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Abstract 

Str uct ural knowledge of protein assemblies in their ph y siological en vironment is paramount to understand cellular functions at the molecular 
le v el. P rotein interactions from Imaging Comple x es after Translocation (PICT) is a live-cell imaging technique for the str uct ural characterization of 
macromolecular assemblies in living cells. PICT relies on the measurement of the separation between labelled molecules using fluorescence 
microscopy and cell engineering. Unfortunately, the required computational tools to extract molecular distances involve a variety of sophisticated 
software programs that challenge reproducibility and limit their implementation to highly specialized researchers. Here we introduce PyF2F, a 
Python-based software that provides a workflow for measuring molecular distances from PICT data, with minimal user programming expertise. 
We used a published dataset to validate PyF2F’s performance. 
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nravelling the structure of macromolecular complexes is nec-
ssary to understand molecular functions, interactions and dy-
amics that explain the mechanisms controlling the cell’s bi-
logy. The structure of molecular assemblies can be solved at
igh resolution by a number of techniques such as X-ray crys-
allography, nuclear magnetic resonance (NMR) and cryo-
lectron microscopy. However, these methods are limited to
olve only molecular assemblies that have been previously iso-
ated from their physiological environment. This technical re-
uirement prevents capturing functional conformations and
tructural dynamics that are central to the mechanism of cel-
ular processes. 

Fluorescence microscopy offers the unique opportunity
o investigate the spatial organization of biological macro-
olecules within their physiological environment: the cell. Al-

hough light diffraction limits the resolution of fluorescence
icroscopy to 200–300 nm, different approaches have been
eveloped that allow measurements at the molecular scale.
örster resonance energy transfer (FRET) is a microscopy
echnique that can estimate distances between fluorescent la-
els in vivo . However, FRET measurements are restrained to
istances within the range of 2–10 nm, which limits the con-
ormational space that can be characterized by this method.
ocalization microscopy is a technique that overcomes this
estraint by estimating the centroid position of diffraction-
imited fluorescence spots ( 1–3 ). With this method, protein
omplex subunits can be specifically labelled with fluores-
ent markers whose position can be determined at high pre-
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cision (in the range of 20–30 nm) ( 2 ). Repetitive and repro-
ducible measurement of the distance between two centroids
allows for estimating their true separation with up to 1 nm
precision regardless of the distance between the two fluo-
rophores ( 1 ,4–10 ). Thus, the measurement of fluorophore-to-
fluorophore distances can provide outstanding information
about conformational changes and molecular interactions
( 6 ,8–10 ). 

In practice, technical constraints limit the implementa-
tion of localization microscopy to interrogate protein com-
plex structures in situ . Firstly, not all proteins can be ob-
served as distinguishable diffraction-limited spots when la-
belled with a fluorophore in living cells. Secondly, the in-
trinsic dynamic nature of cellular processes prevents repeti-
tive and reproducible imaging of the diffraction-limited spots.
Thirdly, accurate measurements of distances between fluo-
rophores requires the combination of sophisticated image pre-
processing (i.e. subtraction of background noise, image reg-
istration and cell segmentation) and analysis (i.e. feature de-
tection, Gaussian fitting and rejection of outliers) of the raw
data. 

Our group developed PICT (Protein interactions from
Imaging Complexes after Translocation) ( 11 ,12 ), a live-cell
imaging technique that enables (i) the inducible distribution of
fluorescently labelled protein complexes in diffraction-limited
spots and (ii) the repetitive and reproducible imaging to esti-
mate distances with high precision. PICT employs yeast Sla2,
a stiff rod-like protein that, in the absence of actin cables,
clusters in flat and immobile platforms linked to the plasma
ruary 26, 2024. Accepted: February 27, 2024 
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membrane. PICT is based on the rapamycin-induced het-
erodimerization of FK506-binding protein (FKBP) and FKBP–
rapamycin binding (FRB) domains ( 13 ). Upon addition of ra-
pamycin, the protein complex harbouring a subunit labelled
with FRB (bait–FRB) is recruited to Sla2 platforms or ‘an-
chor’ labelled with FKBP. The anchor and another subunit of
the protein complex (prey) are labelled with distinguishable
fluorophores [i.e. anchor–red fluorescent protein (RFP)–FKBP
and prey–green fluorescent protein (GFP)]. Once the recruit-
ment of the protein complex has succeeded, the centroid po-
sition for the anchor–RFP–FKBP and prey–GFP in the equa-
torial plane of the cell are determined and their separation
is estimated. The spherical topology of yeast cells, combined
with the stationary rod-shaped Sla2 anchor, allow repetitive
and reproducible measurements, making PICT suitable to es-
timate the separation between fluorescent labels in the 2D
image with a 2–5 nm precision ( 12 ). Moreover, PICT allows
measuring the distance between the labelled subunit and the
anchor–RFP–FKBP when the complex is recruited in different
orientations simply by fusing the FRB tag to different sub-
units. Ultimately, integration of the distances measured in 2D
images allows determination of the 3D coordinates of the flu-
orophores that label the complex subunits using the anchor–
RFP–FKBP as a spatial reference point. This approach has
been used to reconstruct the architecture of the exocyst and
the conserved oligomeric Golgi (COG) complexes in living
cells ( 12 ). 

Unfortunately, the sample preparation, image pre-
processing and analysis workflows necessary for a pre-
cise distance estimation with PICT still require special-
ized expertise and the installation and version compat-
ibility control of multiple software programs such as
FIJI / ImageJ ( 14 ), MATLAB ( https:// es.mathworks.com/ )
and R ( https:// www.r-project.org/ ). In practice, the broad
implementation of the PICT method to resolve the architec-
ture of protein assemblies suffers from optimal integration of
multiple types of software and custom scripts, and the require-
ment for specialized skills in microscopy and image analysis
that are rarely found in structural biology laboratories. 

Here, we present PyF2F (Python-based Fluorophore-
to-Fluorophore ruler), a Python-based open-source soft-
ware for measuring distances between two fluorescent
markers from diffraction-limited microscopy images ob-
tained by PICT. PyF2F streamlines the analysis of PICT
datasets and offers a robust platform for the measurement
of fluorophore-to-fluorophore distances in situ . We im-
proved the performance of yeast cell segmentation by taking
advantage of pre-trained convolutional neural network
(CNN) weights used in YeastSpotter ( 15 ). We updated the
chromatic aberration correction approach to achieve sub-
nanometre accuracy registration ( 6 ). We also incorporated
the biophysical characterization of the anchor–RFP–FKBP
to systematically monitor the quality and consistency of
the different PICT datasets analysed. Overall, PyF2F is an
accessible and robust tool that facilitates the reproducibil-
ity of fluorophore-to-fluorophore distance measurement in
living cells. Together with the code and documentation, we
provide a walkthrough tutorial that can be easily followed
by users unfamiliar with this image analysis protocol. PyF2F
can run standalone with a local installation or online us-
ing a Colab notebook ( https://colab.research.google.com/
drive/1kSOnZdwRb4xuznyQIpRNWUBBFKms91M8?usp= 

sharing ). 
Materials and methods 

S oftw are architecture 

PyF2F has been implemented in Python 3.7 and runs stan- 
dalone from any Linux or MacOS terminal. The standalone 
version has dependencies on the following packages: 

• sci-kit image v. 0.19.2 ( 16 ). 
• pymicro v. 0.5.1 ( https:// www.github.com/ heprom/ 

pymicro ). 
• vtk v. 9.1.0 ( https:// book.vtk.org/ en/ latest/ index.html ). 
• trackpy v. 0.5.0 ( https:// doi.org/ 10.5281/ zenodo. 

4682814 ). 
• scipy v. 1.7.3 ( 17 ). 
• numpy v. 1.21.2 ( 18 ). 
• pandas v. 1.3.5 ( https:// pandas.pydata.org/ ). 
• plotly v. 5.3.1 ( https:// plotly.com/ ). 
• seaborn v. 0.12.2 ( 19 ). 
• matplotlib v. 3.5.1 ( 20 ). 
• h5py v. 2.10.0 ( https:// www.hdfgroup.org/ solutions/ 

hdf5/). 
• keras v. 2.1.6 ( https:// keras.io/ ). 
• lmfit v. 1.0.3 ( 21 ). 
• opencv_python v.4.5.5.62 ( https:// opencv.org/ ). 
• pillow v.9.5.0 ( https:// doi.org/ 10.5281/ zenodo. 

10450403 ). 
• tensorflow v.1.15.0 ( https:// doi.org/ 10.5281/ zenodo. 

10126399 ). 

PyF2F also integrates customized Python functions of the 
YeastSpotter ( 15 ) for an accurate yeast cell segmentation.
YeastSpotter is a web-server tool that uses a pre-trained mask- 
RCNN model ( 22 ) re-trained on both brightfield and fluo- 
rescence microscopy images of Saccharomyces cerevisiae ( 15 ).
For more information about the CNN architecture and train- 
ing, see the work of Lu et al. ( 15 ). 

Workflow 

PyF2F’s workflow consists of four major steps: (i) image reg- 
istration; (ii) image pre-processing, spot detection, spot–pair 
linking and chromatic aberration correction; (iii) spot–pair se- 
lection; and (iv) outlier rejection and distance estimation. We 
provide recommended parameters given a system equipped 

with a ×100, 1.49 NA objective lens and a camera sensor with 

a pixel size of 6.45 μm. Although PyF2F can analyse datasets 
obtained by various imaging techniques (e.g. confocal, spin- 
ning disk or structured illumination microscopy), we recom- 
mend acquiring PICT datasets with wide-field fluorescence mi- 
croscopy to minimize the loss of photons. The workflow and 

the expected outcome are illustrated with the distance esti- 
mation of a reference dataset (MKYSGA0048 yeast strain ex- 
pressing the anchor–RFP–FKBP, the bait Exo70–FRB and the 
C-terminally tagged prey Sec5–GFP) ( 12 ) (see Supplementary 
Table S1 ). The reader can find the instructions to use PyF2F 

on our GitHub ( https:// github.com/ GallegoLab/ PyF2F ). 

Image registration 

Before embarking on the fluorophore-to-fluorophore distance 
measurement, PyF2F calculates and corrects the chromatic 
aberration intrinsic to the employed microscope setup. Chro- 
matic aberration is a geometrical distortion that occurs when 

using multiple-colour channel imaging, causing deviations 
between channels ( 23 ,24 ). To correct chromatic aberration,
multi-colour fluorescent beads (TetraSpeck) are imaged and 

https://es.mathworks.com/
https://www.r-project.org/
https://colab.research.google.com/drive/1kSOnZdwRb4xuznyQIpRNWUBBFKms91M8?usp=sharing
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https://book.vtk.org/en/latest/index.html
https://doi.org/10.5281/zenodo.4682814
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https://plotly.com/
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https://opencv.org/
https://doi.org/10.5281/zenodo.10450403
https://doi.org/10.5281/zenodo.10126399
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae027#supplementary-data
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ence PICT dataset that had been used to reconstruct the ar- 
sed as a reference to calculate the intrinsic chromatic aber-
ation of the employed optical system. To achieve an accurate
orrection, it is critical to image a homogeneous distribution
f beads throughout the camera sensor while leading to a neg-
igible number of bead aggregates. Inspired by Niekamp et al .
 6 ), we recommend combining a lower bead density [25–75
eads per field of view (FOV)] with the imaging of a grid of
0 × 10 FOV with an overlap of 90% between consecutive
OVs ( 6 ). This results in a uniform distribution of the fluo-
escent beads throughout the camera sensor with a minimal
umber of bead aggregates, which allows calculation of the
hromatic aberration between channels with higher accuracy
 Supplementary Figure S1 ). 

The acquisition of images of beads generates a dataset
f 100 two-channel images, which PyF2F splits into two
atasets of 50 images: one dataset is used to calculate
he registration map (representing the chromatic aberration
etween channels) and the other dataset is used to vali-
ate the registration accuracy ( Supplementary Figure S1 ) ( 6 ).
yF2F utilizes pymicro ’s point set registration function ( com-
ute_affine_transform ) to calculate the registration map. The
egistration map is computed by applying an affine transfor-
ation, which corrects the beads’ coordinates of channel 1

red fluorescence signal, which we represent as magenta to fa-
ilitate visualization) towards the beads’ coordinates of chan-
el 2 (green fluorescence signal) used as reference (Figure 1 A).
yF2F measures the accuracy of the image registration (tar-
et registration error, TRE) from the mean deviation of the
eads’ centroid coordinates, in the x- and y -axis, between the
wo aligned channels ( Supplementary Figure S1 ). We recom-
end proceeding with the subsequent image analysis steps
nly when the TRE is < 1 nm. 

mage pre-processing, spot detection, spot–pair linking and
hromatic aberration correction 

o initiate the analysis of PICT data, the background fluo-
escence of the images is corrected to localize the centroid
f emission of fluorescent markers. Firstly, the extracellular
ackground intensity is subtracted using the rolling ball algo-
ithm ( sci-kit image ) with a rolling ball diameter slightly larger
han the cell size. Secondly, to correct the uneven cytoplasmic
uorescence signal at the edge of the cell, PyF2F subtracts the
edian-filtered image from the background-subtracted im-

ge. The median-filtered image is computed using a diame-
er equal to twice the diffraction limit, which is sufficiently
arge to consistently erase the fluorescent spots from the im-
ge while preserving the cell contour ( 25 ) (Figure 1 B). For the
icroscopy setup used as an example, we recommend using a

olling ball radius equal to 70 pixels and a median diameter of
1 pixels. 
Subsequently, PyF2F performs the spot detection on the

wo channels independently using trackpy . Detected spots in
hannel 1 (anchor–RFP–FKBP) and channel 2 (prey–GFP) are
hen linked within a maximum separation distance between
entroid coordinates set by the user (Figure 1 C). For the mi-
roscopy setup used as an example, we recommend using a
aximum separation distance of between 2 and 3 pixels for

ntra-assembly and inter-assembly distance measurements, re-
pectively. Only linked spot pairs are selected for further anal-
sis. Finally, the coordinates of selected spots in channel 1 are
orrected for the chromatic aberration using the registration
ap saved previously (Figure 1 D). 
Spot–pair selection 

At this step, PyF2F applies a sequence of filters to reject noisy
centroid positions of detected spots to ensure that only reli-
able spot pairs are selected. Detected spot pairs are selected
according to the following criteria. 

• Isolated and close to cell contour events: PyF2F filters
out overlapping spot pairs based on a maximum closest-
neighbour distance (Figure 2 A). We recommend using a
maximum closest-neighbour distance equal to twice the
diffraction limit minus one pixel (i.e. 10 pixels for the
microscopy setup used as an example). Since PICT re-
lies on the employment of plasma membrane-associated
anchoring platforms, the centroid coordinates of fluores-
cent spots must be located at the edge of the cell equato-
rial plane (hereafter cell contour). PyF2F utilizes a neural
network-based cell segmentation algorithm to draw the
cell contour ( 15 ). Then, it selects only those spots’s cen-
troid coordinates encountered within a maximum dis-
tance to the cell contour (Figure 2 A). We recommend us-
ing a maximum distance to the cell contour equivalent
to twice the diffraction limit plus 2 pixels (i.e. 13 pixels
for the microscopy setup used as an example). 

• High-quality spot pairs: selection of high-quality spot
pairs is done based on the highest dense group of spot
pairs sharing similar properties in brightness (second
momentum) and roundness (eccentricity) (Figure 2 A).
Spot pairs with a higher probability of being found are
selected. We recommend using a cut-off of 0.5 to select
the spot pairs that have a probability of ≥50% to be
found (the 50% denser spot pair population). 

• In-focus spot pairs: the intensity distribution in the x -
and y -axis for each spot is evaluated with a 2D Gaussian
fitting. PyF2F evaluates the quality of the interpolation
with the goodness-of-fitting factor ( R 

2 ) and selects spot
pairs above the threshold set by the user (0–1) (Figure
2 A). We recommend using a threshold of 0.35 to reject
spot pairs with an inappropriate 2D-Gaussian intensity
profile. 

Outlier rejection and distance estimation 

The last step estimates the true separation between the two
fluorophore labels. The distribution of measured distances d
that separates paired fluorescent spots follows a Rician distri-
bution ( 4 ,5 ) defined as: 

p(d | μ, σ ) = 

(
d 

2 πσ 2 

)
exp 

(
−μ2 + d 

2 

2 σ 2 

)
I 0 

(
dμ

σ 2 

)
(1)

where μ is the true separation between the fluorophores (the
one we want to estimate), σ is the distribution variance and
I 0 is the modified Bessel function of integer order 0. The true
separation μ can thus be computed with a Maximum Like-
lihood Estimate (MLE) ( 5 ). Due to the skewed nature of the
distribution d (grey distance distribution, Figure 2 B), outliers,
especially if in the tail of the distribution, can fail the MLE.
To reject these outlier spot pairs, we implemented a bootstrap
method (Figure 2 B; see Supplementary Note S1 and S2 ). 

Results 

S oftw are validation 

To evaluate the PyF2F performance, we employed a refer-

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae027#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae027#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae027#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae027#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae027#supplementary-data
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Figure 1 . Sc heme of image registration, image pre-processing, spot detection, spot–pair linking and c hromatic aber ration cor rection. ( A ) Image 
registration : a dataset of two-channel images of TetraSpeck beads (red fluorescence, channel 1-magenta; green fluorescence, channel 2-green) (left). The 
zoom-in illustrates the centroid coordinates of representative fluorescent beads (black cross) for each channel before (centre) and after (right) being 
aligned using an affine transformation. This allows creation of the registration map. As a control, the centroid-to-centroid Euclidean distances between 
two-channel bead coordinates are measured before (grey) and after (light-blue) the chromatic aberration correction (right). ( B ) Image pre-processing : 
t wo-channel images obt ained in a PICT experiment are firstly pre-processed to remo v e the e xtracellular and cytoplasmic back ground fluorescence signal 
(left). Spot detection: the centroid coordinates of the fluorescent spots corresponding to the labelled anchor–RFP–FKBP (magenta) and prey (green) are 
localized (represented with a black cross in the zoom-in; centre). ( C ) Spot–pair linking: the most proximal spots detected in channel 1 and channel 2 and 
that are found within a maximum separation distance defined by the user are linked into ‘spot pairs’ (i.e. pairs of spots with ID 1–8, light-blue). ( D ) 
Chromatic aberration correction: finally, the centroid coordinates of detected spots in channel 1 are corrected for chromatic aberration using the 
registration map computed with the bead images (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

chitecture of the exocyst complex bound to a secretory vesi-
cle ( 12 ) ( Supplementary Table S2 ). The exocyst is a con-
served hetero-octameric complex (composed of Sec3, Sec5,
Sec6, Sec8, Sec10, Sec15, Exo70 and Exo84) that tethers secre-
tory vesicles to the plasma membrane in exocytosis. Exocyst
function relies on the binding of its Sec15 subunit to Sec2, a
guanyl-nucleotide exchange factor that is associated with the
vesicle surface ( 26 ) (Figure 3 A). The dataset included images
of cells where the exocyst had been recruited to anchor–RFP–
FKBP platforms in eight different orientations (i.e. the FRB
tag had been fused to eight different exocyst subunits). In-
cluding all the orientations, we compared a total of 78 intra-
assembly distance estimations: (i) 45 distances between the
anchor–RFP–FKBP and the GFP tag fused to the C-terminus of
exocyst subunits (Figure 3 B) and (ii) 33 distances between the
anchor–RFP–FKBP and the GFP tag fused to the N-terminus
of exocyst subunits (Figure 3 C). We also compared six inter-
assembly distance estimations (distances between the anchor–
RFP–FKBP and the GFP fused to the Sec2 C-terminus) (Figure
3 D; Supplementary Table S2 ). 

First, we used a χ2 test to corroborate that the set of mea-
surements obtained by PyF2F reproduces the published set of
distances. We excluded the distance measurements for Sec2–
GFP because the available number of measurements in the ref-
erence dataset was not large enough ( n = 6) to perform a reli-
able χ2 test. The χ2 test showed no significant differences be-
tween the set of distance estimations ( P -value of 2.85 × 10 

–10

and 1.7 × 10 

–3 for the C- and N-terminal intra-assembly dis-
tance measurements, respectively) (Figure 3 B, C). We also per- 
formed a linear fitting to assess the correlation between the 
distance estimations of the two approaches. The strong corre- 
lation ( R 

2 = 0.93, P -value = 1.1 × 10 

–6 ), the estimated slope 
(0.97 ± 0.03) and the intercept (–0.26 ± 0.03) suggest that 
the results obtained with PyF2F are coherent and reproducible 
with respect to the distances measured in Picco et al . (Figure 
3 E). Overall, the coefficient of determination R 

2 of the linear 
regression and the χ2 test indicate that PyF2F delivers reliable 
distance estimations from PICT datasets. 

PyF2F to systematically assess PICT datasets 

A fundamental assumption underlying in situ distance mea- 
surement with PyF2F is that the PICT assay grants repro- 
ducible and repetitive imaging of the bait–FRB / prey–GFP as- 
sembly, necessary for estimating the RFP-to-GFP distance with 

nanometer precision. However, reliable measurements re- 
quire: (i) a robust microscopy setup ensuring unvarying imag- 
ing and (ii) the consistent in vivo performance of the anchor–
RFP–FKBP platforms. The construction of the anchor–RFP–
FKBP platforms depends on the intrinsic ability of Sla2 clus- 
ters to assemble on the yeast plasma membrane and the stabi- 
lization of these platforms facilitated by latrunculin A (LatA)- 
induced actin depolymerization. Unfortunately, small devia- 
tions from optimal conditions, on both the imaging setup and 

the cellular construction of anchoring platforms, are likely 
to impact on the data quality and the subsequent distance 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae027#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae027#supplementary-data
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Figure 2. Scheme of spot–pair selection, outlier rejection and distance estimation for the reference dataset. ( A ) Spot–pair selection: the contour of the 
cell is approximated using the CNN weights of YeastSpotter ( 15 ). Isolated spot pairs are selected according to their separation from the closest 
neighbouring spot and the distance-to-cell contour (i.e. spot pairs with ID 1–5, light-blue, left). Only spot pairs with similar brightness (second 
momentum) and roundness (eccentricity) are selected (i.e. spot pairs with ID 1, 3 and 4, light-blue, centre). Lastly, only spot pairs whose intensity 
distribution in the x - and y -axis fits a Gaussian function are selected (i.e. spot pairs with ID 3 and 4, light-blue, right). ( B ) Outlier rejection and distance 
estimation: outliers are rejected using a bootstrap method (left, see Supplementary Notes S1 and S2 ) to determine the distance distribution without 
outliers that maximizes the likelihood for the estimated μ and σ (light-blue dot). The distance distribution is modelled by a Rician distribution ( 4 , 5 ) with an 
MLE to estimate the μ (red dashed line) and σ of the distribution (right). A representative PICT dataset of cells expressing anchor–RFP–FKBP, 
Exo70–FRB and C-terminally tagged Sec5–GFP was analysed to illustrate the main steps followed by PyF2F. Light-blue indicates selected spot pairs (A) 
and distance distribution without outliers (B). 
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easurements. To strengthen the robustness of the approach,
yF2F features a measurable criterion to infer the consis-
ency of the anchor–RFP–FKBP imaging and to supervise if
he PICT assay has been performed optimally. PyF2F utilizes
 quantitative biophysical analysis to compare PICT datasets
 Supplementary Figure S2 ). PyF2F measures the second mo-
entum of the anchor–RFP–FKBP spots to monitor changes

n their structure and dynamism (see Supplementary Note S3 ).
yF2F measures the intensity (brightness) of the anchor–RFP–
KBP spots as a proxy of the Sla2 copy number that popu-

ates anchoring platforms. If the anchor–RFP–FKBP imaging
nd properties are conserved among different PICT datasets,
he correlation between the mean second momentum and the
ean intensity will be preserved. Supplementary Note S3 and

upplementary Figure S2 present an illustrative experiment
nd the expected output when assessing the reproducibility
f optimal and artefactual PICT experiments. 
 

Discussion 

PyF2F is a Python-based software that requires minimal user
programming expertise to estimate the average separation
between two fluorescently labelled proteins imaged by PICT.
PyF2F overcomes the limitations of existing approaches by
providing a unified application for the structural analysis
of protein complexes translocated to engineered anchoring
platforms (with a precision of 2–5 nm). Compared with the
available software ( 12 ), improvements in the image registra-
tion ( 6 ), yeast cell segmentation ( 15 ) and quality control of
the anchor–RFP–FKBP make PyF2F a portable and robust
tool. We provide the required tutorials to facilitate the use of
PyF2F by other laboratories ( https://colab.research.google.
com/ drive/ 1kSOnZdwRb4xuznyQIpRNWUBBFKms91M8? 
usp=sharing ). 

The fact that the existing computational approach ran over
custom and obsolete versions of several software programs

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae027#supplementary-data
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https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae027#supplementary-data
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Figure 3. PyF2F validation. Validation of the PyF2F performance on a PICT reference dataset by comparing published distance estimations (orange, ( 12 )) 
with the estimations obtained with PyF2F (blue) (see Supplementary Table S2 ). ( A ) The scheme illustrates a 2D section of the tethering of a secretory 
vesicle mediated by the interaction between the exocyst (grey, representation based on PDB 5YFP) ( 12 ) and Sec2 (red, cartoon representation using 
Biorender.com). ( B ) A total of 45 estimated distances between the anchor–RFP–FKBP and exocyst subunits tagged to GFP at their C-terminus. ( C ) A 

total of 33 estimated distances between the anchor–RFP–FKBP and exocyst subunits tagged to GFP at their N-terminus. ( B, C ) The difference between 
the set of distance estimations obtained by each approach was evaluated with a χ2 test. ( D ) Six distances between the anchor–RFP–FKBP and the GFP 
fused to the Sec2 C-terminus (inter-assembly distances). ( E ) The correlation between the published and the PyF2F distance estimations was evaluated 
with a linear fitting ( R 

2 = 0.93; slope = 0.97 ± 0.03; intercept = −0.26 ± 0.03; P -value = 1.1 × 10 −6 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(ImageJ plugins, MATLAB and R) complicates its installation
(incompatible R / RStudio versions) and usage (requires skills
on programming and image analysis). In addition, the former
approach relied on poorly controlled parameters (i.e. PICT
sample preparation, image registration and cell segmentation)
that challenged the reproducibility of the measurements ob-
tained by non-expert users ( 12 ). PyF2F is easy to install and
to use, and it features various capabilities that enhance the
robustness of the analysis. Indeed, PyF2F is designed to be
employed by a broader community of users that do not nec-
essarily combine expertise in light microscopy, image analy-
sis and structural biology. PyF2F modularity allows the user
to tune the analysis according to the particularities of each
dataset (see https:// github.com/ GallegoLab/ PyF2F ). We here
discuss the main features and technical considerations for an
optimal employment of PyF2F. 

To improve the image registration used in the former ap-
proach, we applied a workflow that achieves dense and ho-
mogenous bead imaging throughout the entire camera sen-
sor while minimizing bead aggregates ( 6 ). To provide the user
with objective measurements of the registration quality, the
PyF2F further calculates the TRE ( 6 ) (see illustrative compar-
ison in Supplementary Figure S3 ). Remarkably, although refer-
ence bead datasets are imaged on the same support and culture
medium as the cells, the bead imaging does not recapitulate
the intracellular milieu or the exact axial separation between
the equatorial anchor–RFP–FKBP and the glass surface. Thus,
one must notice that small deviations are intrinsic to bead-
corrected PICT datasets. Although the direction of the residual
aberration is not isotropic, the relative position of the spots is
random in a large FOV. As such, small errors in the chromatic
aberration will have a random contribution to the distance es-
timates that will result in a larger σ of the distance estimate.
Further recommendations to minimize the registration error
are given in Supplementary Note S4 . Supplementary Figure S4
illustrates the outcome of a dataset analysis without chromatic

aberration correction. 
PyF2F leverages the arrangement of diffraction-limited 

spots with respect to the yeast plasma membrane to specifi- 
cally select spot pairs that (i) result from the recruitment of 
protein assemblies to Sla2 anchoring platforms and that (ii) 
had been imaged at the equatorial plane of the cell ( 25 ). The 
former approach used a cell segmentation based on the pixel 
intensity that poorly estimated the cell boundaries, especially 
when the cytoplasmic fluorescence was not evenly distributed 

or cells clustered together ( 25 ) ( Supplementary Figure S5 ).
PyF2F takes advantage of the deep learning tool YeastSpot- 
ter to calculate the cell contour with higher accuracy ( 15 ),
minimizing false negatives (loss of spot pairs adjacent to 

regions of the plasma membrane that had not been prop- 
erly segmented) and false positives (spurious spot pairs that 
contaminate the dataset) (see Supplementary Figure S5 and 

Supplementary Note S2 ). 
PyF2F measures the separation between fluorescent pro- 

teins labelling the subunits of an assembly and the anchor–
RFP–FKBP, where the assembly is recruited. Consequently, the 
anchor–RFP–FKBP also serves as a spatial reference to inte- 
grate multiple distance measurements and to reconstruct the 
architecture of protein assemblies directly in living cells ( 12 ).
Data integration hinges on the assumption that different mea- 
surements are obtained under comparable experimental con- 
ditions, such as imaging settings and anchoring performance,
but how to monitor the validity of such premise had not been 

considered previously. With PyF2F, non-specialized users are 
equipped to assess, in an unbiased manner, the coherence be- 
tween datasets, a crucial step to derive structural and mecha- 
nistic models from data integration (see Supplementary Note 
S3 and Supplementary Figure S2 ). 

PyF2F streamlines the in situ intermolecular distance esti- 
mation. In combination with the PICT technique, the software 
generalizes the structural measurements within and between 

protein complexes directly in living cells. Overall, PyF2F con- 
tributes with unique capabilities to the flourishing of cellular 
structural biology. Together with other light microscopy tech- 
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https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae027#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae027#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae027#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae027#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae027#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae027#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae027#supplementary-data


NAR Genomics and Bioinformatics , 2024, Vol. 6, No. 1 7 

n  

t  

r  

s

D

T  

G  

M  

z

S

S

A

W  

t  

t

F

T  

i  

M  

P  

/  

e  

d  

M  

F

C

N

R

 

 

 

 

R
©
T
d

iques, in situ cross-linking mass spectrometry, cryo-electron
omography and integrative modelling, PyF2F and PICT nar-
ow the gap towards the ultimate goal of resolving molecular
tructures in vivo . 

ata availability 

he code and data underlying this article are available on
itHub at https:// github.com/ GallegoLab/ PyF2F under the
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