responses measured by the 

quasicoherence (q), final Hamming distance ℎ∞ , and fragility (φ), which are defined in 

Sec. IID and differ in how long-term changes to trajectories are quantified. We also consider 
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the impacts of internal perturbations separately from those of environmental changes by 

considering two cases for all measures: perturbable and fixed source nodes, emulating a 

variable or static cellular context, respectively.

1. The prevalence of source nodes in the models has a strong influence 
on trajectory separation—Previous studies did not consider the fact that the variables 

of Boolean network models fall into two qualitatively different categories: independent 

variables (represented by source nodes in the network) and variables whose values are 

determined by their interactions (represented by nodes with incident edges in the network). 

Source nodes are rare in most types of RBN ensembles. We determined (see Appendix 

E) that in any ensemble of finite random networks obeying widely used independence 

assumptions, on average more than 75% completely lack source nodes. This stands in stark 

contrast to the Cell Collective; only nine of the 72 models we studied are source-free, and 

the average number of source nodes in these networks is 4.94 (median 3, maximum 33) (see 

Fig. 12 in Appendix F for the full distribution). Note that these statistics and the distribution 

of the number of source nodes do not include constant nodes or source nodes for which only 

one value is ever considered in the analysis of a model’s original publication. The number of 

constant nodes in random models is much less tightly constrained than the number of source 

nodes, thus the frequency of constant nodes in our test ensemble could plausibly be obtained 

in random models (see Appendix E).

Dynamically and biologically, source nodes play an important role. In biology parlance, 

they often describe the cellular context, or configuration of the external environment and of 

intracellular mechanisms outside the scope of the model under study. Often, a change to the 

value of a source node represents an enormous shift in this context. This is because a change 

in the value of a source node is not a temporary dynamical perturbation, but a permanent 

alteration of the modeling context. Dynamically, this is reflected in the distribution of δ
and ℎ∞ in the Cell Collective ensemble (see Fig. 4). When source nodes are perturbable 

in the synchronous update, we find that the distribution of δs, p peaks very close to 1. 

This corroborates previous observations[14,16] in Boolean models of biological systems. 

However, an abundance of source nodes tends to increase δ in these models, in some 

cases dramatically, because the ultimate size of a perturbation that begins at a source node 

is always bounded below by one (in contrast, constant nodes tend to decrease δ because 

they are guaranteed to recover from any perturbation). Furthermore, many Cell Collective 

models are concerned with how signals, represented by source nodes, are processed by cells, 

meaning that—by design—such models tend to be sensitive to the values of these source 

nodes.

By isolating the effects of source nodes on the δ, we can begin to understand the degree to 

which the overall perturbation response in cellular systems is governed primarily by factors 

internal to specific functional modules (nonsource nodes), or by the interplay between these 

modules and their environment (source nodes). When we restrict attention to the system’s 

response to internal perturbations only, we see that δ is no longer centered near 1. Rather, 

the distribution shifts dramatically to the “ordered” regime (below 1). For example, the 

Metabolic Interactions of the Gut Microbiome ( ) model has δ ≈ 1 when source nodes are 
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candidates for perturbation but only ≈ 0.39 when they are not. In the asynchronous case, 

defined in Eq. (2), δ is more tightly clustered, but overall, δ shows very little dependence on 

the update scheme (see Fig. 14 in Appendix F for a direct comparison). This suggests that, 

on short timescales, the disorder that arises from node perturbations does not couple with the 

noise that arises from disruptions to update synchrony.

A few models do not follow the general trend and exhibit δ higher than 1. One example is 

the Arabidopsis thaliana Cell Cycle ( ) model [44], which has the highest value of δ (greater 

than 1.2 in both update schemes). This 14-node, source-free model has an abundance of 

regulators (average in-degree of 4.71), a significant percentage of which (42%) are negative 

regulators. The complexity of the regulation is likely the reason for the high observed initial 

separation of trajectories following an initial perturbation to a single node.

In the thermodynamic limit of random Boolean networks, there is a very strong relationship 

between δ and ℎ∞. Whether or not this holds in the Cell Collective is investigated in 

Fig. 4. The quadrants of the two panels of Fig. 4 show whether the perturbation response 

indicates perturbation growth or decay in the short- or long-term (perturbation growth being 

a hallmark of chaos). Following [18,45], the short-term perturbation response of the models, 

as measured by δ, suggests ordered dynamics in the bottom two quadrants and chaotic 

dynamics in the top two quadrants, though we emphasize that, unlike in random models, 

the short-term perturbation response seen here is not necessarily predictive of the long-term 

response. The long-term perturbation response, as measured by ℎ∞, suggests robustness 

(a hallmark of ordered dynamics) in the left two quadrants and sensitivity (a hallmark of 

chaotic dynamics) in the right two quadrants. In the Cell Collective models, we observe a 

slight correspondence between δ and ℎ∞ under synchronous update. No correspondence of 

δ and ℎ∞ was found for asynchronous update (see Fig. 15 in Appendix F). It is somewhat 

expected that the correspondence between δ and ℎ∞ would be stronger in synchronous 

update, where phase shifts within oscillatory attractors are always persistent. In contrast, 

phase shifts often decay in asynchronous update. When source nodes are not perturbable, δ
serves as an upper bound for ℎ∞ in the robust regime, and as a lower bound for ℎ∞ in the 

sensitive regime (see Fig. 4, right panel). For fixed source nodes, ℎ∞ varies wildly when 

δ ≈ 1, which is characteristic of systems near a phase boundary. Note that both δ and ℎ∞ are 

skewed more toward the robust regime than in the traditional approach of perturbable source 

nodes, shown in the left panel.

When source nodes are not perturbable, ℎ∞ decreases dramatically for many models (see 

Fig. 16 in Appendix F). This is likely due to the large number of Cell Collective models that 

describe how functional modules integrate and respond to external signals, leading to a bias 

for source nodes with significant downstream effects. For example, as previously discussed, 

the Regulation of the L-arabinose operon in Escherichia coli model ( ) is monostable in 

most of its input configurations. This leads to very small ℎ∞ when source nodes are not 

perturbable, despite the fact that this model has a slightly above-average ℎ∞ when its source 

nodes are potential perturbation targets.
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Models of functional modules with more complex internal dynamics, such as the Signal 

Transduction in Fibroblasts ( ) model [46], can also be greatly affected by source nodes. 

This model stands out in its high value of ℎ∞, despite its only slightly elevated Derrida 

coefficient δs, p = 1.12 . This 130-node model describes the response of a specific cell type 

to nine external signals (growth factors, cytokines, stress). The model has a very large 

number of oscillating attractors (hundreds for each input configuration). A key contributing 

factor to this rich oscillating dynamics is the large fraction ( ∼ 25%) of nodes with negative 

self-regulation in this model. In addition, 32 out of the 44 nonmonotonic update functions 

in the Cell Collective are found in this model. The signals modulate the complex internal 

dynamics, but do not completely control them; thus the horizontal position of this model 

in Fig. 4 is further to the left when source nodes are fixed (right panel), but it remains the 

model with the highest ℎ∞.

The Tumour Cell Migration and Invasion ( ) model [47] stands out in that it has a 

low value of δ, but a high value of ℎ∞ in synchronous update when source nodes are 

perturbable (a similar, less extreme, pattern is observed under asynchronous update as well; 

see Fig. 15 in Appendix F). This model describes the processes necessary for cancer cell 

metastasis, including an epithelial to mesenchymal cell fate change, gain of motility, and 

the ability to invade the neighboring tissue (these four phenotypes are represented by nine, 

update-independent point attractors). The model’s two inputs describe an internal signal 

(DNA damage) and an external signal from the cell’s microenvironment. The nonmonotonic 

change in time of the Hamming distance persists in the input combination most relevant 

to cancer cells. One factor that contributes to a low δ (below 1) is the strong canalization 

of the model’s functions, which are biased heavily toward the “OFF” state. This causes 

many perturbed trajectories to immediately realign, resulting in a low δ. Though most 

trajectory pairs quickly align, those that do not tend to dramatically increase their separation, 

converging into very distinct attractors and resulting in a higher ℎ∞.

Collectively, the Regulation of the L-arabinose operon in Escherichia coli model ( ), Signal 

Transduction in Fibroblasts ( ), and Tumour Cell Migration and Invasion ( ) models 

illustrate the strong influence of source nodes in controlling the perturbation response. In the 

Regulation of the L-arabinose operon in Escherichia coli model, the dynamics are almost 

fully controlled by the source nodes. In the Signal Transduction in Fibroblasts ( ) model, 

a great deal of dynamical freedom remains even when source nodes are frozen due to an 

abundance of self-inhibition and nonmonotonic regulation, but the perturbability of source 

nodes exaggerates these effects. In the Tumour Cell Migration and Invasion ( ) model, 

the perturbation of source nodes produces a pronounced pattern of initial perturbation 

decay followed by perturbation growth due to extreme canalization of individual regulatory 

elements.

2. Perturbation response beyond trajectory separation—In this section, we use 

two measures introduced in Sec. IID, namely the quasicoherence q and fragility φ, to 

illustrate that it is difficult to alter the long-term dynamics of trajectories using small, 

internal perturbations. We demonstrate, in Figs. 5 and 6, that careful comparison of the 

overall behaviors of perturbed and unperturbed trajectories reveals a higher degree of 
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orderlike robustness than is observable using traditional measures alone. The bulk of this 

section is devoted to uncovering the mechanisms that underlie this previously hidden order 

in specific models. We identify three key factors that give rise to disagreement between our 

new measures and traditional measures: (i) the extreme potency of perturbations to source 

nodes, (ii) the presence of oscillatory attractors that can result in phase-shifted trajectories 

with the same long-term behavior, and (iii) higher sensitivity to update scheme in traditional 

measures.

The quasicoherence q describes the likelihood that a system undergoes a long-term 

phenotypic change in response to a small, transient perturbation. Higher q indicates a greater 

degree of phenotypic robustness (see Sec. IID). Note that the values of source nodes also 

contribute to the phenotype in this context, and so the effect of allowing source node 

perturbation is particularly pronounced for q. We find that overall, the distribution of q in 

the Cell Collective (Fig. 5) is highly concentrated near 1 for the fixed-source case (see also 

Fig. 17 in Appendix F). This indicates that it is relatively difficult to alter the phenotype of a 

functional module within a cell by perturbing a single internal component. Indeed, no model 

has greater than a 60% chance to change the quasiattractor due to perturbation to a random 

node; when source nodes are excluded from the set of perturbable nodes, this bound drops 

to just over 20%. An example of low quasicoherence is the Cortical Area Development 

Network ( ) model [42], which has two attractors; the symbol lies on the diagonal because 

this model has no source nodes.

The distribution of q in the Cell Collective is fairly robust to update scheme, though there are 

exceptions. For example, note that Cell Cycle Transcription by Coupled CDK and Network 

Oscillators ( ) model has relatively low quasicoherence in the synchronous update, but 

a maximal quasicoherence in the asynchronous update (see Fig. 17 in Appendix F). The 

difference arises because the asynchronous update gives rise to only a single attractor (a 

steady state) while the synchronous update gives rise to an additional oscillatory attractor. In 

this case, the timing perturbations have interfered with the node perturbations in the system 

by destroying an attractor that is required for long-term separation of trajectories. The 

fragilities φ of the Cell Collective models also exhibit a distribution that is generally robust 

to the update scheme, and a shift to lower values when source nodes are not candidates for 

perturbation (see Fig. 18 in Appendix F).

Separate from quantifying whether or not a perturbation induces a change in phase-shift-

corrected long-term behavior (via q), we also quantify the magnitude of such changes 

using φ. Figure 6 summarizes the relationship between δ and φ under synchronous update 

with fixed source nodes. Note that only two models exhibit long-term perturbation growth 

(a hallmark of chaotic dynamics) once source nodes and phase shifts are accounted for, 

and the vast majority of the models are firmly in the robust regime of the φ distribution 

(associated with ordered dynamics). In contrast, the traditional analyses (e.g., [18,19,45]) 

place the majority of the models close to the critical boundary between the ordered and 

chaotic regimes, and also place several models in the chaotic regime (left panel of Fig. 

4). We found no correspondence of δ with φ regardless of the manner of update or the 

perturbability of source nodes. Furthermore, unlike in the case of ℎ∞, the φ distribution 

Park et al. Page 16

PRX Life. Author manuscript; available in PMC 2024 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



shows little dependence on the choice of update scheme. (See Fig. 15 in Appendix F for a 

comprehensive figure combining Figs. 4 and 6 with five other similar plots). This suggests 

that the ability of δ to predict long-term perturbation response is sensitive to phase-shifts and 

can overestimate the disruption a perturbation is likely to cause to a system’s phenotype.

As we illustrate with several examples below, it is often possible to reveal a robust order 

in apparently chaotic perturbation responses of specific functional modules by carefully 

analyzing the patterns of oscillation that perturbed trajectories undergo.

As highlighted previously in Fig. 4, the Signal Transduction in Fibroblasts ( ) model [46] 

has a very high value of ℎ∞ in the synchronous update (>3 when the source nodes can be 

perturbed and 2.3 when they cannot), and δ only slightly above 1. Asynchronous update 

decreases ℎ∞, but ℎa, p
∞  and ℎa, f

∞  still indicate perturbation growth (see Fig. 15 in Appendix F). 

Due to the abundance of oscillating attractors in this model, large responses to perturbations 

may be expected. Despite this, φ is less than 1 in both update schemes in this model when 

source nodes are fixed, meaning that at the phenotype level, perturbations to individual 

nodes eventually decay on average. In other words, the majority of the perturbation response 

observed through the lens of ℎ∞ is due to the effect of shifting the phase of a trajectory 

without altering its phenotype. The Aurora Kinase A in Neuroblastoma ( ) model is a 

smaller model that exhibits similar behavior.

The Arabidopsis thaliana Cell Cycle ( ) model [44] is also in the regime traditionally 

associated with chaos when synchronous update is used to compute δ and ℎ∞ (Fig. 4), but 

a closer look reveals a robust phenotype. The original article reported an 11-state cyclic 

attractor under synchronous update, which recapitulates the phases of the cell cycle, and in 

which all 14 nodes oscillate. This model’s response to an initial perturbation to a single node 

is the highest observed (δ > 1.2 in both update schemes). In the synchronous update, this 

initial separation persists, and even grows somewhat in the long term (reaching an average 

of over 1.7). Because there is only one attractor in this system, and because synchronous 

attractors are always simple cycles, this separation is due to a phase shift; indeed, the 

fact that the synchronous fragility of this model is zero reinforces this (Fig. 6). In the 

asynchronous update, both the fragility and the final Hamming distance are zero, indicating 

that this model exhibits a long-term robustness under the asynchronous update that is not 

detected by δ. The difference in long-term separation in the two updates reflects the fact 

that phase shifts are always permanent in the deterministic synchronous update, but can 

be temporary in the asynchronous update if there is an order of update that causes two 

trajectories in the same complex attractor to intersect. Indeed, there is a general tendency 

for a smaller final Hamming distance under asynchronous update than under synchronous 

update (see Fig. 16 in Appendix F). Furthermore, Fig. 19 in Appendix F suggests that 

phase-shifting behavior of the Arabidopsis thaliana Cell Cycle ( ) model is a common 

phenomenon; the final Hamming distance is always larger than or equal to the fragility in 

both update schemes, with an especially prominent difference in synchronous update.

There are two models that stay in the chaotic regime according to both ℎ∞ and φ, the Human 

Gonadal Sex Determination ( ) model [48], and the Colitis-associated Colon Cancer ( ) 
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model [41]. These two are the only models with φ > 1 when source nodes are not candidates 

for perturbation. The fragility of The Human Gonadal Sex Determination ( ) model is 

discussed in detail using a reduced version of the model in Appendix D.

In summary, our analysis of the Cell Collective models using our newly introduced measures 

of quasicoherence and fragility reveals that most of them are phenotypically ordered for 

both update schemes considered. With these measures, we uncover nontrivial perturbation 

recovery on long timescales even in putatively chaotic perturbation responses captured by 

the final Hamming distance, and we identify key mechanisms behind phenotypic fragility 

and robustness.

IV. DISCUSSION

One of the conjectured hallmarks of complex biological systems is that they sit somewhere 

between rigid order and hypersensitive disorder. For example, a yeast cell must be able 

to adjust its metabolic phenotype in response to external cues such as oxygen availability, 

and to internal cues that operate downstream of cellular mechanisms involved in processing 

environmental signals. At the same time, the yeast cell must not chaotically switch between 

metabolic pathways in response to small fluctuations in external conditions or in response 

to noise in its internal regulatory processes. From an evolutionary perspective, some degree 

of phenotypic mutability confers adaptability to a population; too much leads to a lack of 

evolvability or even population collapse [49]. It has been argued that in living systems, there 

is often a sharp boundary between these regimes, and the cusp of this boundary is the ideal 

place to balance these competing needs [1,4–6,10,18]. Indeed, in simple random models 

that resemble biomolecular regulatory systems, this appears to be the case [5,6,17,28]. The 

argument is further bolstered by the fact that real-world models of specific within-cell 

functional modules share some properties exhibited by these simple random models in the 

critical regime [15,19,50,51].

But these real-world models are not random; for instance, they exhibit a higher degree 

of canalization and functional redundancy [19,52,53], as well as a higher occurrence of 

source nodes (as demonstrated here). Of course, it is well-known that these models are 

nonrandom, and researchers are typically careful to acknowledge the caveats this entails. 

For example, Kauffman considers the question of random network assembly in some 

depth from a biological perspective [4]; Moreira and Amaral give a rigorous treatment 

of the implications of nonergodicity and canalization in Boolean ensembles [53]; Zañudo 

and colleagues give a careful treatment of the underlying assumptions of randomness and 

their implications [28]; and we ourselves have discussed the potential pitfalls of applying 

techniques designed for random networks to nonrandom networks in previous work [15,19]. 

The Derrida coefficient [5,6], or its close cousin, the network sensitivity [10], are superb 

tools in the setting in which they were developed: synchronously updated random models. 

In that setting, they offer a computationally simple way to determine the short-term and 

long-term response of the system to perturbations. Even in nonrandom models, these tools 

remain valid for exploring the short-term perturbation response, and they can be extended 

to focus on steady-state robustness (e.g., by extending the influence measure of [54]), but 
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more sophisticated measures are required for studying their long-term dynamics in response 

to perturbations.

The traditional approach to directly quantifying the long-term response to perturbations is to 

measure what we have called the final Hamming distance. This measure provides valuable 

information about the asymptotic separation of perturbed and unperturbed trajectories, 

but fails to account for time-shifts. By considering whether perturbed and unperturbed 

trajectories differ in ways that are in principle observable under typical experimental 

settings, the new measures we introduce provide a phenotypically grounded way to quantify 

the ultimate impact of a perturbation. Our analysis shows that the responses to internal 

perturbations that have been previously associated with criticality are usually either more 

transitory than initial perturbation growth may suggest or become phenotypically irrelevant 

in the long term. In fact, in the studied experimentally supported, nonrandom models we 

uncover much greater robustness to perturbation, especially in their long-term effects, than 

the criticality hypothesis implies.

Though such orderly behavior of functional modules (cell processes) has been overlooked, 

indeed hidden by the typical measures of criticality used, it is not altogether surprising. For 

example, it is fundamental to Kauffman’s thesis that orderly behavior can arise naturally 

from RBNs [3,4] and may play a key role in the evolution of epigenesis. More recent work 

[45] has analyzed microarray time-series data to suggest that eukaryotic cells do not lie 

in the chaotic dynamical regime. Particularly at the scale of individual functional modules, 

we would expect a high degree of reliability in task execution under most perturbations. 

For example, to effectively balance photosynthesis efficiency with water conservation, the 

regulatory mechanism of stomatal guard cells in plant leaves must reliably respond to stress 

hormones produced by other modules in the plant’s regulatory network. Indeed, we observe 

that in the Guard Cell Abscisic Acid Signaling model [55] and the Stomatal Opening Model 

[56], the fixed-source fragility is quite low (see Appendix G). In contrast, the traditionally 

used Derrida coefficient suggests functional modules near or in the chaotic regime. We 

interpret this to suggest that small errors in signal transduction may lead to large initial 

deviations in these systems, but that eventually these errors are corrected in most cases. 

In the context of cell differentiation, Waddington [57] argues for a kind of long-term 

developmental robustness referred to as canalization; once committed to a cell fate, it is 

expected that a stem cell is not easily diverted from its specialization. We observe this in 

various development and differentiation models, such as the Lymphoid and myeloid cell 

specification and transdifferentiation model [58]. In this model, the short-term perturbation 

response suggests criticality δs, p = 1.02 , but a long-term view reveals that initially divergent 

perturbed trajectories are canalized toward the fate of their unperturbed counterparts in most 

cases (q = 0.9s, p, φs, p = 0.16).

The new measures we introduced to characterize this robustness or phenotypic order 

allow us to distinguish process delay from phenotype differentiation ℎ∞ versus φ), and 

to separate smoothly varying distance in -omics space from “all-or-nothing” phenotype 

differences (φ versus q). These measures are computationally expensive to estimate, and 

until now, their estimation on ensembles of large models (more than a few dozen nodes) 
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has been prohibitive. Here, we have addressed this challenge by developing CUBEWALKERS, 

a highly parallel GPU-based simulation toolkit. Our analysis showcases its capacity for 

comprehensive calculation of long-term perturbation dynamics in real-world Boolean 

networks with hundreds of nodes or more. Future work will consider these measures in 

the context of random Boolean networks. Together with traditional measures, our new 

approaches offer a more holistic way to study the dynamical response of living systems to 

noise and perturbation.

Though our analysis suggests that the criticality of experimentally supported Boolean 

models of biomolecular functional modules has been overstated, we emphasize that this 

work is not the nail in the coffin of the “edge of chaos” hypothesis. Rather, it suggests 

that living systems do not exhibit critical behavior at the scale of functional modules. This 

leaves ample room for critical behavior to emerge at larger scales via the coupling of 

various functional modules. Indeed, previous work by Balleza and colleagues [18] suggests 

cell-scale critical perturbation response in two full-genome regulatory networks with 

experimentally constrained topology and random regulatory functions, though the authors 

do not consider phase shifts in their analysis. We conjecture that individual subsystems of 

a cell are highly ordered, but they connect in networks that may give rise to more adaptive 

behavior. The large differences in perturbation response we have observed depending on the 

treatment of source nodes (which are exceedingly rare in traditional RBN models) support 

this conjecture because it allows for larger perturbation responses in networks of highly 

ordered functional modules coupled at their source nodes. In critical RBNs, one may view 

the nodes themselves as ordered subsystems. In real biological systems of many variables, 

a multiscale, modular structure is expected [59]. Thus, it is possible that order persists up 

to larger scales in biology than it does in random models. More thorough examination of 

criticality and perturbation response across regulatory scales is needed to test our conjecture, 

which motivates the future development of sufficiently data-constrained multiscale models.

Despite our finding that the Derrida coefficient is not a good predictor of phenotypic 

robustness, we do not suggest that it is without merit in models of specific functional 

modules. Instead, we merely caution that it must be carefully interpreted as an indicator 

of immediate response to perturbation only and should be studied in conjunction with 

long-term response measures, such as those we have developed here. We do suggest, 

however, that careful consideration be made to the biological interpretation of source node 

perturbation in the context of the particular network being considered. Generally, we advise 

that perturbation of these nodes be handled separately from perturbations to other nodes in 

the network.

We have also studied timing perturbations in these systems by considering the effect of 

update scheme on various dynamical properties. Many update schemes exist for Boolean 

networks, such as the most permissive Boolean network framework of [60], random order 

update [30], or various update schemes that make use of a continuous time parameter such 

as is used in MaBoSS [61]. We focused on the synchronous update and the asynchronous 

update, which are the most frequently used and are the two opposite extremes of the 

spectrum from deterministic timing coherence to completely stochastic event timing. Models 

with long-term perturbation growth under synchronous update also appear to be more 
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sensitive to timing perturbations (comparing the highlighted models in Figs. 3 and 4). 

This is possibly related to the fact that a single-node perturbation can be interpreted as an 

asynchronous modification to the perturbed node. Previous work [26] has shown that certain 

patterns of logical circuitry, called conditionally stable motifs, can help explain robustness 

to timing perturbation in some cases and may also confer perturbation robustness. Such 

robustness is not guaranteed, however. It is well established that the update scheme can 

have a dramatic impact on the attractor dynamics of Boolean networks (see, e.g., [25]). 

In the models considered here, the average behavior of individual system components is 

typically quite robust to update scheme, but in a few models there is a dramatic difference 

in the biological interpretation of the individual trajectories that are possible in one update 

scheme or the other. In the examples we have examined here where this is the case, there 

are attractors that exist in the synchronous update but which are absent in the asynchronous 

update. In all such cases, the attractors were motif-avoidant, i.e., they did not fall into 

any minimal trap space [25] (sometimes these are called unfaithful attractors [62]). In 

these examples, delay nodes played a prominent role in the behavior of the model under 

synchronous update.

We generally found that models appear more ordered in the asynchronous update, for 

example via the destruction of synchronous attractors. Most dramatically, the median value 

of ℎ∞ for fixed source nodes is approximately 43% higher in the synchronous update than 

in the asynchronous case. We conjecture that noise in the update timing can suppress the 

phase-dependent effects of node perturbation. Indeed, while two phase-shifted oscillating 

trajectories can never realign in the synchronous update, eventual realignment is likely 

under the asynchronous update. Thus, the long-term response to node perturbations becomes 

biased toward extinction in the asynchronous update as measured by ℎ∞ (see Fig. 16 in 

Appendix F). In contrast, because q and φ inherently account for phase-shifts in perturbed 

trajectories, they are much less sensitive to update scheme (see Figs. 17 and 18 in Appendix 

F).

Though we have briefly examined the time dependence of the Hamming separation ℎt, 
much about perturbation response on intermediate timescales remains unexplored. In some 

models, transient behaviors play a crucial role in the biological interpretation of trajectories. 

For example, in [63], a cell cycle model is presented in which the ultimate fate of any 

asynchronously updated cell is death. Despite this, trajectories exhibit behavior that is 

similar to experimentally observed processes. Analyzing such a model using the framework 

we have presented here would require modifying truncating the time averaging to capture 

phenotypically relevant periods prior to apoptosis.

We have illustrated the overall patterns observed in the experimentally supported model 

ensemble by carefully examining the dynamics of specific examples and considering 

dynamical behavior in the context of their intended biological modeling goals. This has 

highlighted that the rich diversity of biological function is not easily distilled to a few 

statistical properties. Some functional modules have dynamics that almost trivially follow 

from the configuration of their inputs, while others modules are highly multistable with 

long-term dynamics that depend strongly on initial conditions and internal timings. In the 
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search for unifying principles in biology, it is important to acknowledge that biology is 

messy and that functional context matters—especially in the study of specific subsystem 

models. In other words, living systems are complex, open systems. While there are 

important general conclusions we can draw, the differences between biomolecular systems 

can be just as interesting as their common properties. In that spirit, we show that functional 

modules in biomolecular systems typically exhibit robust phenotypes, while highlighting the 

diverse mechanisms through which this hidden order can arise. The observed order, as a 

phenomenon of experimentally supported models, has been hitherto obscured by the lack of 

dynamical measures that can quantify it and the computational challenges of measuring the 

dynamics with sufficient detail, an obstacle we overcame in the present work.

We hope that as computational biology continues its second half-century, unprecedented 

computational power allows deeper exploration of the interplay between order and chaos in 

living systems, and helps uncover the unique biological circumstances that enable it.
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APPENDIX A: BENCHMARKS

In this Appendix, we present benchmarks comparing the CUBEWALKERS software to two 

competing software packages: CANA and BOOLEANNET (see Figs. 7 and 8). Conducting 

unbiased quantitative benchmarks that compare the performance of CUBEWALKERS to that 

of other Boolean simulation tools is complicated by the fact that CUBEWALKERS is primarily 

GPU-based, while competing tools run entirely on the CPU.
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FIG. 7. 
Performance comparison of CUBEWALKERS, CANA, and BOOLEANNET on consumer hardware. 

72 Cell Collective models were run using each tool using synchronous update. Timings 

were generated on a PC with an AMD Ryzen 5 3600X CPU at 3.8 GHz and a 2560 

CUDA-core 1605 MHz NVIDIA 2070S GPU. Default methods were run without additional 

parallelization. For the CUBEWALKERS tests, 2500 time steps and 2500 walkers (initial 

conditions) were used; for CANA, 500 time steps and 500 walkers were used; and for 

BOOLEANNET, 100 time steps and 100 initial conditions were used. Thus, for each network, 

CANA computed 5 × as many time steps for 5 × as many initial conditions as BOOLEANNET 

for an overall disadvantage of 25 ×. Similarly, CUBEWALKERS computed 5 × as many time 

steps for 5 × as many initial conditions as CANA, for a 25 × disadvantage relative to CANA 

and a 625 × disadvantage relative to BOOLEANNET. The raw time to complete these tasks is 

plotted in the left panel, where we observe that CUBEWALKERS consistently finishes its tasks 

an order of magnitude faster than the other methods, despite the fact that it has been given 

significantly more computational work. In the right panel, the average computation time per 

network node per time step per initial condition in these trials is plotted; this corresponds 

to the average (amortized) time to evaluate and apply an update function to a node. Here, 

we see that these amortized evaluations occur on the order of nanoseconds for CUBEWALKERS, 

while they occur on the order of microseconds for CANA and hundreds of microseconds for 

BOOLEANNET.
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FIG. 8. 
Performance comparison of CUBEWALKERS, CANA, and BOOLEANNET on a high-performance 

computer. Cell Collective models were run using each tool using synchronous update. 

Timings were generated using a workstation with two AMD EPYC 7542 CPUs (32 cores 

and 64 threads each) at 2.9 GHz and two 10 752 CUDA-core NVIDIA A6000 GPUs 

with 48GB of GDDR6 memory (only one GPU was used for the benchmarks). For the 

CUBEWALKERS and CANA tests, 2500 time steps and 2500 walkers (initial conditions) were 

used; for BOOLEANNET, 100 time steps and 100 initial conditions were used. For CANA 

and BOOLEANNET, initial conditions were simulated in 128 parallel threads. On specialized 

hardware taking full advantage of parallelism, we see that the performance gap between 

CUBEWALKERS and the other methods is narrowed compared to the performance gap on 

consumer hardware. Nevertheless, the gap remains considerable.

TABLE I.

Average (amortized) run time per simulation time step for each method. The fastest method 

(CUBEWALKERS) for the two hardware configurations is bolded. Note that CUBEWALKERS on 

consumer hardware outperforms parallel adaptations of other tools running on specialty 

high-performance computing hardware.

Software Hardware time (μs)
CUBEWALKERS consumer  0.11

CUBEWALKERS specialty  0.067

CANA (serial) consumer  40

CANA (parallel) specialty  1.1

BOOLEANNET (serial) consumer  1300
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Software Hardware time (μs)
BOOLEANNET (parallel) specialty  37

Therefore, one must assess the relative quality of the CPU and GPU used in benchmarking 

comparisons. Furthermore, most CPU-based Boolean simulation tools do not execute 

operations in parallel; however, user-side parallelization is often possible. Despite these 

caveats, the performance advantage of CUBEWALKERS is dramatic and convincing in practice. 

We compared against the Python library CANA (which wraps a C implementation via 

Cython) [31] and the Python library BOOLEANNET (which is written in pure Python) [30]. 

For synchronous simulations of models in the Cell Collective on consumer hardware, we 

demonstrate a speedup of approximately 350 times on average compared to simulation using 

CANA and a speedup of approximately 11 000 times on average compared to simulation 

using BOOLEANNET. We also compared the performance of CUBEWALKERS to the performance 

of parallelized simulations using CANA and BOOLEANNET on a high-performance computing 

workstation. In this case, CUBEWALKERS outperforms CANA by a factor of 16.6 and outperforms 

BOOLEANNET by a factor of just under 550. Furthermore, CUBEWALKERS has approximately 10 

times better performance on our consumer test hardware than is achieved using parallel 

simulations with CANA on our specialty high-performance hardware. Average performance is 

described in Table I. Note that the simulation results presented herein required several days 

of computer time using CUBEWALKERS, so the approximately 16-times slowdown we expect 

from the second-fastest software considered would result in months of excess computation.

APPENDIX B: CONVERGENCE OF AVERAGE NODE VALUES

The number of walkers were selected to ensure a standard deviation of less than 0.01 for 

each dynamical measure computed. The minimum simulation count of W = 2500 was used 

in the calculation of average node values. The convergence of these values as a function 

of W  is shown in Fig. 9. For Derrida coefficient calculation, a value of approximately 

W = 100 000 was used (W = 100 000/N × N); for measuring long-term perturbation spread, 

a value of W = 2500 was used for each node targeted for perturbation (for a total of 

2500 × N simulations each, resulting in W = 800 000 in the largest model considered).

The question of how many time steps are required to have a reasonable expectation of 

average node value convergence is more complicated. There are two reasons for this: (i) 

convergence time is highly model-dependent and (ii) as the systems considered are generally 

not ergodic, the average node values may converge into oscillatory behavior Thus, there 

are two parameters that need to be considered: a “burn-in” time T b, and an averaging time 

window size Tw, for a total simulation time of T = T b + Tw. We fixed T b = 50N + 1000, so 

that at least 1000 updates are performed and each node is updated more than 50 times 

on average in the asynchronous update during the burn-in stage. We then varied Tw and 

evaluated the convergence of the average node values by comparing the values calculated 

in four subwindows: Twi = T b + iTw/5, T b + (i + 2)Tw/5  for i = 0,1, 2,3. For each network in 

the Cell Collective, we computed the absolute difference in average node values for each 

of the six pairs of these four subwindows, and we identified the largest absolute difference 
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across all six comparisons for each node. Convergence quality is assessed by computing the 

largest of these values across all nodes. Based on this analysis, we chose to use a value 

of Tw = 5N + 5000 for most models. Three models took an unusually long number of time 

steps to converge due to the complexity of their attractors; for these we set the number 

of time steps manually: T b, Tw = (5000, 25 000) for “Arabidopsis thaliana Cell Cycle” 

(N = 14), T b, Tw = (5000, 25 000) for “Guard Cell Abscisic Acid Signaling” (N = 44), and 

T b, Tw = (50 000, 100 000) for “Signal Transduction in Fibroblasts” (N = 139). The largest 

absolute difference of average node values between any two time subwindows Twi and Twj

across all nodes in all networks was approximately 0.0004 in the synchronous update and 

0.0066 in the asynchronous update. Summing the largest difference for each node gives a 

maximum of 0.0039 and 0.0881 for synchronous and asynchronous update, respectively, 

across all networks in the Cell Collective. The actual computed quantities aggregate many 

nodes and average over a time window 2.5 times larger than any Twi; thus, in practice, they 

have errors much lower than this very conservative upper bound. We are therefore confident 

that simulating each network for T = 55N + 6000 time steps and averaging node values 

over the last Tw = 5N + 5000 time steps is sufficient for computing the average behaviors of 

nodes in almost all models in the Cell Collective.

FIG. 9. 
Standard deviation in the node average values as the number of walkers increases for the 

Cell Collective models. The three panels correspond to three different stages of the model 

simulation. The observed standard deviations agree well with the expectation based on 

Bernoulli random variables (continuous line). We chose the number of walkers such that the 

standard deviation is less than 0.01 (dashed vertical line).

APPENDIX C: THE RELATIONSHIP BETWEEN TWO DYNAMICAL 

MEASURES: FUZZY QUASICOHERENCE AND FRAGILITY

The quasicoherence measure treats trajectories that converge to the same quasiattractor 

as equivalent, even if they converge to different attractors within that quasiattractor. We 

introduce the fuzzy quasicoherence, a modification of the quasicoherence such that it 

becomes sensitive to the similarity of attractors but retains phase-insensitivity. This is 

Park et al. Page 26

PRX Life. Author manuscript; available in PMC 2024 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



achieved by replacing the Q function with a “fuzzy” version that considers the absolute 

difference between X(t) and X(¬i)(t). This gives rise to the fuzzy quasicoherence, q:

q = 1
N ∑

i = 0

N − 1
Q(〈X(t)〉)t ∞, 〈X(¬i)(t)〉t ∞

X ∈ T

,

(C1)

Q(X, Y ) = 1 − 1
N ∥ X − Y ∥1 .

(C2)

Note the similarity with both q and ℎ∞. Compared with q, the formula for q replaces the Q
function with Q, which, like Q, is 1 if the inputs are equal and 0 if the inputs are maximally 

different in each entry, but which can interpolate between 0 and 1. The ability to interpolate 

between the extremes of Q allows q to account for whether quasiattractors are similar or 

different, and it also allows q to account for attractors within the same quasiattractor that 

have different average node level behaviors. Compared with ℎ∞, q can be viewed as a 

rescaling with a slightly modified averaging scheme.

The fragility is related to the fuzzy quasicoherence by the relationship φ = N(1 − q).

APPENDIX D: DETAILED DISCUSSION OF SELECTED REPRESENTATIVE 

MODELS

1. Cell Cycle Transcription by Coupled CDK and Network Oscillators

The Cell Cycle Transcription by Coupled CDK and Network Oscillators ( ) model [36] 

incorporates the known interactions among nine cell cycle transcription factors and is one 

of several variants studied by Orlando et al. In synchronous update, this model has a point 

attractor corresponding to the G0 checkpoint and an oscillatory attractor that reproduces the 

sequence of transcription during the phases of the cell cycle. We find that the oscillatory 

attractor disappears under asynchronous update. This result indicates that the model can only 

reproduce the biological sequence of events if the node states change in synchrony.

To better understand the mechanisms that lead to this timing perturbation sensitivity, we 

simplified the model by merging closely related nodes and verified that the simplified model 

reproduced the correct transcription sequence under synchronous update. A key feature of 

the resulting network is that it consists of a positive feedback loop that intersects a shorter 

negative feedback loop. In general, this property ensures that the system is not monostable 

under synchronous update [67], i.e., an attractor other than the G0 fixed point exists. This 

extra attractor relies on synchrony and is therefore not robust to timing perturbation. The 

simplest example with these features is given in Eq. (D1); adding a delay node to the self-

inhibition of X [Eq. (D2)] equalizes the feedback loop lengths and results in monostability 
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under synchronous update, consistent with the results of [67]. In asynchronous update, both 

systems are monostable. See panel A of Fig. 10 for further details.

X⋆ = ¬X ∧ Z, Z⋆ = X,

(D1)

X⋆ = ¬Y ∧ Z, Y ⋆ = X, Z⋆ = X .

(D2)

2. Aurora Kinase A in Neuroblastoma

The Aurora Kinase A in Neuroblastoma ( ) model developed by Dahlhaus et al. [37] 

explores the role of the Aurora Kinase A protein in the cell cycle of neuroblastoma cancer 

cells. Dahlhaus et al. used synchronous update and reported three families of attractors: 

a point attractor corresponding to the G0 checkpoint, a three-state cycle describing cells 

proceeding faithfully through mitosis, and a three-state cycle corresponding to cells with 

defective mitosis, respectively. Aurora Kinase A is off in the G0 point attractor, expressed 

and active in the faithful mitosis attractor, and oscillates in the defective mitosis attractor. 

Defective mitosis leads to mitotic catastrophe and cell death via mechanisms outside the 

model, and is desirable in the context of neuroblastoma. Dahlhaus et al. find that constitutive 

activation of Greatwall/MASTL stabilizes Aurora Kinase A, increasing the likelihood of 

faithful mitosis of cancer cells and decreasing the likelihood of mitotic catastrophe. Analysis 

of gene expression profiles of neuroblastoma patients confirmed that constitutive activation 

of Greatwall/MASTL is correlated with poor prognosis.
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FIG. 10. 
Example networks and their state transition graphs (STGs) that illustrate update dependence. 

Panel A illustrates delay-dependency in the example of Eqs. (D1) and (D2), which are 

inspired by the Cell Cycle Transcription by Coupled CDK and Network Oscillators model 

[36]. Panel B demonstrates how much of the STG in the Metabolic Interactions in the 

Gut Microbiome model [40] is robust to changes in update scheme. Panels C–E illustrate 

how the asynchronous update can mix the synchronous attractor basins in a core regulatory 

circuit in the Colitis-associated colon cancer model [41] (panel C), the full synchronous 

STG of the Cortical Area Development model [42] (panel D), and a reduced version of the 

Apoptosis Network model [43] (panel E). In each interaction network, each node symbol 

contains the update function of the node. Blue edges ending in filled circles indicate positive 

regulation, and red edges ending in open circles denote negative regulation. In the STGs, 

attractor states are indicated by thick borders. The basin of attraction of each attractor is 

highlighted by the same color as the attractor. In asynchronous update, states can reach more 

than one attractor; such states are shaded using a gradient. In the lower part of panel A, 

states that differ only in the value of the delay node Y are grouped together in shaded boxes.

In asynchronous update, only attractors corresponding to the G0 checkpoint and faithful 

mitosis exist. This also leads to population-level differences in this model: Aurora Kinase 

A is active significantly more often under synchronous update than under asynchronous 

update, yielding a higher average expression level of Aurora Kinase A in a cell population. 

This model can be reduced to the system

AK⋆ = PLK1 ∧ AKP,
AKP⋆ = ¬PP2A,
MP⋆ = ¬MP ∧ (AK ∨ PLK1),

PLK1⋆ = AK,
PP2A⋆ = ¬AK ∧ ¬MP .

(D3)

Here, AKP and AK represent the presence and activity of the Aurora kinase A, respectively; 

PP2A and PLK1 are important cell cycle proteins, and MP represents the physical processes 

of mitosis. As in the full model, this reduced system has synchronous-update attractors 

corresponding to the G0 checkpoint and faithful and defective mitosis; the last of these 

vanishes in asynchronous update, leading to differences in the average activity of Aurora 

kinase A. Notably, the synchronous behavior is sensitive to the existence of the intermediary 

node AKP: if AKP and AK are merged, the synchronous update yields similar results 

to the asynchronous update, which is insensitive to this merger. This shows that the 

defective mitosis attractor is dependent on a delay between PP2A activation and its effect 

on AK. Because delays are intrinsically stochastic in the asynchronous update, this delay 

dependency explains why defective mitosis cannot be sustained under asynchronous update.

We note that the main conclusion of the original article, that stabilization of the Aurora 

kinase increases mitosis of cancer cells, does not depend on the existence of the defective 

mitosis attractor.
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3. Regulation of the L-arabinose operon in Escherichia coli

In contrast to the previous examples in this section, the Regulation of the L-arabinose 

operon in Escherichia coli ( ) model [38] has spurious synchronous attractors that disappear 

under asynchronous update and do not have biological meaning. This model describes 

the regulation of the genes involved in arabinose metabolism in E. coli in different 

environmental settings. Specifically, the model considers 12 possible combinations of three 

levels of external arabinose, availability of unbound AraC protein, and the presence/absence 

of external glucose. In the input configuration corresponding to a medium level of external 

arabinose, available unbound AraC protein, and no external glucose, there are two point 

attractors, and four additional cyclic attractors under synchronous update. As in the example 

of Eq. (1), these additional synchronous attractors arise from a positive feedback loop (here 

formed by four nodes), and the symmetry of the positive feedback loop causes the average 

node values to be unaffected by the additional attractors. The original article describes 

these additional attractors as artifacts of the synchronous update, in contrast to the two 

biologically justified point attractors shared by both updates.

The timing dependence of the model’s attractors is only observed in this specific input 

configuration. The model is monostable (has a single, update-independent point attractor) in 

the remaining 11 input configurations.

4. Metabolic Interactions in the Gut Microbiome

The Metabolic Interaction in the Gut Microbiome ( ) model [40] describes inferred 

interactions among 10 bacterial genera of the healthy gut microbiome, the pathogenic 

bacterium Clostridium difficile, and clindamycin antibiotic treatment. When clindamycin 

is present, the system reduces such that the attractor is determined by a complete 

subnetwork of three cooperative and self-sustaining bacterial genera (Lachnospiraceae, 

Lachnospiraceae_other, Other). As a consequence, the basin of the attractor in which all 

three genera are present, representing more than 85% of the state space, is identical in the 

two update schemes. The remaining state space is split between two very similar attractors 

in a manner that only weakly depends on update scheme. These effects can be seen by 

comparing the state transition graphs of this model under synchronous and asynchronous 

update (see panel B of Fig. 10). In the absence of clindamycin, only two nodes are free to 

vary and their average values depend mildly on update scheme.

5. Colitis-associated colon cancer

The Colitis-associated colon cancer ( ) model [41] has an unusually high difference in 

average node values depending on which update scheme is used (see Fig. 3). This model 

integrates the signaling pathways that underlie inflammation-associated tumorigenesis. The 

original analysis used asynchronous update and reported three oscillating attractors and 

two point attractors, each of the latter having a very small basin of attraction. Notably, 

the authors also emphasize the average node values in their interpretation of the model, 

meaning that the large difference in average node values under the two update schemes 

may be especially significant. The authors also identify a core regulatory subnetwork that 
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determines the dynamics of the system under protumor conditions. Within this subnetwork, 

we identify that the majority of the difference in average node values stems from the 

relationships between three nodes: CTL, IFNG, and IL10,

CTL⋆ = IFNG ∧ ¬IL10,
IFNG⋆ = CTL,
IL10⋆ = ¬IFNG .

(D4)

This three-node network is analyzed in panel C of Fig. 10. It has two point attractors. Under 

synchronous update, one of these attractors is not reachable from any other state. Under 

asynchronous update, however, most states can reach either attractor. Because these two 

attractors have all three nodes in opposite states, this gives rise to a large RMS difference in 

average node values, which propagates through much of the network.

6. Cortical Area Development

Cortical Area Development ( ) model [42] aims to explain how interactions among a 

morphogen and four transcription factors lead to their characteristic expression pattern 

during mouse cerebral cortex development. The two poles of the cortex are represented 

by different initial conditions. The model uploaded to the Cell Collective was featured in 

[42] as a previously hypothesized model that does not recapitulate the expected biological 

result. We analyzed the model on the Cell Collective as well as one of the successful models 

reported in [42]. Both are bistable, with one attractor being much more likely than the other 

under synchronous update; under asynchronous update, the two attractors are more equally 

balanced. The state transition graph of the Cell Collective version is shown in panel D of 

Fig. 10. The state transition graph of the more successful model exhibits similar behavior, 

but the sizes of the two attractor basins are interchanged. The model in the Cell Collective 

is not successful under either update; the other model requires asynchronous update for 

success. Thus, the biological interpretation of the improved model is strongly dependent on 

update scheme.

7. Apoptosis Network

The Apoptosis Network ( ) model [43] of Mai and Liu describes cancer cells’ decision 

between apoptosis and survival. Mai and Liu used synchronous update and reported that 

both phenotypes are possible under each combination of growth factor and tumor necrosis 

source nodes. We confirm this and identify a three-node subnetwork that determines the 

phenotype,

Cas3⋆ = Cas6 ∧ ¬IAP,
Cas6⋆ = Cas3 ∧ ¬IAP,
IAP⋆ = ¬Cas3 ∨ ¬Cas6 .

(D5)
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Apoptosis occurs when Cas3 = Cas6 = 1 and IAP = 0, while Cas3 = Cas6 = 0 and IAP = 1
lead to survival. Our analysis with CUBEWALKERS found that the outcome of both the full 

model and this subnetwork strongly depends on update scheme: apoptosis is twice as 

likely under asynchronous update (see panel E of Fig. 10). In the full model, changing the 

update scheme changes whether survival or apoptosis is more likely. Despite this dramatic 

difference, enough nodes in the network take the same value in both attractors that the 

network’s average node values overall are moderately robust to update scheme. Indeed, the 

model has an RMS difference in average node values that, though higher than the median, is 

quite low in absolute terms (near 0.1; see Fig. 3).

FIG. 11. 
Fragility of a four-node reduced version of the Human Gonadal Sex Determination model 

of [48]. Panel A depicts the interaction network. Each node symbol contains the update 

function of the node. Blue edges ending in filled circles indicate positive regulation, and red 

edges ending in open circles denote negative regulation. Panel B shows the state transition 

graph under the synchronous update. Attractor states are indicated by thick borders. The 

basin of attraction of each attractor is highlighted by the same color as the attractor. State 

transitions are shown with black arrows, and orange double-sided arrows indicate state pairs 

that are related by single-node perturbations. These are the transitions that can arise from 

single-node perturbations and that lead to different long-term behavior than is observed 

without perturbation. The thickness of each orange edge indicates the Hamming distance 

between the corresponding attractors. Panel C shows how to calculate the fragility of this 

reduced model exactly using the information in panel B.

Thus we have observed that the attractors and average node values in this model are robust 

to timing perturbation, but the biological interpretation of the dynamics is only partly 

conserved across update schemes.

8. Human Gonadal Sex Determination

The Human Gonadal Sex Determination ( ) model [48] describes the gene regulatory 

network that controls the differentiation of the gonadal primordium towards testes or ovaries 

in the early stages of embryonic development. The original article reported three point 

attractors; in addition to the two expected ones, each with a basin of almost 50% under 

synchronous update, there is a third attractor, corresponding to disgenetic testes, whose 

basin is less than 1%. We find that under asynchronous update, the basin of the two expected 
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attractors decreases and the basin of the third attractor increases. We note that this model has 

high fragility φa, f ≈ 1.1, and φs, f ≈ 1.5 for synchronous and asynchronous update; the model 

has no source nodes). Fragile models such as this are characterized by multiple basins of 

attraction with attractors that differ in many nodes. When a node of the system is perturbed, 

the system has a tendency to enter a different basin of attraction, causing its converged 

average node values to be substantially different than those of the unperturbed trajectory.

A four-node reduced version of the Human Gonadal Sex Determination model ( ) illustrates 

this property,

CTNNB1⋆ = W NT4 ∧ ¬SRY ,
SOX9⋆ = ¬W NT4 ∧ SOX9 ∧ ¬CTNNB1,

SRY ⋆ = ¬CTNNB1 ∧ (SOX9 ∨ SRY ),
W NT4⋆ = ¬SOX9 ∧ ¬SRY .

(D6)

This reduced model has three attractors, one of which has a basin of attraction much larger 

than the others (11 states versus 2 and 3 states). The two attractors with smaller basins of 

attraction are highly fragile; a perturbation to a single node has a 75% chance of altering the 

attractor basin in four out of five of these states, and a 50% chance of doing so in the fifth 

state. Though these attractors have small basins, collectively they make up just under a third 

of the state space. The resulting fragility in this reduced model is 1.125 under synchronous 

update. We conjecture that the abundance of overlapping mutual inhibition loops in the 

reduced model contributes to the fragility of the attractor basins. See Fig. 11 for a detailed 

visualization of the fragility of this reduced system.

APPENDIX E: SOURCE NODES AND CONSTANT NODES ARE RARE IN 

RBNs

Source nodes are rare in most types of RBN ensembles. To illustrate this, consider an RBN 

ensemble with a specified in-degree distribution, P(k), and assume that a node with a given 

in-degree has its regulators chosen uniformly at random. We also assume that regulatory 

functions are chosen as in the N − K model with bias p. In such a random model, the 

probability that a node with in-degree k self-regulates is k/N, for a network of N nodes. The 

probability that the source update function [e.g., fi(x) = xi] is chosen is p2(k − 1)
(1 − p)2

(k − 1)

because for the half of the 2k possible inputs in which xi = 1, an output of 1 must be chosen, 

while for the other half, 0 must be chosen. Therefore, the probability that a node with k
regulators and bias p is a source node is

Psource(k, p) = kσ2k

N ,

(E1)

where we have used the bias variance, σ2 = p(1 − p), to simplify the expression.
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Thus, the probability that a specific node is a source node is ∑k = 0
∞ P source(k, p)P(k). By 

assuming that node properties are generated independently, the expected number of source 

nodes can be calculated by multiplying by N:

〈nsource〉 = ∑
k = 0

∞
P(k)kσ2k

,

(E2)

Notably, this expression is independent of N. This is because there are two competing 

effects as the network size grows that exactly cancel out on average: (i) with more nodes, 

there are more potential source nodes, and (ii) with more nodes, there are more potential 

regulators for each node, making it less likely that a node selects itself as a regulator.

We now put an upper bound on nsource . The largest σ can be is 1/2, which is obtained 

for p = 1/2. This allows us to write nsource ⩽ ∑k = 0
∞ P(k)k2−2k

. The expression k2−2k
 is 

maximized for k = 1. Substituting this provides a numerical upper bound on the expected 

number of source nodes

〈nsource〉 ⩽ 1/4 .

(E3)

Because the expected number of source nodes is bounded above by 1/4, and because the 

number of source nodes in any finite network must be a non-negative integer, we expect 

that in any ensemble of finite random networks (generated according to the assumptions 

above), more than 75% completely lack source nodes. This stands in stark contrast to the 

Cell Collective; only nine of these 72 models are source-free, and the average number of 

source nodes in these networks is 4.94 (median 3, maximum 33) (see Fig. 12).

A similar calculation can be performed to determine the expected number of constant nodes 

in these models. The probability that a node with k regulators has an update function equal 

to 1 is p2k
 (because an output must be chosen for all 2k input configurations). Similarly, the 

probability that this node has the update function 0 is (1 − p)2
k
. Thus, the expected number 

of constant nodes is

〈nconstant〉 = N ∑
k = 0

∞
P(k)(p2k

+ (1 − p)2
k

) .

(E4)

For p = 1 or 0, all nodes are constant; for p = 0.5, the fraction of constant nodes is minimized 

and can be made arbitrarily small by weighting the in-degree distribution toward higher k.
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FIG. 12. 
The distribution of the Cell Collective models based on the number of source nodes (top) 

and the ratio of the number of source nodes to the total number of nodes (bottom).

APPENDIX F: SUPPLEMENTARY FIGURES

Figures 13–19 present additional information regarding the distributions of measures 

discussed in the main text.
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FIG. 13. 
Comparison of key measures for the 18 models in the Cell Collective that were altered to 

attain a better agreement with the originally published models.
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FIG. 14. 
Systematic evaluation of the dependence of the Derrida coefficient δ on the update scheme 

and on source node perturbations. The ensemble of Cell Collective models shows a general 

agreement between the Derrida coefficients obtained for synchronous and asynchronous 

update (top panels). When source nodes not candidates for perturbation, the Derrida 

coefficient dramatically decreases (bottom panels). For example, note that three cancer drug 

models (plus signs) lie far from the diagonal in the lower two panels, indicating that these 

models are highly affected by perturbations to source nodes. This is to be expected, as the 
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source nodes in these models represent known cancer drugs that were selected because they 

have a tremendous impact on the behavior of cancer cells.

FIG. 15. 

Relationships of the Derrida coefficient δ with the final Hamming distance ℎ∞ and the 

fragility φ.
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FIG. 16. 

Comparison of different ways to compute ℎ∞. The ensemble of Cell Collective models 

shows an overall agreement between the final Hamming distances obtained for synchronous 

and asynchronous update (top panels). Exceptions include models that exhibit significant 

phase shifts under synchronous update. When source nodes are not candidates for 

perturbation, the final Hamming distance dramatically decreases (bottom panels).

Park et al. Page 39

PRX Life. Author manuscript; available in PMC 2024 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 17. 
Comparison of different ways to compute q. There is a general agreement between the 

quasicoherences obtained for synchronous and asynchronous update (top panels). Making 

the source nodes not candidates for perturbation dramatically decreases the fragility (bottom 

panels).
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FIG. 18. 
Comparison of different ways to compute φ. There is a general agreement between the 

fragilities obtained for synchronous and asynchronous update (top panels). Making the 

source nodes not candidates for perturbation dramatically decreases the fragility (bottom 

panels).
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FIG. 19. 

Comparison of the final Hamming distance ℎ∞ and the fragility φ. The final Hamming 

distance is always larger than or equal to the fragility in both update schemes. The difference 

is much more prominent in the synchronous update in which any phase shift is permanent, 

compared to the asynchronous update in which the stochasticity can disperse it.

APPENDIX G: SUPPLEMENTARY TABLES

1. Modifications to Cell Collective models

Tables II–IV present information regarding modifications we have made to models in the 

Cell Collective.

TABLE II.

Modifications to account for source nodes that express a cellular context.

Model name PMID Modification

Bortezomib Responses in 
U266 Human Myeloma 
Cells

26163548 Constant source nodes: SHP1 = 0 and TNFA = TNFAR = X = 1.

CD4 T cell signaling 25538703 Constant source node: CAV1_ACTIVATOR = 0.

EGFR & ErbB Signaling 19662154 Constant source nodes: mkp = pp2a = pp2b = 0 and erbb1 = erbb2 = erbb3 
= erbb4 = pten = ship2 = csrc = pdk1 = esp8r = mtorr = pi3kr = sos1r = 1.

Glucose Repression 
Signaling 2009

19144179 Constant source nodes: GAL11 = GAL2 = GAL80 = GLC7 = GRR1 = 
MALT = MIG1 = REG1 = RGT1 = RGT2 = SNF1 = SNF3 = SNF4 = 
STD1 = YCK1_2 = 1.

Guard Cell Abscisic Acid 
Signaling

16968132 Constant source nodes: ABH1 = ERA1 = GCR1 = 1.

HGF Signaling in 
Keratinocytes

22962472 Constant source nodes: AKAP12 = PTEN = DUSP1 = 0 and PAI-1 = 1.
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Model name PMID Modification

HIV-1 interactions with T 
Cell Signalling Pathway

25431332 Constant source nodes: RASA = 0 and antigen = BCAR1 = CD45 
= Chemokine = CRKL = DLGH1 = GADD45 = GRKL = ICOS = 
IKBNFKB = PDCD1_PD1 = 1.

IL-1 Signaling 21968890 Constant source nodes: irakm = pten = sil1r12 = smyd88 = socs1 = socs3 
= 0 and abin2 = ck2 = ikka = ikkb = mtorc2 = pdk1 = 1.

IL-6 Signalling 21968890 Constant source nodes: cyt_ptpe = gp130m = nfkb = phlpp = pias1 = pias3 
= pten = ros = ship = sirp1a = slim = 0 and gab1_kin = mtor = pdk1 = 1.

T Cell Receptor Signaling 17722974 Constant source node: lckr_input=1.

T-LGL Survival Network 
2008

18852469 Constant source nodes: TAX = CD45 = 0 Misspelling fixed: IFN should be 
IFNG in CREB rule.

T-LGL Survival Network 
2011

22102804 Constant nodes: TAX = CD45 = 0.

BT474 Breast Cell Line 
Long-term ErbB Network

24970389 The isolated source node BAX is removed.

HCC1954 Breast Cell Line 
Long-term ErbB Network

24970389 The isolated source nodes BAX, Nfkb are removed.

Septation Initiation Network 26244885 Constant source nodes: ppc89 = 1 and CK1 = etd1 = ras1 = 0.

TABLE III.

Modifications to avoid invalid combinations of source node values.

Model Name PMID Modification

Stomatal 
Opening Model

27542373 As CO2_high=1 & CO2=0 is not a valid combination, we replaced CO2 by (CO2 || 
CO2_high) so that CO2_high=1 & CO2=0 is considered as CO2_high=1 & CO2=1.

Septation 
Initiation 
Network

26244885 As cdk_0, cdk_L, cdk_H represent levels of cdk and only one should be active, we 
removed the source node cdk_0 and replaced it in the rules by (!cdk_L && !cdk_H), 
we replaced cdk_L by (cdk_L && !cdk_H) so that combinations such as cdk_L=1 and 
cdk_H=1 are considered as cdk_H=1. We made cdc7 regulate sid2-mob1 as in the 
original paper.

TABLE IV.

Modifications to remove aggregate source nodes and apply the original paper’s cellular 

context.

Model Name PMID Modification

Signaling in 
Macrophage 
Activation

18433497 Constant nodes: BAG4 = GAS2 = DNA = IRF4 = IFNGR2 = BCL3 = ProCASP10 
= TICAM1 = NOS2Agene = MAP3K7IP2 = IKBKE = TRADD = CFLAR = JAK1 
= EP300 = PTPN2 = BID = FAS = TLR9 = TLR7 = DAXX = SOCS1 = TLR5 = 
ProCASP8 = IFNGR1 = TRAF6 = CD40 = DFFA = TNFRSF17 = TBK1 = ProCASP4 
= TIRAP = APAF1 = Proteasome = PRKRA = IL1R1 = MAP3K7IP1 = TLR2 = 
PRKCZ = CHUK = TLR3 = FAF1 = TICAM2 = PTP = IKBKB = FADD = MYD88 
= PARP = TOLLIP = IRAK2 = TNFRSF10B = TNFRSF1B = LMNA = HSPA1A = 
ProCASP1 = IRF9 = TRAF5 = NFKB2p100 = SPI1 = SOCS3 = MAP3K7 = TYK2 
= TLR6 = TRAF3 = TRAF2cytoplasm = RIPK3 = ProCASP2 = TNFRSF10A = 
TNFRSF1A = IRAK4 = RPS6KA5 = Ub = IKBKG = PRKCD = IRAK1 = BIRC2 
= IFNAR2 = CREBBP = IFNAR1 = JAK2 = ATF2 = RELB = RIPK1 = 1. We removed 
the merged node External_Activator implemented in the Cell Collective version.

T Cell 
Receptor 
Signaling

17722974 We removed the merged source nodes unknown_input, unknown_input2, and 
unknown_input3 implemented in the Cell Collective version and fixed their targets in 
the states indicated in the original paper: akap79 = calpr1 = cdc42 = gap = pten = ship1 
= 0 and bcl10 = card11 = ccblr = cd45 = gadd45 = lckr = malt1 = rac1r = 1.

Yeast 
Apoptosis

23233838 Constants nodes: DRE2_TAH18 = AIF1_MT = EMC4 = NDI1 = MCD1_MT = 
STM1_CYT = CDC48 = MMI1 = FVY10 = POR1_2 = SRO7 = SOD2 = SNO1 = 
SVF1 = MDV1= FIS1 = 1. We removed the merged node HK.
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2. Model characteristics

Tables V–XIV present summary information for the models analyzed in this study.

TABLE V.

Cancer models.

Model Name PMID Nodes Source 
Nodes

Mean 
Regulators

δs, p φa, f

Aurora Kinase A in Neuroblastoma ( ) 26616283 23 4 2.0435 1.0504 0.9015

Colitis-associated colon cancer ( ) 26446703 70 1 2.2000 0.9867 1.5197

IGVH mutations in chronic lymphocytic 
leukemia

26088082 91 25 1.3736 0.9615 0.0014

Mammalian Cell Cycle 16873462 20 1 2.5500 0.8457 0.1941

MAPK Cancer Cell Fate Network 24250280 53 4 2.0377 1.0051 0.0105

Pro-inflammatory Tumor 
Microenvironment in Acute 
Lymphoblastic Leukemia

27594840 26 2 3.1154 0.9644 0.0034

T-LGL Survival Network 2008 18852469 60 4 3.2833 0.9202 0.1812

T-LGL Survival Network 2011 Reduced 
Network

22102804 18 0 2.3889 1.0125 0.3957

T-LGL Survival Network 2011 22102804 60 4 3.3167 0.8886 0.1285

Tumour Cell Invasion and Migration ( ) 26528548 32 2 4.9375 0.7222 0.6563

TABLE VI.

Cancer Drug Response models.

Model Name PMID Nodes Source 
Nodes

Mean 
Regulators

δs, p φa, f

Bortezomib Responses in U266 Human 
Myeloma Cells

26163548 67 1 1.8955 0.9147 0.2231

BT474 Breast Cell Line Long-term ErbB 
Network

24970389 24 5 3.0417 0.9439 0.3230

BT474 Breast Cell Line Short-term ErbB 
Network

24970389 16 5 3.1875 0.7614 0.1873

HCC1954 Breast Cell Line Long-term 
ErbB Network

24970389 23 4 3.1304 0.9643 0.4022

HCC1954 Breast Cell Line Short-term 
ErbB Network

24970389 16 5 3.1875 0.7841 0.1934

SKBR3 Breast Cell Line Long-term 
ErbB Network

24970389 25 4 3.4000 0.9458 0.2841

SKBR3 Breast Cell Line Short-term 
ErbB Network

24970389 16 5 2.8750 0.7908 0.3197

Treatment of Castration-Resistant 
Prostate Cancer

28361666 42 14 1.5476 0.9964 0.0000
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TABLE VII.

Cell Cycle models.

Model Name PMID Nodes Source 
Nodes

Mean 
Regulators

δs, p φa, f

Arabidopsis thaliana Cell Cycle ( ) 26340681 14 0 4.7143 1.2722 0.0000

Budding Yeast Cell Cycle 2009 23049686 18 0 3.2222 1.1099 0.0003

Budding Yeast Cell Cycle 19185585 20 4 2.3000 1.0129 0.1266

Cell Cycle Transcription by Coupled 
CDK and Network Oscillators ( )

18463633 9 0 2.1111 0.9414 0.0000

FA BRCA pathway 22267503 28 0 4.3571 1.0143 0.0036

Fanconi anemia and checkpoint 
recovery

26385365 15 0 4.2667 0.9783 0.0045

Mammalian Cell Cycle 2006 19118495 10 1 3.5000 1.0135 0.0000

Septation Initiation Network 26244885 30 2 1.6333 0.9014 0.2923

TABLE VIII.

Development and Differentiation models.

Model Name PMID Nodes Source 
Nodes

Mean 
Regulators

δs, p φa, f

B cell differentiation 26751566 22 5 2.0000 1.0003 0.2118

Cardiac development 23056457 15 2 2.6000 0.9866 0.1196

CD4+ T Cell Differentiation and 
Plasticity

30116195 18 6 4.6667 0.7214 0.4048

CD4+ T cell Differentiation 26090929 38 9 2.6316 0.9837 0.2866

Cortical Area Development ( ) 20862356 5 0 2.8000 0.8011 0.9384

Differentiation of T lymphocytes 23743337 50 9 2.1200 0.9806 0.4199

Human Gonadal Sex Determination ( ) 26573569 19 0 3.9474 1.0490 1.1484

Lymphoid and myeloid cell 
specification and transdifferentiation

28584084 33 2 2.8788 1.0266 0.7574

Lymphopoiesis Regulatory Network 26408858 81 14 2.1235 0.9500 0.2332

PC12 Cell Differentiation 27148350 62 1 1.7581 0.9323 0.0162

T cell differentiation 6542429 23 4 1.6522 1.0314 0.6419

TABLE IX.

Infection and Microbiome models.

Model Name PMID Nodes Source 
Nodes

Mean 
Regulators

δs, p φa, f

B. bronchiseptica & T. retortaeformis 
coinfection 2253585   53   1 2.5660 1.0004 0.5127

Bordetella bronchiseptica 2253585   33   0 2.3939 1.0137 0.0453

Influenza A Virus Replication Cycle 23081726 131 11 2.3282 0.9007 0.0313

Metabolic Interactions in the Gut 
Microbiome ( )

26102287   12   4 2.5833 1.0017 0.2718
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Model Name PMID Nodes Source 
Nodes

Mean 
Regulators

δs, p φa, f

Trichostrongylus retortaeformis 2253585   26   1 2.2692 1.0117 0.5418

TABLE X.

Metabolism models.

Model Name PMID Nodes Source 
Nodes

Mean 
Regulators

δs, p φa, f

Cholesterol Regulatory Pathway 19025648 34 2 1.2647 0.9927 0.0000

Glucose Repression Signaling 2009 19144179 73 3 1.3699 0.7966 0.0193

Iron acquisition & oxidative stress 
response in A. fumigatus

25908096 22 2 1.8182 1.0373 0.0001

Lac Operon 21563979 13 3 1.9231 0.9974 0.0952

Regulation of the L-arabinose operon 
of Escherichia coli ( )

28639170 13 4 1.6154 1.0379 0.0492

TOL Regulatory Network 23171249 24 10 2.4167 0.9347 0.0000

TABLE XI.

Models of Drosophila melanogaster signaling pathways.

Model Name PMID Nodes Source 
Nodes

Mean 
Regulators

δs, p φa, f

FGF pathway of Drosophila Signalling 
Pathways

23868318 23   9 1.3478 0.9785 0.0000

HH Pathway of Drosophila Signaling 
Pathways

23868318 24 13 1.8750 0.9284 0.0000

Processing of Spz Network from the 
Drosophila Signaling Pathway

23868318 24   6 1.4167 0.9460 0.0000

Toll Pathway of Drosophila Signaling 
Pathway

23868318 11   2 1.1818 1.0003 0.0000

VEGF Pathway of Drosophila 
Signaling Pathway

23868318 18   8 1.4444 0.9604 0.0000

Wg Pathway of Drosophila Signalling 
Pathways

23868318 26 14 1.6538 0.9803 0.0019

TABLE XII.

Models of signal transduction relative to immune system cells.

Model Name PMID Nodes Source Nodes Mean Regulators δs, p φa, f

CD4 T cell signaling 25538703 188 33 2.0160 0.9713 0.1535

HIV-1 interactions with T Cell 
Signaling Pathway 25431332 138   2 2.2029 0.8771 0.1888

IL-1 Signaling 21968890 118   2 1.8644 0.8375 0.0000

IL-6 Signalling 21968890   86   1 1.7442 0.7495 0.0000

Signaling in Macrophage Activation 18433497 320 18 1.4125 0.7113 0.0066

T Cell Receptor Signaling 17722974   98   3 1.5102 0.8200 0.0015
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Model Name PMID Nodes Source Nodes Mean Regulators δs, p φa, f

T-Cell Signaling 2006 16464248   40   3 1.3750 0.9857 0.0071

TABLE XIII.

Models of signal transduction in stress, damage, and homeostasis.

Model Name PMID Nodes Source Nodes Mean Regulators δs, p φa, f

Apoptosis Network ( ) 19422837 41 2 1.8293 1.0118 0.3297

Death Receptor Signaling 20221256 28 3 1.7143 1.0350 0.8377

Guard Cell Abscisic Acid Signaling 16968132 44 1 1.7955 0.9378 0.1277

Oxidative Stress Pathway 23134720 19 1 1.7368 0.9839 0.0001

Senescence Associated Secretory 
Phenotype 29206223 51 2 1.9216 0.9844 0.2714

Yeast Apoptosis 23233838 72 12 1.5278 0.7210 0.0024

TABLE XIV.

Other models of signal transduction.

Model Name PMID Nodes Source 
Nodes

Mean Regulators δs, p φa, f

EGFR & ErbB Signaling 19662154 104 13 2.2981 0.8128 0.0074

HGF Signaling in Keratinocytes 22962472   68   2 1.5441 0.9361 0.2023

Neurotransmitter Signaling Pathway 17010384   16   2 1.3750 0.9810 0.0234

Signal Transduction in Fibroblasts 
( )

18250321 139   9 3.9640 1.1178 0.3799

Stomatal Opening Model 27542373   49   5 3.5510 1.1772 0.0477
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FIG. 1. 
Legend indicating model categories (marker shape) and specific highlighted models (marker 

color).
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FIG. 2. 
Comparison of four perturbation response measures (bold box borders) for a one-node 

oscillator. The unperturbed oscillator alternates between two states: its initial state A, which 

could be 0 or 1, and the opposite state, ¬A, which is 1 if the initial state is 0, and 0 if the 

initial state is 1. The perturbed trajectory begins with the oscillating node in the opposite 

state compared to the unperturbed trajectory, but otherwise its time evolution proceeds in 

the same fashion. At each time step t, the Hamming distance ℎt is computed. In the special 

case of t = 1, ℎ1 is the Derrida coefficient δ, which evaluates to 1 in this case. Indeed, 
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ℎt = 1 for all t, so the asymptotic average of the Hamming distance, which we call the 

final Hamming distance (denoted ℎ∞) evaluates to 1 as well. Alternatively, we can compute 

and compare the average behavior of the two trajectories. In both cases, the node is in the 

0 state for half of the time steps, and in the 1 state in the other half. Thus, the average 

node value is 0.5 for both trajectories, and the fragility φ, defined as the difference in these 

averages, is 0. Furthermore, we can consider a more coarsegrained averaging, where we 

compute the probability that a randomly perturbed node (in this example there is only one 

node to choose from) results in a different quasiattractor, i.e., a different pattern of fixed 

and oscillating nodes; the complement of this probability is a measure of robustness we 

call the quasicoherence. In this case, perturbing the initial state always results in the same 

quasiattractor (in which the sole node oscillates), so the quasicoherence is 1.
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FIG. 3. 
Distribution of update dependence in the Cell Collective. The root mean squared (RMS) 

difference between the node values when using synchronous or asynchronous update, as 

defined in Sec. II A, is shown. The peak near zero indicates a high degree of timing 

robustness in the Cell Collective models. Representative models are indicated by symbols 

according to Fig. 1.
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FIG. 4. 
Short- and long-term perturbation responses in the Cell Collective measured in a phase-

sensitive way. In the “Robust” regime (lower left quadrant) both short-term and long-term 

responses are below 1, which indicates perturbation extinction and is characteristic of 

ordered dynamics. In the “Sensitive” regime (upper right quadrant) both short-term and 

long-term responses are above 1. This indicates perturbation growth, which, in the extreme 

case, is characteristic of disordered or chaotic dynamics. The other two quadrants indicate 

cases of disagreement between the short-term and long-term responses. The short-term 

perturbation response δ has a slight correspondence with the long-term perturbation response 

under the specific setting when ℎ∞ is monitored and synchronous update is used, in which 

the phase shifts are conserved. The relationship between short- and long-term responses 

is stronger when source nodes are fixed (right panel). The dashed line indicates the y = x
diagonal. The symbols indicate the model categories and highlighted models as defined in 

Fig. 1.
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FIG. 5. 
Scatterplot of the synchronous quasicoherences of the Cell Collective models when source 

nodes are (x axis) or are not (y axis) candidates for perturbation (the asynchronous 

distribution is available in Fig. 17 of Appendix F). When the values of source nodes are 

fixed, the quasicoherence values are tightly clustered around 1, indicating a high degree of 

phenotypic robustness. The symbols indicate the model categories and highlighted models as 

defined in Fig. 1.
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FIG. 6. 
Short- and long-term perturbation responses in the Cell Collective measured in a phase-

insensitive way. In the “Robust” regime (lower left quadrant), both short-term and long-

term responses are below 1, which indicates perturbation extinction and is characteristic 

of ordered dynamics. In the “Sensitive” regime (upper right quadrant), both short-term 

and long-term responses are above 1. This indicates perturbation growth, which, in the 

extreme case, is characteristic of disordered or chaotic dynamics. The other two quadrants 

indicate cases of disagreement between the short-term and long-term responses. In contrast 

with the traditional approach depicted in the left panel of Fig. 4, this figure illustrates 

perturbation response when source nodes and phase shifts are accounted for. Most models 

show a substantially more robust perturbation response when these factors are taken into 
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consideration. The symbols indicate the model categories, and highlighted models as defined 

in Fig. 1.
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