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Abstract

A major issue in the clinical management of epilepsy is the unpredictability of seizures. Yet, 

traditional approaches to seizure forecasting and risk assessment in epilepsy rely heavily on raw 

seizure frequencies, which are a stochastic measurement of seizure risk. We consider a Bayesian 

non-homogeneous hidden Markov model for unsupervised clustering of zero-inflated seizure 

count data. The proposed model allows for a probabilistic estimate of the sequence of seizure 

risk states at the individual level. It also offers significant improvement over prior approaches 

by incorporating a variable selection prior for the identification of clinical covariates that drive 

seizure risk changes and accommodating highly granular data. For inference, we implement an 

efficient sampler that employs stochastic search and data augmentation techniques. We evaluate 

model performance on simulated seizure count data. We then demonstrate the clinical utility 

of the proposed model by analyzing daily seizure count data from 133 patients with Dravet 

syndrome collected through the Seizure Tracker™ system, a patient-reported electronic seizure 

diary. We report on the dynamics of seizure risk cycling, including validation of several known 

pharmacologic relationships. We also uncover novel findings characterizing the presence and 
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volatility of risk states in Dravet syndrome, which may directly inform counseling to reduce the 

unpredictability of seizures for patients with this devastating cause of epilepsy.

Keywords and phrases:

Bayesian inference; Count data; Dravet syndrome; Epilepsy; Hidden Markov Models; Markov 
chain Monte Carlo; Seizure risk; Zero-inflation

1. Introduction.

Epilepsy, a chronic neurological disorder, is characterized by frequent, unpredictable 

seizures arising from abnormal electrical disturbances in the brain. This disorder affects 

over 60 million people world-wide, which is approximately equivalent to a 1% disease 

prevalence (WHO, ILAE and IBE, 2019). The unpredictable nature of seizures not only 

makes treatment of epilepsy difficult but leads to increased morbidity and mortality and 

severely reduces patients’ quality of life (Arthurs et al., 2010). Currently, clinical decision-

making in epilepsy depends heavily on raw seizure counts and decisions about treatment 

are based primarily on whether the seizure frequency has increased or decreased after 

an intervention. It is recognized, however, factors other than treatment, such as cycles in 

underlying epileptiform discharges, may modulate the likelihood of seizures (Baud et al., 

2020).

It is increasingly recognized that seizures are stochastic realizations of periods of heightened 

seizure risk (Chiang et al., 2018; Baud et al., 2020); given any underlying seizure risk 

level, the overt number of seizures that a patient has can vary due to natural probabilistic 

variation and the inherent unpredictability of seizures, making clinical prediction of seizures 

challenging (Goldenholz et al., 2018; Chiang et al., 2018). Consequently, raw seizure counts 

are only a surrogate measure and recognized not to be an accurate measure of a patient’s 

true seizure risk. This concept was first formalized by Chiang et al. (2018), who introduced 

the notion of discrete unknown seizure risk “states” and showed that seizure risk can be 

estimated as a latent quantity based on the seizure counts. The validity of this conceptual 

approach to seizure risk has been validated against specialized epilepsy clinician experts 

(Chiang et al., 2020) and confirmed by empiric observations from chronic intracranial 

electrocorticography data, which have demonstrated that seizures tend to occur at specific 

phases of underlying fluctuations in interictal epileptiform activity (Baud et al., 2018; 

Karoly et al., 2018; Rao et al., 2020; Proix et al., 2020; Leguia et al., 2021).

Here, we build upon the literature described above by proposing a Bayesian non-

homogeneous hidden Markov model for zero-inflated count data that yields substantially 

increased flexibility for accommodating highly granular data and that allows for 

simultaneous selection of high-dimensional covariates to identify drivers of seizure risk 

cycles. To handle high proportions of zeros as well as overdispersion, we model daily 

seizure counts using a zero-inflated negative binomial (ZINB) distribution. We incorporate 

the external clinical covariates into the estimation of both emission and transition 

probabilities through logistic regression frameworks that allow additional flexibility across 

different subjects and time points, and employ variable selection priors to simultaneously 
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identify the significant covariates. The proposed model offers significant advances as it 

allows for (1) high temporal granularity of the count data, (2) fine-tuned and personalized 

risk assessment via the modeling of the effect of subject-level clinical factors on both 

state transitions and the current expected number of seizures, and (3) variable selection 

to simultaneously identify covariates that drive seizure risk changes. These aspects are 

essential to developing a generalizable model capable of modeling seizure risk data in 

diverse datasets.

We optimize inference by implementing a Markov chain Monte Carlo method that 

uses stochastic search methods and data augmentation techniques for efficient sampling 

(Savitsky, Vannucci and Sha, 2011; Polson, Scott and Windle, 2013). We evaluate model 

performance on simulated seizure count data. We then demonstrate the clinical utility of 

our model by analysing daily clinical seizure counts recorded by patients with a severe 

genetic cause of epilepsy, Dravet syndrome (DS), a catastrophic developmental epileptic 

encephalopathy affecting one in 15,700 infants (Wu et al., 2015). Infants with DS often 

present with the first convulsive seizure within the first year of life. Shortly thereafter, 

multiple other seizure types emerge; eventually, patients develop refractory convulsive 

seizures, multiple seizure types, and intellectual disability. Mortality in Dravet syndrome 

is high and up to 17% of patients with Dravet syndrome die before adult-hood, with 15–61% 

of deaths attributable to sudden unexpected death in epilepsy (SUDEP) (Cooper et al., 

2016). The single greatest risk factor for SUDEP is the presence of generalized tonic-clonic 

seizures (GTCs) (Harden et al., 2017). Patients with more than three GTCs in the preceding 

year have more than an eight-fold increased risk of death from SUDEP (Walczak et al., 

2001). Understanding patterns in GTC cycling as well as which anti-seizure medications 

(ASMs) and triggers reduce or increase the likelihood of transitioning to periods of lowered 

seizure risk for GTCs is of interest to guide understanding and prevention of SUDEP (Ayub 

et al., 2020). However, the stochastic nature of seizures makes this task difficult.

In our analysis, we consider data from 133 patients with Dravet syndrome from one 

of the world’s largest seizure diary databases, Seizure Tracker LLC1, and a total of 36 

potential variables that may drive seizure risk. Our approach identifies the presence of 

three distinct seizure risk states in Dravet syndrome through which patients cycle, that 

roughly equate to a states reflecting low, moderate, and high propensity for GTCs. We report 

on the volatility and time dynamics of these states in order to contribute to knowledge 

on the natural history of seizure risk cycling in Dravet syndrome. Lastly, we show that 

our model accurately recovers several known pharmacologic relationships of ASMs in 

Dravet syndrome. This application improves understanding of seizure risk cycling in Dravet 

syndrome and illustrates the usefulness of our approach more broadly for individualized 

investigations of seizure risk cycling in epilepsy.

In Section 2 below we detail the proposed model and the inference strategy. In Section 3 we 

utilize simulated seizure count data to evaluate performances of our model. In Section 4 we 

report on the results from the analysis of daily seizure counts data from patients with Dravet 

syndrome and discuss our findings. We give concluding remarks in Section 5.

1Seizure Tracker™ - Your comprehensive resource for tracking and sharing seizure information, https://seizuretracker.com/.
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2. Methods.

A hidden Markov Model (HMM) is a statistical model which assumes that a system is in 

one of many latent (unobservable) states at any point in time (Rabiner, 1989). The system 

transitions from one state to another over time, and observations are generated from an 

emission distribution, conditional on the latent state sequence. Fig 1 depicts our proposed 

HMM, which we call ZINB-NHMM-BVS, for seizure risk assessment. The latent layer 

allows a probabilistic estimate of the sequence of seizure risk states at an individual level. 

The process in which observed seizure counts are emitted from a statistical distribution 

dependent on the risk state also allows for a degree of natural variance in counts to 

be accounted for. Our model formulation additionally incorporates clinical covariates and 

employs variable selection to perform simultaneous inference on variables significantly 

associated with changes in latent risk.

We now describe our model, choice of priors and MCMC algorithm for posterior inference 

in detail.

2.1. Bayesian Non-Homogeneous HMM for Zero-Inflated Count Data.

We assume to have data observed on N patients, with each patient i ∈ 1, …, N  recording 

daily seizure counts over T i days. Let Y it ∈ 0,1, …  be the number of seizures of patient i
at time t, for i = 1, …, N and t = 1, …, T i. The number of days recorded per patient and the 

initial starting day for each patient do not need to be the same. Let Wit = W it1, …, W itp  be the 

values of p time-varying covariates for patient i at time t, and Zi = Zi1, …, Ziq  the values of q
fixed covariates. Finally, let Xi = Wi, 1q × 1Zi  be the q + p × T i  stacked matrix of all clinical 

covariates for patient i.

To accommodate the temporal structure in the seizure count process, we model the seizure 

counts as a K-state non-homogeneous first-order HMM, where K ∈ ℕ. Let ξit denote the 

latent seizure risk state of patient i at time t. By the Markov property, the probability of 

patient i transitioning to a specific state k ∈ 1, …, K  at time t depends only upon the 

hidden state at the previous time point, ξi t − 1 . Furthermore, in a non-homogeneous HMM, the 

transition probabilities vary over time as a function of the covariates. Specifically, we use a 

multinomial logit regression to represent these transition probabilities as

Pr ξit = k ∣ ξi, t − 1 = k′, Xi, t − 1, βk′ = exp Xi, t − 1
T βk′k

1 + l = 1
K − 1exp Xi, t − 1

T βk′l

.

(2.1)

The use of logistic regression to link covariate effects to transition probabilities was 

first proposed by Muenz and Rubinstein (1985), for the case of a two-state Markov 

chain. To maintain model identifiability, we establish a baseline state and set to zero the 

regression coefficients corresponding to transitions into this state. With this representation, 

the coefficient βj, k′k measures the effect of covariate j on the relative likelihood of patients 

transitioning from state k′ to state k, compared to transitioning from state k′ to the 
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predetermined baseline state. Positive (negative) values of βj, k′k indicate that covariate j
increases (decreases) the chance of patients transitioning from state k′ to k over transitioning 

from state k′ to the baseline. Each individual transition from one state to another has its 

own set of regression coefficients. Thus, for p covariates there are a total of K × K − 1 × p
coefficients governing the Markov transitions. An intercept may be modeled by appending 

a vector of ones to the data matrix X. We notice that using fixed regression coefficients for 

transitions from any state into a new state k′ in Eq (2.1) would lead to a more parsimonious 

model, see for example Holsclaw et al. (2017). However, in our case study, separate sets 

of coefficients for each transition are essential as we are primarily interested in identifying 

covariates associated with escalations or de-escalations of seizure risk. In Section “Variable 

Selection Priors” below we employ specialized priors to achieve this objective.

Next we describe the emission distribution of our HMM model. Count data is typically 

modeled using the Poisson, binomial, or negative binomial distributions. The Poisson 

distribution is constrained in that the expected value must be equal to the variance. However, 

daily seizure counts usually exhibit extreme zero-inflation and overdispersion in which 

the variance exceeds the mean (Tharayil et al., 2017). Therefore, we assume that seizure 

counts at each state k follow a zero-inflated negative binomial (ZINB) mixture distribution 

which assumes that, conditional upon being in state k, the observed count is either zero 

with probability pk, or it comes from a negative binomial random variable, with probability 

1 − pk. To facilitate computation, we introduce auxiliary variables Zit that allow us to keep 

track of whether an observation belongs to the negative binomial mixture component or 

the “zero” component, that is Zit ∣ pk Bernoulli pk  where Zit = 1 if Y it = 0 and Zit = 0 if Y it

is negative binomial. We follow Pillow and Scott (2012) and parametrize the negative 

binomial distribution in terms of state-specific dispersion parameters rk and subject- and 

state-dependent probabilities ψitk (equivalent to 1 − success probability) as

p Y it ∣ ψitk, r, ξit = k, Zit = 0 = Γ Y it + rk
Γ rk Y it! 1 − ψitk

rkψitk
Y it .

(2.2)

This parametrization, in particular, allows us to incorporate both subject-level covariates and 

time-varying effects into the emission distributions by letting the probabilities ψitk depend on 

the covariates as

ψitk = exp Xit
Tρk

1 + exp Xit
Tρk

,

(2.3)

with ρk a state-dependent vector of regression coefficients. A separate set of covariates 

than those used for the transition probability regression can be considered, if desired. 

Parametrizing the negative binomial distribution in terms of ψitk instead of the mean yields a 
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closed-form full conditional posterior for the regression coefficients ρ. Mean parameters can 

be easily recovered as μitk = ψitkrk
1 − ψitk

. We can now write our ZINB model as

Y it ∣ ξit = k, r, ψitk, p pk1 Yit = 0 + 1 − pk NB rk, ψitk ,

(2.4)

with NB rk, ψitk  given by Eq (2.2).

2.2. Variable Selection Priors.

We are interested in identifying clinical covariates which are associated with changes in 

seizure risk. We achieve this task by employing variable selection priors (George and 

McCulloch, 1997; Brown, Vannucci and Fearn, 1998). Let us first consider the transition 

probabilities (2.1). We introduce a K × K − 1 × p latent inclusion tensor γ such that γj, k′k = 1
if variable j has a non-zero effect on the likelihood of transitioning from state k′ to state 

k. We then impose a spike-and-slab prior on the regression coefficient βj, k′k, obtained as a 

mixture of a Gaussian distribution (the slab) and a point mass at zero (the spike) as

βj, k′k ∣ γj, k′k, μβ, σβ
2 γj, k′kN μβ, σβ

2 + 1 − γj, k′k δ0 βj, k′k .

(2.5)

We further assume γj, k′k Bernoulli θj, k′k , with a hyperprior on the inclusion probability 

θj, k′k Beta gβ, ℎβ , and then integrate θj, k′k out. Multivariate spike-and-slab prior constructions 

of type (2.5) have been employed in multivariate regression models to identify covariates 

that are associated with individual responses (Stingo et al., 2010). In our framework, this 

construction allows us to select covariates that are associated with specific transitions, from 

one risk state to another one. We note that these inferences are conducted in relation to the 

baseline state. Selection of covariate j as important for transitions from state k′ to state k
implies that the value of covariate j has a significant effect on the likelihood of a patient 

transitioning from state k′ to state k, over state k′ to the baseline state.

We adopt a similar prior setup for the regression coefficients ρk of the state-dependent 

probabilities (2.3). Let δjk be a latent indicator of whether variable j has a non-zero effect on 

the probability parameter of state k, ψk. We impose a spike-and-slab prior on ρjk of the type

ρjk ∣ δjk, μρ, σρ
2 δjkN μρ, σρ

2 + 1 − δjk δ0 ρjk ,

(2.6)

with δjk Bernoulli θjk  and a hyperprior θjk Beta gρ, ℎρ . The two variable selection schemes 

outlined above offer separate interpretations. Variable selection for the emission distributions 

via ρ determines which covariates are associated with higher or lower seizure frequency, 

conditional on the underlying latent state. In contrast, variable selection for the transitions 

identifies covariates which are associated with worsening or improvement of seizure risk, 

from time t to t + 1.
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Lastly, we specify a Beta prior for the zero-inflation parameters, pk Beta c, d  for k = 1, …, K, 

a Gamma prior on the dispersion parameters, rk Gamma e, f , and assume the distribution 

of the initial hidden state at time t = 1 to be ξi1 Multinomial 1; π1, …, πK , with a conjugate 

Dirichlet prior on π.

2.3. Data Augmentation.

Given the model construction, the full likelihood is

L Y ∣ ξ, r, ψ, p, X, β ∝
i = 1

N
p ξi1 ×

i = 1

N

t = 1

T i exp Xi, t − 1
T βξi, t − 1, ξit

1 + l = 1
K − 1exp Xi, t − 1

T βξi, t − 1, l

×
i = 1

N

t = 1

T i

1 − pξit + pξit 1 − ψitξit
rξit

1 − Zit × pξit
Γ Y it + rξit
Γ rξit Y it!

1 − ψitξit
rξitψitξit

Y it
Zit

.

In our sampling scheme for posterior inference, we make use of modern data augmentation 

techniques that allow us to optimize the inference.

2.3.1. Inference on the transition matrix elements.—In our model, the probability 

of a patient transitioning from risk state k on day t to state k′ on the next day, t + 1, 

is dependent on the values of the patient’s clinical covariates on the original day t via 

the multinomial logistic regression of Eq (2.1). Sampling schemes for the multinomial 

logit regression coefficients are challenging to implement, due to the intractable form 

of the likelihood and the lack of a conjugate prior for the coefficients. An efficient 

data augmentation approach for multinomial logistic regression models via Pólya-Gamma 

distributions was proposed by Polson, Scott and Windle (2013). This method essentially 

manipulates terms in the full likelihood such that they combine into a single Gaussian kernel 

in the posterior. The key result which makes Pólya-Gamma random variables useful in the 

logistic setting is that for b > 0,

eψ a

1 + eψ b = 2−beκψ∫
0

∞
e−ωψ2/2p ω dω,

(2.7)

where κ = a − b/2 and ω PG b, 0 .

Let Y itk = Iξit k  be a binary representation of the latent states, where Iξit k  is an indicator 

function equal to 1 if ξit = k and 0 otherwise. Then using the multinomial logistic 

representation of transition probabilities in Eq (2.1) and following Holmes and Held (2006), 

the posterior can be rewritten as

p β ∣ X, Y = p β ⋅
i = 1

N

t = 2

T i

k = 1

K exp ζitk − Citk
1 + exp ζitk − Citk

Y itk
,
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where ζitk = Xi, t − 1
T βk′k and Citk = log∑j ≠ k exp ζitj . Making use of the property of the Pólya-

Gamma distribution in Eq (2.7), the full conditional posterior of βk′k, given all other 

parameters of the model, including βk′ − k , is

p βk′k ∣ βk′ − k , X, Y ∝ p βk′k ∣ βk′ − k
i = 1

N

t = 2

T i eζitk − Citk

1 + eζitk − Citk

Y itk 1
1 + eζitk − Citk

1 − Y itk

= p βk′k ∣ βk′ − k
i = 1

N

t = 2

T i

eκ1itk ζitk − Citk

0

∞

e−ω1itk ζitk − Citk
2/2p ω1itk dω1itk ,

where κ1itk = Y itk − 1/2 and ω1itk PG 1,0 , for k = 1, …, K. Using this method, we can 

assume conditionally conjugate priors for the regression coefficients, βk′k N m0, V 0 . Then, 

conditioning on the Pólya-Gamma random variables ω1itk and with some straightforward 

algebra, the posterior collapses into a single Gaussian kernel, leading to a two-step sampling 

scheme which involves a Pólya-Gamma update for the latent variables ω1itk, followed by 

a joint Gaussian update for the regression coefficients βk′k. For additional details on this 

sampling step, see Appendix A of the Supplementary Material.

2.3.2. Inference on the negative binomial probability parameters.—Conditional 

on a latent state ξit = k, daily seizure counts are observed from a zero-inflated negative 

binomial (ZINB) emission distribution with dispersion parameter rk, probability ψitk and 

zero-inflation parameter pk. In this section, we consider inference on the probability 

parameter ψitk, which is dependent on the covariates Xit through the logistic regression 

relationship of Eq (2.3). We focus on inference for the regression coefficients ρk for the 

probability parameter and consider only the negative binomial mixture component of the 

ZINB distribution.

Traditionally, Bayesian negative binomial regression is challenging due to the intractable 

form of the posterior and lack of a conjugate prior for the regression coefficients. Pillow 

and Scott (2012) describe an approach which circumvents these issues by taking advantage 

of Pólya-Gamma auxiliary variables to derive a two-step closed-form Gibbs update for 

the regression coefficients. Due to the similar logistic link connecting the covariates to 

the parameter of interest, the sampling procedure for the negative binomial regression 

coefficients is similar to that of the transition probability regression coefficients.

Conditional on Zit = 0 and latent state ξit = k, the distribution of seizure counts for patient i at 

time t is negative binomial with

p Y it ∣ Xit, r, ρ, ξit = k, Zit = 0 ∝ 1 − ψitk
rkψitk

Y it .

Then, leveraging the Pólya-Gamma property of Eq (2.7), we obtain the full conditional
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p ρk ∣ Y it, Xit, r, ξit = k, Zit = 0 = p ρk
i = 1

N

t = 1

T i exp Xit
Tρk

Y it

1 + exp Xit
Tρk

rk + Y it

∝ p ρk
i = 1

N

t = 1

T i

eκ2itkηitk

0

∞

e−ω2itkηitk
2 /2p ω2itk dω2itk,

where κ2itk = Y it − rk
2ω2itk

, ηitk = Xit
Tρk for brevity, and ω2itk PG Y it + rk, 0 . The final expression 

combines to form a Gaussian kernel which allows us to derive a two-step Gibbs sampler 

for the negative binomial regression coefficients. Details of this sampler are provided in 

Appendix A of the Supplementary Material.

2.3.3. Inference on the dispersion parameters.—For the update of the negative 

binomial dispersion parameters rk, we adopt the data augmentation approach of Zhou and 

Carin (2015), which exploits the relationship between the negative binomial distribution 

and the compound Poisson distribution. Conditional on Zit = 0, the negative binomial counts 

can be rewritten as Y it = ∑l = 1
Litk uitkl, with uitkl

iidLogarithmic ψitk  and Litk Poisson −rkln 1 − ψitk ), 

for i = 1, …, N and t = 1, …, T i (Quenouille, 1949). Assuming the prior rk Gamma e, f , a 

two-step update for the dispersion parameter rk at each state k = 1, …, K iteratively draws

Litk ∣ rk CRT Y itIξit k , rk

rk ∣ Litk, ψitk Gamma e +
i = 1

N

t = 1

T i

Litk, f −
i, t

log 1 − ψitk
,

where CRT is the Chinese restaurant table distribution.

2.4. Posterior Inference.

For posterior inference, we design a MCMC algorithm that iteratively samples from the 

joint posterior distribution of all parameters, Θ = βk′, γ, π, ξit, ρk, δ, rk, pk, Zit . Our strategy 

combines stochastic search methods for variable selection and the data augmentation 

techniques previously discussed. Our complete sampler is a Metropolis-within-Gibbs and 

is briefly summarized in Algorithm 1.

Full details of the updates are given in Appendix A of the Supplementary Material. In 

our applications, starting values for all model parameters were initialized randomly. We 

discarded a fixed initial number of posterior samples, called the burn-in period, to control 

for the effect of initialization. Posterior estimates of latent states for each patient were 

obtained via the posterior mode. The other model parameters were estimated via posterior 

means and 95% credible intervals. Covariate effects were considered statistically significant 

if their marginal posterior probability of inclusion (MPPI) was greater than 0.5 (Barbieri and 

Berger, 2004).
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Finally, one common issue with MCMC methods for state-space models is label switching, 

which arises due to the invariance of the likelihood to permutations of the labels of the latent 

states (Scott, 2002). To address this, at each iteration of the MCMC algorithm we calculate 

the negative binomial means as μitk = ψitkrk
1 − ψitk

 for k = 1, …, K, and enforce an ordering among 

the averaged state means as ∑i = 1
N ∑t = 1

Ti μit1 < ∑i, t μit2 < … < ∑i, t μitK.

3. Simulation Study.

We performed an extensive simulation study on the performance, accuracy, and sensitivity of 

our proposed model, ZINB-NHMM-BVS, on simulated seizure count data. We also compare 

the performance of our method for latent state classification and variable selection to the 

adaptive simulated annealing expectation maximization (ASA-EM) algorithm of Hubin 

(2019), which performs simultaneous variable selection and inference on hidden states.

3.1. Data generation.

We generated data by simulating N = 100 patients such that each patient had between 

100 and 110 time points of data. If patients record daily seizure frequencies, this 

corresponds to about three months of data, which is a typical time between outpatient 

epilepsy visits. We set the number of hidden states to K = 3 and set the corresponding 

dispersion parameters to r = 3,8, 15 ′, the zero-inflation parameters to p = 0.7,0.05,0.01 ′
and the initial state distribution to π = 0.9,0.08,0.02 ′. We allowed covariates to affect the 

negative binomial parameters via construction (2.3). For each patient, p = 7 covariates 

were designed to include a mix of both discrete and continuous features. Negative 

binomial regression coefficients were set as ρ1 = − 0.7, − 0.8, − 0.8,0, − 0.8, − 0.7, − 0.7 , 

ρ2 = − 0.4,0, 0, − 0.4,0, − 0.7, − 0.6  and ρ3 = 0, − 0.5,0, − 0.5,0.5,0.4,0 . This approximately 

corresponds to an average of 0.2, 2.8, and 12.6 seizures per time unit at states 

1, 2, and 3, respectively. We also allow all covariates to affect transitions from 

state 1 to 1, covariates X1, X2, X3  to affect transitions from state 1 to 2, covariates 

X2, X3, X7  to affect transitions from state 2 to 1, covariates X3, X7  to affect transitions 

from state 2 to 2, and covariates X4, X7  to affect both transitions from state 3 

to 1 and from state 3 to 2. Non-zero transition regression coefficients were set as 
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β1,11, β2,11, β3,11, β4,11, β5,11, β6,11, β7,11 = 3.5, β1,12, β2,12, β3,12 = 2.9, β2,21, β3,21, β7,21 = 2.4, β3,22, β7,22
= 3.0, β4,31, β7,31 = − 2.9

 and 

β4,32, β7,32 = − 2.5. Finally, we simulated the hidden states ξ and then generated the seizure 

counts Y  from Y it ∣ ξit = k, r, p ZINB rk, ψitk, pk .

3.2. Parameter settings.

When running MCMC chains, we set the following hyperparameters: We set non-

informative Beta(1, 1) priors on the zero-inflation parameters, vague Gamma(.01, .01) priors 

on the NB dispersion parameters and a non-informative Dir(1, …, 1) prior on the initial 

hidden state probabilities. We imposed Beta (1, 5) priors on the variable inclusion indicators 

for the transition probability regression and negative binomial regression coefficients, to 

allow for some sparsity in the selection model. We set mildly informative priors on the 

transition probability regression coefficients, βk′k N 0p, diag 1 , and the negative binomial 

regression coefficients, ρk N 0p, diag 1 , to prevent the logistic terms (2.1) and (2.3) from 

taking on too extreme values (near 0 or 1). MCMC chains were run for 20,000 iterations, 

discarding the first 10,000 as burn-in, leaving 10,000 for inference.

3.3. Results.

We evaluated classification accuracy of the latent risk states using the following multi-class 

metrics:

Accuracy =
k = 1

K TPk + TNk
TPk + FPk + TNk + FNk

/K

Precision =
k = 1

K TPk
TPk + FPk

/K

Sensitivity =
k = 1

K TPk
TPk + FNk

/K

Specificity = k = 1
K TNk

TNk + FPk

K

F1 score = 2 ⋅ Precision Sensitivity
Precision+Sensitivity ,

that weigh all latent states equally, and where TPk, FPk, TNk, and FNk denote true positive, 

false positive, true negative, and false negative counts for state k. Using these macro-level 
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metrics allows us to evaluate model performance in the presence of possible class (i.e. latent 

state) imbalance.

Results on the inference of the latent states, averaged across 20 replicate datasets, are 

reported in the first row of Table 1, as the “default” model. Our method achieves good 

recovery of latent states with less than 5% false positive and false negative rates. It also 

estimates other model parameters, such as dispersion, zero-inflation, and initial hidden 

states, with high accuracy and low mean-squared errors, see Table S3. Furthermore, it 

exhibits excellent performance on the selection of the covariates and the estimation of the 

corresponding regression coefficients. Table 2 (“default” row) reports covariate selection 

results in terms of classification metrics, calculated based on a 0.5 threshold on the PPIs 

and averaged across 20 replicate datasets. Averaged estimates and root mean square errors 

(RMSE) on the corresponding regression coefficients are given in Tables S4 and S5.

Additionally, we briefly investigated scalability to larger p by augmenting the data matrix 

with 43 additional noise variables, for a total of p = 50 covariates. Convergence was reached 

at 30,000 MCMC iterations and the resulting chain took approximately 8.7 hours to run. The 

model achieved high (>0.90) F1 scores for classification of latent states as well as covariate 

selection, indicating that the method can scale up somehow to larger values of p.

3.4. Sensitivity analysis.

Due to the hierarchical structure of our HMM, there are several hyperparameters that 

need to be set by the user before running the MCMC. In Section “Parameter settings”, 

we provide guidelines for specification of non-informative or vague priors on the zero-

inflation parameters, the dispersion parameters and the initial hidden state probabilities. We 

performed sensitivity analysis of the beta priors on the variable inclusion indicators and 

the Gaussian slab components of the spike-and-slab priors (2.5) and (2.6) on the regression 

coefficients, βk′k and ρk. Results in terms of the classification metrics are reported in Tables 

1 and 2, for latent state estimation and covariate selection, respectively. As expected, we 

found that varying the prior probability of variable inclusion affects the number of covariates 

selected into the model, in both the transition and emission components. Based on F1 score, 

a good balance between FPR and FNR can be achieved by setting the prior probability 

of variable inclusion to be low, centered around 5–30%. Overall, classification of latent 

risk states as assessed by the macro-level metrics was robust across the different prior 

specifications (Table 1).

Furthermore, we found that varying the slab variances Σρ of the negative binomial regression 

parameters ρ had minimal effect on both the covariates selected as well as the classification 

of the latent risk states. This was not the case for the slab variances Σβ of the transition 

probability regression parameters βk′. Setting the diagonal elements of the covariance matrix 

Σβ to extreme values increases the false positive rate for variable selection. However, 

classification of latent states remained robust even when the false positive rate for variable 

selection was high.
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In the above simulations, variable selection performance was assessed based on the median 

probability model, i.e. covariates were selected if their MPPI > 0.5. Furthermore, we 

investigated alternative ways to variable selection. For example, the most probable model 

chooses the model with the largest probability mass. In our implementation, each individual 

transition and state is treated separately and the most probable model is chosen based on the 

model that is visited the most often. In contrast, model selection based on the information 

criteria AIC or BIC chooses the model based on the MCMC iteration that minimizes the 

information criterion. We provide a comparison of these various approaches in Table 3. 

Based on these simulations, the median probability model has very similar performance 

compared to the most probable model, while the models chosen by AIC or BIC lag behind 

both the median and most probable models.

Finally, we investigated the impact of various effect sizes on model performance. 

Specifically, we multiplied the effect sizes specified in Section 3.1 by a scale factor 

F ∈ 0.2,0.4,0.6,0.8,1  and reassessed variable selection and latent state classification 

performances. Results are presented in Table S6 and indicate a measure of robustness even 

with the smallest effect sizes.

3.5. Comparison to ASA-EM.

We compare the performance of our method to the non-homogeneous HMM modeling 

approach of Hubin (2019) that employs the adaptive simulated annealing expectation 

maximization (ASA-EM) algorithm for estimation. Similar to our approach, the ASA-EM 

approach allows covariates to affect both emissions and transitions. However, ASA-EM 

operates under the restriction that regardless of latent state, firstly, the same covariates 

affect the transitions and, secondly, the same covariates affect the emission distributions. 

The expectation maximization (EM) algorithm is used to infer unknown parameters, and the 

simulated annealing procedure is used for model exploration. The adaptive component of the 

method comes from the automatic learning of the model’s tuning parameters over time. For 

additional details see Hubin (2019).

The ASA-EM approach requires emission distributions to come from exponential families. 

Therefore, we re-simulated the count data using a Poisson emission distribution generated 

through a simple generalized linear model as Y it ∣ ξit = k, μitk Poisson μitk , with log μitk = Xit
Tζk. 

Again, we simulated data for N = 100 patients such that each patient had between 100 

and 110 time points of data. We set the number of hidden states to K = 2 and the 

initial state distribution to π = 0.9,0.1 ′. For each patient, p = 15 covariates were simulated 

and included a mix of both discrete and continuous features. The Poisson regression 

coefficients were fixed for each state at ζ1 = − 0.7, − 0.7, 0, 0, − 4,0, − 0.7, 0, 0, 0, 0, 0, 0, 0, 0
and ζ2 = 0.5, − 0.4, 0, 0, 0.7, 0, 0.5, 0, 0, 0, 0, 0, 0, 0,0 . Thus, regardless of state, covariates 

X1, X2, X5, X7  affected the emission distributions. This construction approximately 

corresponds to an average of 0.1 and 3.3 daily seizures at states 1 and 2, respectively. 

Finally, regardless of state we allowed covariates X2, X3, X5, X7  to affect the transitions.

Results reported here were obtained using the same hyperparameter settings described in 

the previous simulations. For the proposed ZINB-NHMM-BVS model, we considered three 
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different choices for the variable inclusion hyperparameters in conjunction with the median 

probability model, to explore the effect of the beta prior. We also considered two alternative 

approaches to model selection, AIC and BIC. ASA-EM was run on 24 parallel threads for 

3 epochs each and with parameters suggested in Hubin (2019). AIC and BIC were used as 

the model selection criteria for ASA-EM, with a separate set of results reported for each. 

The choice of model selection criterion had a non-trivial impact on performance, and better 

performance gains may be realized if an information criterion more suitable for complex 

hierarchical models is used instead. Final results were averaged across 30 simulated datasets.

Variable selection performance metrics, including number of covariates selected, selection 

false negative rates, false positive rates and other metrics are reported in Table 4. Latent 

state classification performance metrics are reported in Table 5. Overall, our proposed 

model achieves superior performance over ASA-EM in selecting covariates affecting the 

emission distributions, in selecting covariates that influence transitions, and in terms of 

overall classification of the latent states. The difference in performances could be attributed 

to several design choices which differ from ASA-EM. For instance, ZINB-NHMM-BVS 

implements a stochastic search algorithm based on an add-delete-swap sampler and modern 

data augmentation tools such as Pólya-Gamma augmentation, which proved to be very 

effective in recovering regression coefficients affecting both the Markov transitions as well 

as emissions.

4. Dynamics of risk cycling in Dravet syndrome.

4.1. Study subjects.

The Seizure Tracker™ system contains patient-reported data on seizure timestamps, seizure 

characteristics, triggers, and medications recorded by more than 30,000 people with epilepsy 

across the world. Deidentified and unlinked data on all patients with self-identified Dravet 

syndrome in the SeizureTracker database between 2007 – 2020 were exported from 

SeizureTracker.com on February 26, 2020. At the time of export, a total of 133 people 

with Dravet syndrome, with ages ranging between 2 months and 47 years, recorded 34, 431 

GTCs between December 1, 2007 and February 26, 2020, spanning 141, 499 patient-days 

of data with an average of 1, 064 days and 259 GTCs recorded per patient. Demographic 

information is reported in Table 6.

4.2. Data pre-processing.

A total of 618 patients with Dravet syndrome were initially identified from 2007 – 2020 

from the Seizure Tracker database. Patients were excluded if their SeizureTracker.com 

account was used for less than 30 days, if fewer than 20 GTCs were recorded, or if patients 

averaged less than one seizure per year. This allowed for exclusion of patients who did not 

consistently record seizures and to increase the precision of estimates. Patients with missing 

or invalid dates of birth or sex were also excluded. Invalid seizure durations were imputed as 

the mean duration of that seizure type for the patient or, if unavailable, the mean duration of 

that seizure type for all patients. Continuous covariates were normalized to the 0–1 range.

Wang et al. Page 14

Ann Appl Stat. Author manuscript; available in PMC 2024 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://seizuretracker.com/
http://seizuretracker.com/


Individual medication records were excluded if the medication name or recorded start date 

were missing or invalid. For medications with missing end dates, the end date was imputed 

as three weeks (21 days) after the medication start date. A three-week imputation was 

considered reasonable as ASMs are often uptitrated over 2–4 weeks to attain a therapeutic 

dosage (Panayiotopoulos, 2005). Rescue medications were not included in analysis. Generic 

and brand name medications were analyzed in the same class (Privitera et al., 2016; Vossler, 

Anderson and Bainbridge, 2016).

The influence of p = 36 clinical covariates on changes in seizure risk were evaluated, 

including 20 classes of daily dosed ASMs, three adjuvant medications, nine common seizure 

triggers, vagus nerve stimulation (VNS) therapy usage, and three clinical characteristics 

(age, sex, and menstrual cycling). A complete list of medication classes, seizure triggers, and 

clinical characteristics is reported in Table S7.

4.3. Seizure risk states in Dravet syndrome.

We applied our model to GTCs in Dravet syndrome in order to evaluate the characteristics 

and dynamics of seizure risk cycles in patients with this condition, while simultaneously 

identifying ASMs and triggers associated with changes in GTC risk. In addition to the p = 36
clinical covariates from Seizure Tracker, we also estimated the effect of the intercept in both 

the transition and emission components of the model. Results were obtained by running 

MCMC chains for 20,000 iterations with 10,000 sweeps as burn-in. Hyperparameters were 

set to be weakly informative as described in the simulation studies. Convergence of the 

MCMC chains was assessed via visual inspection of trace plots and auto-correlation plots, 

and by the Geweke’s diagnostic test (Geweke, 1992). Convergence results are shown for a 

few selected parameters that are sampled via Pólya-Gamma data augmentation in Appendix 

B of the Supplementary Material. The optimal number of states, K, was chosen based 

on minimization of the deviance information criterion (DIC, defined as in Gelman et al., 

2013) over a grid of possible values K ∈ 2,3, 4,5, 6,7 . DIC values were obtained using the 

BEST approach of selecting covariates based on the median probability model (as opposed 

to the FULL model which includes all covariates or the NULL model which includes no 

covariates). More specifically, let θ̂Bayes = E θ ∣ y  be the posterior mean and θs be posterior 

draws at MCMC iteration s = 1, …, S. Then, the DIC is obtained as

DIC = − 2logp y ∣ θ̂Bayes + 2pDIC,

where

pDIC = 2 logp y ∣ θ̂Bayes  − 1
S s = 1

S
logp y ∣ θs .

We found evidence for K = 3 distinct seizure risk states in Dravet syndrome based on 

minimization of the DIC. These three states can be interpreted with respect to their pro-ictal 

tendency as states in which the patient is at low, moderate, or high risk for GTCs. The 

empirical distribution of seizures within each of the identified states provides information 
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on the distribution of seizures that a patient might expect on days in each state (Fig 2). 

State 1 (“low” risk) was associated with the lowest seizure frequency. Patients in this state 

could expect to be seizure-free from GTCs on 93% of days in this state, with a mean GTC 

seizure frequency of 1.31 (SD, 0.82) on days when at least one GTC occurred. Patients with 

Dravet syndrome spent the majority of time (63.8% of all days) in this low risk state. In 

state 2 (“moderate” risk), patients also had reasonable expectation for freedom from GTCs, 

and could expect to be seizure-free from GTCs on 75% of days in this state, with a mean 

GTC seizure frequency of 1.42 (SD, 0.88) on days when at least one GTC occurred. On 

average, patients were in this moderate risk state about 34.3% of all days. In state 3 (“high” 

risk), patients had a dramatically higher risk for GTCs. In this state, patients could expect 

to have at least one GTC with more than 85% likelihood, and at least two GTCs per day 

on two-thirds of days spent this state. These estimates may be informative for counseling 

patients on seizure-related injury and death. For example, given the association between 

GTCs and SUDEP risk, patients in risk state 3 would be predicted to be at extremely high 

risk of SUDEP on days in this state. Patients spent the least amount of time (1.9% of all 

days) in this high risk state.

4.4. Mean sojourn time and volatility of risk states in Dravet syndrome.

Our inference yields information on the mean sojourn times (MST) for each seizure risk 

state, which provide a measure of the expected duration of time that a patient with Dravet 

syndrome is likely to spend in each seizure risk state before transitioning out of the state. 

This quantity is empirically estimated based on the posterior mode of the latent risk states 

(see Figure S3). The MST for the low risk state was 117.6 days (about 3.9 months) with an 

interquartile range (IQR) of 12 to 123 days, indicating large variance in the sojourn time for 

the low risk state. We found that the sojourn time of the low risk state was <12 months in 

91.4% of patients. The MST for the moderate risk state was 59.7 days with an IQR of 3.0 

to 53.5 days. In contrast, the MST for the high risk state was a shorter 5.8 days (IQR, 2 to 6 

days).

We also investigated the volatility of the dynamics of transitions between seizure risk 

states, based on the distribution of the estimated transition probabilities (2.1), which provide 

estimates of the likelihood a patient will be in a certain state on the next day. We found that 

seizure risk states in Dravet syndrome have a strong tendency toward self-transitioning (i.e., 

from State X to State X) on a daily timescale. In other words, once a patient enters a given 

risk state, s/he is more likely to remain in that state the following day, than to transition to 

a different state. The self-transitioning property was strongest for state 1, less for state 2, 

and least for state 3; for example, see the average transition matrix in Fig 3. Figure S4 also 

shows the distribution of transition probabilities for each individual transition.

4.5. Incorporation of external clinical covariates improves accuracy of seizure risk 
estimation.

Next, we show that accounting for external variables on modulatory factors improves 

accuracy of the estimates for seizure risk states. Fig 4a shows the expected number of 

GTCs based on our proposed model (ZINB-NHMM-BVS) for the sequence of daily seizure 

counts from a randomly selected patient with Dravet syndrome. The expected number of 
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GTCs based on a homogeneous HMM (ZINB-HHMM), in which patient-level covariates are 

not incorporated into estimation of the mean seizure process μit, is shown for comparison 

in Fig 4b. We found that the use of a non-homogeneous HMM corresponds to a 8.6% 

improvement in mean absolute error, defined as the average absolute difference between the 

observed response Y it and the mean value estimated by the model μ̂it, over a homogeneous 

HMM that does not incorporate covariates into the seizure risk estimate. In terms of 

deviance information criterion, the DIC of the proposed method (ZINB-NHMM-BVS) 

was 119,790, compared to the DIC of the homogeneous model (ZINB-HHMM) which 

was a higher 138,854. These metrics suggest that accounting for clinical variables into 

statistical algorithms for estimating seizure cycles may improve the accuracy of seizure risk 

estimation, particularly compared to methods which do not consider external variables into 

their estimates of seizure risk, and emphasizes the utility of incorporating multimodal data 

streams into seizure risk algorithms.

We also illustrate the methodological advances of the current model compared to our 

original model in Chiang et al. (2018), which we refer to as ZIP-NHMM, and demonstrate 

different situations in which the two models may be used. First, as shown in Fig 4c, 

using ZIP-NHMM, the state-specific estimates of the expected number of seizures at each 

risk state μk  are fixed and do not vary based on patient-level covariates. In contrast, 

ZINB-NHMM-BVS produces subject- and state-specific estimates of the expected number 

of seizures in each risk state (μitk, Eq 2.3). This will provide improved estimation of the 

expected number of seizures at each time point in situations where the distribution of seizure 

counts occurring during a specific risk state is more variable. The difference between the 

two models can be seen by contrasting Fig 4a and c. During the first 300 days, the estimated 

mean process is better for ZIP-NHMM, as the patient has a less variable range of seizure 

counts occurring in these risk states (here, 0 or 1 seizures per day) (Fig 4c). In the following 

200 days, the patient has a more variable range of seizure counts that may occur, with 

better estimation of the mean process by ZINB-NHMM-BVS (Fig 4a). Second, the current 

model improves on the ability to distinguish between distinct risk states in datasets when 

the number of events is small. As shown in Fig 4a and c, ZINB-NHMM-BVS distinguishes 

between low, moderate, and high risk states, whereas ZIP-NHMM groups the moderate and 

high risk states into a single high risk state. This becomes relevant in data with increased 

temporal granularity, such as intracranial electrocorticography data or real-time wearable 

data (Chiang et al., 2021), for which counts in smaller time bins are often close to zero.

We conduct additional experiments to compare the performance of ZINB-NHMM-BVS to 

the method of Hubin (2019), ASA-EM, as well as to various submodels of ZINB-NHMM-

BVS that utilize simpler variable selection schemes for the transition probability regression 

coefficients, on the Dravet syndrome Seizure Tracker dataset. These results are presented in 

Appendix C of the Supplementary Material.

4.6. Drivers of risk cycles in Dravet syndrome.

Next, we demonstrate how the methodological addition of variable selection to our model 

results in a method that can be used to study drivers of seizure risk cycles. By allowing for 

covariate selection in our model, in particular, we can distinguish between clinical variables 
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that may have differential effects on seizure risk, which may either have an acute effect 

on the number of seizures the patient is likely to have at time t, or a more subacute effect 

on how high risk the patient is likely to become at time t + 1. The rationale for this model 

development is to capture the fact that some factors, such as electrolyte abnormalities or 

missing a medication dose, may exert a more acute influence on the expected number of 

seizures at the current time point; other factors, such as hormonal cycles, may exert a more 

long-term influence on the probability of being high risk at a future time point.

Marginal posterior probabilities of inclusion (MPPI) for transition probability regression 

coefficients βk′, by covariate, and for negative binomial regression coefficients ρk, by state 

and covariate, are shown in Fig 5. This figure illustrates the significance of covariate 

effects on either (a) transitions from one risk state to another or (b) the number of seizures 

given the current risk state. The reference state was set to k = 3 (the high seizure risk 

state) such that the regression coefficients corresponding to transitions into this state were 

zero, to maintain model identifiability. Selection of a different reference state resulted in 

a similar model fit based on DIC and variable inclusion agreement for the majority of 

regression coefficients. Selected covariates (i.e., > 50% marginal posterior probability) for 

state transitions are reported in Table 7, together with posterior means and credible intervals 

of the corresponding regression coefficients. For patients currently in low or moderate 

seizure risk states (1 or 2), the use of cannabidiol (CBD) was associated with a greater 

likelihood of remaining in those states, as opposed to worsening to the higher risk state 

3. For patients currently in risk state 2 (moderate risk for GTCs), older patient age and 

treatment with zonisamide were associated with an increased likelihood of remaining at the 

same risk the following day, as opposed to worsening to the higher risk state 3.

Various triggers and ASMs were found to have an acute effect on the number of GTCs a 

patient could expect on a given day, given the current risk state (see Table S8 and Figure S5). 

The influence of patient-level covariates on modulating the number of seizures on a given 

day was greatest for patients currently in a “moderate” risk state. For patients in this risk 

state, bad mood, sudden changes in daily medication regimen (e.g. missed/late medications 

or changing medications), illness, and tiredness were associated with a greater number of 

expected seizures that day. This is consistent with research finding that sleep and anxiety 

are relevant in patient self-prediction of seizures (Haut et al., 2007). Among ASMs, we 

found that perampanel, triple or potassium bromide, and verapamil were associated with 

reducing the expected number of GTCs in state 2. Preliminary evidence of efficacy of these 

medications as adjunctive therapies has been identified in other studies as well (Yoshitomi et 

al., 2019).

5. Conclusion.

In this paper, we have developed a rigorous Bayesian non-homogeneous hidden Markov 

modeling approach for estimating seizure risk based on observed seizure counts and 

demonstrated its usage for investigating drivers of risk cycling in epilepsy. The approach 

accounts for the overdispersion exhibited in daily seizure count data due to seizure 

unpredictability and natural variability. It also incorporates exogenous clinical covariates 

into the estimation of model parameters, allowing for a more precise assessment of seizure 
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risk. Unlike existing approaches, we relax the assumption that clinical covariates that drive 

risk are known a priori, but rather simultaneously infer important drivers through variable 

selection priors. Our approach allows improved granularity of seizure risk assessment as 

well as an integrated framework for identifying drivers of risk cycles.

The utility of this model is demonstrated through our application analyzing self-recorded 

seizures by people with Dravet syndrome through SeizureTracker.com, a widely used 

seizure diary. We demonstrate the presence of three distinct states in Dravet syndrome at 

different risk for GTCs. We have characterized the volatility of these states, showing that 

patients with Dravet syndrome tend to self-transition (i.e., remain in the same state once 

in the state). We have shown that ASMs and triggers may drive fluctuations in seizure 

risk through differential effects on either (1) future state transitions, or (2) expected seizure 

frequency given the current risk state. This suggests that drivers of risk cycles can either 

exhibit a short-term effect, by reducing the number of expected seizures in the current 

time-frame, or a longer term effect, by modulating which risk state the patient is likely 

to transition to in the future. We have shown that incorporating the influence of external 

modulatory variables into statistical inference on seizure risk, such as medications and 

seizure triggers, improves the accuracy of risk estimation, compared to estimation based on 

seizure counting data alone.

The usefulness of our model for characterizing risk cycles in Dravet syndrome suggests 

potential for broader utility in the field of seizure risk modeling in epilepsy. Estimation of 

the MST of the high GTC risk state may potentially be relevant for guiding preventative 

counseling in risk for SUDEP and seizure-related injury. In particular, mean estimates and 

confidence intervals for the MST of high risk states are useful for counseling patients on 

how much time the average patient can expect to remain at high risk for GTCs once they 

enter a high risk state. For patients in high GTC risk states (and increased risk for SUDEP 

and seizure-related injury), an estimated MST of 5.8 days may suggest a possible approach 

of counseling patients in this state to take heightened seizure precautions for at least one 

week.

There are several limitations to this study. The medication data analyzed here is self-

reported, and therefore results about the efficacy of pharmacological treatments on reducing 

seizure risk in Dravet syndrome should be considered with this caveat. This study primarily 

serves to validate our model’s usage for investigating pharmacological relationships and 

extension to randomized clinical trial data is needed for rigorous studies of medication 

efficacy. Generally speaking, clinical applications of our method can directly improve 

patient care through a better understanding of the natural history of risk cycles in epilepsy, 

allowing clinicians to act proactively with drug interventions based on the understanding of 

expected fluctuations in risk cycles. Furthermore, the model can be used to understand the 

pharmacological effectiveness of therapies in modulating risk cycles in epilepsy. Although 

we have demonstrated our model’s utility on patient-reported clinical seizure count data, 

our model is applicable to seizure counting data from any source, including intracranial, 

subdural, or scalp electroencephalography.
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In our model parametrization, the number of parameters can grow quickly as the number 

of predictors or latent states increases, potentially resulting in overfitting. This is especially 

true for the transition model, as a separate set of regression coefficients is specified for each 

individual transition. In our approach, this issue is mitigated by the use of sparse priors for 

covariate selection.

Recent studies have suggested that individual gene expression may affect the resistance 

of seizures to ASMs (Naimo et al., 2019). In this context, our model is well-equipped to 

evaluate the effect and significance of varying genomic profiles on drug-refractory epilepsy. 

Furthermore, in the field of seizure forecasting and prediction, in addition to the predicted 

next risk state, the predicted absolute sequence of states may also be of clinical interest. 

Evaluation of how well the model performs in prospective on-line predictions of seizure risk 

will be of interest in future work, to determine contribution of this model to other seizure 

forecasting systems.

Our approach could be extended to infer the optimal number of states K via a sampling 

scheme that can accommodate posterior distributions of varied dimensions, for example 

reversible jump MCMC, though at the expense of an increase in computational cost. Our 

proposed model offers deep insights into the state-dependence of risk factors contributing to 

seizure propensity at both the Markov transitions and count emissions. Such inferences 

may provide great clinical value, for example through helping clinicians make more 

informed decisions regarding treatment plans for patients by leveraging knowledge of which 

medications or treatments are most effective conditional on the current seizure risk state 

of the patient. On the other hand, in situations where the clinical interpretation is not 

essential, a simpler model such as one of the submodels suggested in Appendix C should be 

preferred. As another example, a nonparametric approach to estimation of the count-valued 

emission distribution or transition probabilities would simultaneously improve flexibility 

and reduce the complexity of the model, though potentially at a cost of computation time 

and interpretability. For example, the general case of the method of Canale and Dunson 

(2011) models the count observations via a kernel mixture of counts but, unlike our model, 

does not assess the effect of additional covariates on the response. A multivariate extension 

allows for joint modeling of count observations with continuous and categorical predictors 

via a multivariate rounded mixture of Gaussians. However, this introduces additional 

complexities into the model and further complicates interpretation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. Proposed hidden Markov model for seizure risk estimation (ZINB-NHMM-BVS).
Depending on exogenous covariates, patients transition between different seizure risk states 

from day to day. Then, conditional upon the states, seizure counts are emitted from zero-

inflated negative binomial distributions, which are also dependent on covariates.
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Fig 2. Dravet syndrome Seizure Tracker data analysis: Distributions of daily GTC counts in each 
latent risk state.
These are estimated in our model by first estimating the latent states ξ via the posterior mode 

and then plotting the empirical distribution of the observed daily counts in each state.
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Fig 3. Dravet syndrome Seizure Tracker data analysis: Mean transition matrix.
These are estimated in our model by first calculating Pr ξit = k ∣ ξi, t − 1 = k′, ⋅  via the 

multinomial logistic equation (2.1) with coefficients βk′ estimated by the posterior mean, 

then averaging across all patients and days for each transition. Standard deviations (SD) are 

shown in parentheses.
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Fig 4. Dravet syndrome Seizure Tracker data analysis: Expected number of seizures for the 
sequence of daily seizure counts from one patient.
These are estimated with (a) the proposed non-homogeneous HMM (ZINB-NHMM-BVS), 

(b) a baseline homogeneous HMM (ZINB-HHMM), and (c) the method of Chiang 

et al. (2018) (ZIP-NHMM). Values are shown on the log scale. Unlike ZIP-NHMM 

and ZINB-HHMM, which produce state-specific estimates of risk, ZINB-NHMM-BVS 

results in subject- and state-specific estimates, obtained as the estimated NB mean 

parameters, μitk = ψitkrk
1 − ψitk

, with overdispersion parameters rk estimated via posterior mean 

and probabilities ψitk calculated via (2.3), with latent risk states ξit estimated by posterior 

mode and regression coefficients ρk via posterior mean. The heatmap at the bottom of each 

panel shows the most likely sequence of risk states for that method.
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Fig 5. Dravet syndrome Seizure Tracker data analysis: Marginal posterior probabilities of 
inclusion (MPPI).
MPPI are shown for (a) transition probability regression coefficients βk′ by covariate, and 

for (b) negative binomial regression coefficients ρk by state and covariate. Variable inclusion 

criterion is set at MPPI > 0.5 and is indicated by the red line. Covariates are split into 
three broad categories: patient demographics (gray area), seizure triggers (pink area), and 
medication classes (blue area). Left-most covariate (position 1) is the bias term. Baseline 
state is k = 3. A key indicating the variable name corresponding to each covariate index can 
be found in Table S7.
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Table 1
Simulation study (negative binomial): Sensitivity analysis. Classification metrics for latent 
state estimation.

Different slab variance parameters, Σρ and Σβ, and different Beta priors on the inclusion indicators are 

considered. The default set is Σβ = diag 1 , gβ = 1, ℎβ = 5, Σρ = diag 1 , and gρ = 1, ℎρ = 5, as described in Section 

“Parameter settings”. Results are averaged across 20 replicated datasets.

Model Acc. Prec. Sens. Spec. F1

Default 0.99 0.98 0.96 0.97 0.97

Σβ = diag 0.1 0.99 0.97 0.95 0.97 0.96

Σβ = diag 10 0.99 0.97 0.96 0.97 0.97

Σβ = diag 100 0.99 0.97 0.96 0.97 0.96

gβ = 1, ℎβ = 1 0.99 0.98 0.96 0.97 0.97

gβ = 1, ℎβ = 2 0.99 0.98 0.96 0.97 0.97

gβ = 1, ℎβ = 20 0.99 0.97 0.96 0.97 0.97

Σρ = diag 0.1 0.99 0.98 0.96 0.97 0.97

Σρ = diag 10 0.99 0.98 0.96 0.97 0.97

Σρ = diag 100 0.99 0.98 0.96 0.97 0.97

gρ = 1, ℎρ = 1 0.99 0.98 0.96 0.97 0.97

gρ = 1, ℎρ = 2 0.99 0.98 0.96 0.97 0.97

gρ = 1, ℎρ = 20 0.99 0.98 0.96 0.97 0.97
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Table 2
Simulation study (negative binomial): Sensitivity analysis. Classification metrics for 
covariate selection.

Different slab variance parameters of the regression coefficients, Σρ and Σβ, and different Beta priors on the 

variable inclusion indicators are considered. The default set is Σβ = diag 1 , gβ = 1, ℎβ = 5, Σρ = diag 1 , and 

gρ = 1, ℎρ = 5, as described in Section “Parameter settings”. “% included” refers to the prior expected number of 

included variables, and “# Selected” refers to the number of variables selected by the median probability 

model. Results are averaged over 20 simulated datasets. The true data-generating model has 19 true non-zero 

covariates affecting Markov transitions, and 14 non-zero covariates affecting emissions.

Transitions

% included # Selected FNR FPR Prec. Sens. Spec. F1

Default 17% 20.60 0.02 0.09 0.91 0.98 0.91 0.94

Σβ = diag 0.1 17% 26.50 0.05 0.37 0.69 0.95 0.63 0.80

Σβ = diag 10 17% 20.65 0.04 0.10 0.89 0.96 0.90 0.92

Σβ = diag 100 17% 24.55 0.02 0.26 0.79 0.98 0.74 0.86

gβ = 1, ℎβ = 1 50% 41.90 0.00 1.00 0.45 1.00 0.00 0.62

gβ = 1, ℎβ = 2 33% 26.60 0.01 0.34 0.73 0.99 0.66 0.83

gβ = 1, ℎβ = 20 5% 19.10 0.05 0.04 0.95 0.95 0.96 0.95

Emissions

% included # Selected FNR FPR Prec. Sens. Spec. F1

Default 17% 13.95 0.02 0.04 0.98 0.98 0.96 0.98

Σρ = diag 0.1 17% 14.00 0.02 0.04 0.98 0.98 0.96 0.98

Σρ = diag 10 17% 13.95 0.02 0.04 0.98 0.98 0.96 0.98

Σρ = diag 100 17% 14.05 0.02 0.05 0.98 0.98 0.95 0.98

gρ = 1, ℎρ = 1 50% 16.60 0.00 0.38 0.85 1.00 0.62 0.91

gρ = 1, ℎρ = 2 33% 15.05 0.01 0.16 0.93 0.99 0.84 0.96

gρ = 1, ℎρ = 20 5% 13.50 0.04 0.00 1.00 0.96 1.00 0.98
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Table 3
Simulation study (negative binomial): Sensitivity analysis. Classification metrics for 
covariate selection, using different model selection approaches.

Results are averaged across 20 replicates each. “# Selected” refers to the total number of variables selected by 

each model selection approach.

Transitions

Model selection method # Selected FNR FPR Prec. Sens. Spec. F1

Median probability 20.90 0.03 0.10 0.89 0.97 0.90 0.93

Most probable 20.55 0.03 0.10 0.90 0.97 0.90 0.93

AIC 21.10 0.08 0.16 0.84 0.92 0.84 0.87

BIC 19.50 0.09 0.10 0.89 0.91 0.90 0.90

Emissions

Model selection method # Selected FNR FPR Prec. Sens. Spec. F1

Median probability 13.95 0.02 0.04 0.98 0.98 0.96 0.98

Most probable 13.95 0.02 0.03 0.99 0.98 0.97 0.98

AIC 14.45 0.02 0.11 0.95 0.98 0.89 0.96

BIC 13.90 0.03 0.04 0.98 0.97 0.96 0.97
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Table 4
Simulation study (Poisson): Classification metrics for covariate selection.

The proposed model and the ASA-EM method are compared in terms of false positive and false negative rates, 

precision (Prec.), sensitivity (Sens.), specificity (Spec.), and F1 score F1 , for both the transition and emission 

components of the HMM. For the proposed ZINB model, different prior inclusion hyperparameters with the 

median model and alternative model selection approaches (AIC, BIC) were considered. Additionally, “% 

included” refers to the prior expected number of included variables, and “# Selected” refers to the number of 

variables selected by the models. Results are averaged across 30 replicates.

Transitions

Model % included # Selected FNR FPR Prec. Sens. Spec. F1

gβ = 1, ℎβ = 3 25% 8.87 0.00 0.04 0.91 1.00 0.96 0.95

gβ = 1, ℎβ = 5 17% 8.20 0.00 0.01 0.97 1.00 0.99 0.98

gβ = 1, ℎβ = 10 9% 8.30 0.00 0.01 0.97 1.00 0.99 0.98

ZINB, AIC 17% 10.33 0.00 0.11 0.79 1.00 0.89 0.87

ZINB, BIC 17% 9.47 0.00 0.07 0.86 1.00 0.93 0.92

ASA-EM, AIC - 15.13 0.29 0.43 0.38 0.71 0.57 0.52

ASA-EM, BIC - 8.80 0.52 0.22 0.48 0.48 0.78 0.57

Emissions

Model % included # Selected FNR FPR Prec. Sens. Spec. F1

gρ = 1, ℎρ = 3 25% 11.00 0.00 0.14 0.75 1.00 0.86 0.85

gρ = 1, ℎρ = 5 17% 9.83 0.00 0.08 0.83 1.00 0.92 0.90

gρ = 1, ℎρ = 10 9% 9.57 0.00 0.07 0.85 1.00 0.93 0.92

ZINB, AIC 17% 11.37 0.00 0.15 0.72 1.00 0.85 0.83

ZINB, BIC 17% 10.57 0.00 0.12 0.78 1.00 0.88 0.87

ASA-EM, AIC - 15.13 0.07 0.35 0.54 0.93 0.65 0.67

ASA-EM, BIC - 14.00 0.05 0.29 0.62 0.95 0.71 0.73
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Table 5
Simulation study (Poisson): Classification metrics for latent states.

We compare (1) our proposed ZINB model with varying prior inclusion hyperparameters used in conjunction 

with the median model, and two alternative model selection approaches (AIC, BIC) and (2) ASA-EM, 

averaged across 30 simulated datasets. Metrics included are accuracy (Acc.), precision (Prec.), sensitivity 

(Sens.), specificity (Spec.) and F1 score F1 , with the first state set as the baseline state.

Model Acc. Prec. Sens. Spec. F1

gβ = 1, ℎβ = 3 0.97 0.98 0.98 0.95 0.98

gβ = 1, ℎβ = 5 0.97 0.98 0.98 0.95 0.98

gβ = 1, ℎβ = 10 0.97 0.98 0.98 0.95 0.98

gρ = 1, ℎρ = 3 0.97 0.98 0.98 0.95 0.98

gρ = 1, ℎρ = 5 0.97 0.98 0.98 0.95 0.98

gρ = 1, ℎρ = 10 0.97 0.98 0.98 0.95 0.98

ZINB, AIC 0.97 0.98 0.97 0.97 0.98

ZINB, BIC 0.97 0.99 0.97 0.97 0.98

ASA-EM, AIC 0.90 0.88 0.98 0.72 0.93

ASA-EM, BIC 0.89 0.87 0.98 0.69 0.92
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Table 6

Characteristics of Dravet syndrome study sample n = 133 .

Characteristic Value

Demographic characteristics

 Age in years, mean (SD) 8.25 (6.55)

 Male sex‡ 51.1%

Seizure triggers†

 Change in medications 7.1%

 Tiredness 13.3%

 Overheating 3.7%

 Illness 5.8%

 Bad mood 2.9%

Seizure burden*

 Duration in minutes, mean (SD) 1.94 (5.42)

 Status epilepticus§ 4.8%

Use of VNS therapy‡ 21.1%

Seizure frequency*

 Seizures per day, mean (SD) 0.24 (0.92)

 Mean proportion of seizure-free days 85.4%

 Mean proportion of days with one seizure 10.2%

 Mean proportion of days with 2+ seizures 4.4%

Anti-seizure medication usage‡

 Benzodiazepines 43.6%

 Valproic acid 41.4%

 Stiripentol 24.8%

 Levetiracetam or brivaracetam 21.8%

 Topiramate 20.3%

 Cannabidiol 18.0%

 Tetrahydrocannabinols 7.5%

 Zonisamide 6.8%

 Phenobarbital or phenobarbital-containing compounds 6.0%

 Felbamate 4.5%

 Ethosuximide or methsuximide 3.8%

 Lacosamide 3.0%

 Carbonic anhydrase inhibitors 2.3%

 Lamotrigine 2.3%

 Prednisolone 1.5%

 Triple bromide or potassium bromide 1.5%

 Carbamazepine, eslicarbazepine, oxcarbazepine 1.5%

 Phenytoin 0.8%
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Characteristic Value

 Primidone 0.8%

 Perampanel 0.8%

Other medications‡

 Verapamil 3.0%

 Risperidone 2.3%

 Vitamin B6 2.3%

For continuous variables, mean (SD) are shown.

For categorical variables, proportion of seizures (†) or patients (‡) is shown.

*
Only generalized tonic-clonic seizures were considered.

§
Status epilepticus defined as seizure with duration >5 minutes.
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Table 7
Dravet syndrome Seizure Tracker data analysis: Posterior

means and SD for transition probability regression coefficients, βk′k, of selected covariates. These are reported 

with 95% credible intervals (defined as the interval [a, b] such that Pr a ≤ βj, k′k ≤ b|data = 0.95  and marginal 

posterior probabilities of inclusion (MPPI). Only covariates with MPPI > 0.5 are shown. Baseline state is 

k = 3.

Transition Covariate Post. mean (SD) MPPI 95% CI

1→1 Intercept 6.65 (0.16) 1.00 (6.38,6.95)

2→2 Intercept 4.98 (0.19) 1.00 (4.64,5.36)

3→1 Intercept −2.85 (0.33) 1.00 (−3.54,−2.23)

3→2 Intercept −2.04 (0.33) 1.00 (−2.89,−1.58)

2→2 Age 2.99 (0.59) 0.98 (1.81,4.16)

2→2 Zonisamide 5.47 (0.94) 0.68 (3.29,7.06)

1→2 Cannabidiol 3.15 (0.49) 1.00 (2.33,4.12)

2→1 Cannabidiol 5.50 (0.85) 1.00 (3.54,6.62)

3→2 Cannabidiol −2.36 (0.70) 0.53 (−3.90,−1.13)
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