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Abstract 
Spatially resolved transcriptomics (SRT) is a pioneering method for simultaneously studying morphological contexts and gene expres-
sion at single-cell precision. Data emerging from SRT are multifaceted, presenting researchers with intricate gene expression matrices, 
precise spatial details and comprehensive histology visuals. Such rich and intricate datasets, unfortunately, render many conventional 
methods like traditional machine learning and statistical models ineffective. The unique challenges posed by the specialized nature 
of SRT data have led the scientific community to explore more sophisticated analytical avenues. Recent trends indicate an increasing 
reliance on deep learning algorithms, especially in areas such as spatial clustering, identification of spatially variable genes and data 
alignment tasks. In this manuscript, we provide a rigorous critique of these advanced deep learning methodologies, probing into their 
merits, limitations and avenues for further refinement. Our in-depth analysis underscores that while the recent innovations in deep 
learning tailored for SRT have been promising, there remains a substantial potential for enhancement. A crucial area that demands 
attention is the development of models that can incorporate intricate biological nuances, such as phylogeny-aware processing or 
in-depth analysis of minuscule histology image segments. Furthermore, addressing challenges like the elimination of batch effects, 
perfecting data normalization techniques and countering the overdispersion and zero inflation patterns seen in gene expression 
is pivotal. To support the broader scientific community in their SRT endeavors, we have meticulously assembled a comprehensive 
directory of readily accessible SRT databases, hoping to serve as a foundation for future research initiatives. 
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INTRODUCTION 
Multicellular organisms have diverse tissues composed of spe-
cialized cells that constantly divide and perform specific func-
tions [1]. Cell fate and behavior rely on communication with the 
surrounding environment, and understanding the spatial organi-
zation within tissues is crucial for studying tissue function and 
disease processes, such as autoimmunity and cancer [2]. Single-
cell RNA sequencing (scRNA-seq) has revolutionized genomics 
by capturing gene activity at a high resolution, enabling the 
study of heterogeneous cell populations in various disciplines [3]. 
However, scRNA-seq requires tissue dissociation, leading to the 
loss of cell position, which is important for understanding tissue 
functionality. Spatially resolved transcriptomics (SRT) provides a 
solution by capturing gene expression and spatial information 
simultaneously across tissues [4]. SRT methods can be divided 
into image-based methods with high spatial resolution but limited 
gene detection sensitivity; and sequencing-based methods with 

lower spatial resolution but high-throughput messenger RNA 
(mRNA) capture [5]. Image-based methods like in situ hybridiza-
tion (ISH) allow gene expression quantification at a sub-cellular 
level, while sequencing-based methods rely on spatial barcoding 
and sequencing [6]. 

SRT data, along with existing histology images and gene 
expression data, have generated vast and complex datasets 
[7] that require statistical and machine learning (ML) methods 
for analysis. ML methods, particularly deep learning (DL), have 
proven efficient in various biological tasks and are well suited 
for handling the challenges of SRT datasets [8–18]. Conventional 
(ML) methods in the SRT data analysis are mainly similar to 
the statistical inference domain, in which there is a demand 
for pre-existing knowledge about the data to estimate unknown 
parameters in the model [19]. Consequently, the DL method does 
not need to know the data-generation process to model data 
and is more potent in extracting complex and high-dimensional
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features. DL models are more versatile for integrating histology 
images, gene expression matrices and spatial information. Indeed, 
DL paradigms have facilitated the handling of such complicated 
datasets and related downstream analyses. Some efforts have 
been made to review the computational challenges in the SRT 
domain. Hu et al. [20] focused on the statistical and ML methods 
to analyze SRT data. This work has focused on leveraging the 
capabilities of histology images applicable to both imaging-based 
and sequencing-based techniques. Zeng et al. [21] provided a 
summary of the statistical and ML methods in the SRT domain 
with more focus on the sequencing-based methods. Despite the 
valuable information in these review papers, they did not provide 
detailed information and discussion of the application of DL 
models in SRT analysis. Although the review paper by Heydari 
and Sindi [22] reviewed the application of DL in SRT analysis, 
this work mainly focused on sequencing-based approaches. 
In this technical review, we identified papers published on 
applying ML methods focusing on DL models for analyzing both 
imaging- and sequencing-based SRT data up to September 2023. 
We present a comprehensive overview of the concepts, tasks, 
DL models and associated findings in SRT data analysis, with 
detailed information on current SRT datasets, evaluation metrics 
and results. Our review aims to be a comprehensive reference 
for future applications of DL in SRT data analysis and the 
development of innovative methods. Figure 1 summarizes various 
SRT methods related to the image-based and sequencing-based 
approaches. 

OVERVIEW OF COMMON DL MODELS FOR 
SRT DATA ANALYSIS 
In SRT exploration, different supervised and unsupervised learn-
ing methods are employed for various tasks. Supervised learning 
is used for gene prediction and cell segmentation, while unsuper-
vised learning is applied to clustering, gene expression imputation 
and dimension reduction. Table 1 provides a brief explanation 
of DL models used for SRT data analysis, including deep neural 
networks (DNNs), autoencoders (AEs), variational autoencoders 
(VAEs), convolutional neural networks (CNNs) and graph neural 
networks (GNNs)(For more detailed information regarding DL 
models, refer to [30]). Figure 2 represents the surveyed DL mod-
els and pre-processing approaches for gene expression matrices, 
spatial information and histology images. The mentioned models 
can be categorized as sequential models, generating a sequence of 
hidden states as a function of the previous hidden state. The prob-
lem of sequential mechanism is hindering parallelization within 
training examples, which becomes critical at longer sequence 
lengths in larger data sizes, leading to memory constraints [31]. 
Recently, attention mechanisms (HA) have been developed to 
reduce the restriction of sequential computation by designing 
dependencies without considering their distance in the input or 
output sequences. Additionally, the multi-head attention mech-
anism (MHA) or transformer [31] is a robust model architecture, 
allowing more parallelization in DNN-based methods. Since the 
reviewed papers propose different architectures of DL models 
and various loss functions, we will explain their topologies in 
Section 3. 

SURVEY OF DL MODELS FOR SRT ANALYSIS 
We review 26 DL methods used in analyzing SRT data, categorized 
into six sub-categories: spatial domain identification, spatially 
variable genes (SVGs), missing gene imputation, enhancement 

of gene expression resolution (GER), cell–cell interactions and 
cell-type deconvolution. Figure 3 provides an overview of each 
sub-category and the corresponding DL methods. Supplemen-
tary Tables S1 and S2 present metrics utilized for each category 
and the datasets, respectively. Figure 3 illustrates the six sub-
categories of SRT and their applications. 

Identifying spatial domain 
Spatial domain identification is a crucial step in spatial tran-
scriptomics analyses, involving the recognition of spatially 
coherent areas with consistent gene expression and histology. 
Various platforms exist for spatial transcriptomics, with some 
producing both tissue images and gene expression data such 
as slide-seq [32]. Most approaches rely on clustering methods 
using gene expression features alone to characterize cell types 
(i.e. Seurat [33]). Traditional ML techniques like the hidden 
Markov random field (HMRF) model [34] and Bayesian models 
like BayesSpace [35] have been employed to incorporate tissue 
heterogeneity and spatial information. Single-Cell Microscopy 
Empirical Bayes [36] is also used for spatial domain identi-
fication which employs techniques like empirical Bayes and 
expectation-maximization (EM) to predict labels. Liu et al. 
[37] have identified that the common practice of sequentially 
performing dimension reduction and spatial clustering is 
not always accurate. Consequently, they introduced DR-SC, a 
method that simultaneously addresses dimension reduction 
and spatial clustering within a single joint model framework. 
This approach primarily utilizes a probabilistic and hierarchical 
model, centered around an HMRF model, to efficiently derive 
low-dimensional embeddings. However, these ML approaches 
make assumptions about the data-generating process and may 
not be suitable with limited experimental control. 

DL models have gained popularity for analyzing high-
dimensional spatial transcriptomics data, especially in sequencing-
based methods. DL methods such as SpaCell [38], stLearn [39], 
SpaGCN [40], SEDR [41], STAGATE [42], RESEPT [43], ECNN [44], 
JSTA [45], conST [46], CCST [47], GraphST [48], spatial-MGCN [49], 
MGCN [50] and STGNNKs[51] utilize spatial data and histology 
images for spatial domain identification. A summary of these DL 
models is shown in Figure 4, with detailed explanations available 
in the supplementary material. 

Tan et al. [38] developed a DL model called SpaCell that com-
bines gene expression data and tissue images for cell-type clus-
tering. The model preprocesses images and count matrices sepa-
rately, dividing the images into 299 × 299 pixel tiles and normaliz-
ing them. The gene counts are mapped to each spot on the images. 
The model utilizes ResNet50 [52], a pre-trained CNN, to extract 
meaningful features from each tile. These features, along with the 
corresponding gene counts vector, are fed into two AE networks, 
and the resulting layers are merged to create a latent embedding 
layer. K-means clustering is then applied to this layer. For disease-
stage classification, SpaCell employs the same images and a two-
layered DNN model to analyze pixel features and gene count 
matrices, providing probabilities for four disease stages. However, 
SpaCell has limitations: it does not utilize spatial information 
in the embeddings and relies on a pre-training model trained 
on non-histology images, potentially leading to uninformative 
outcomes. 

Inspired by SpaCell, Pham et al. [39] proposed stLearn, which 
optimizes the integration of gene expression measurements, 
spatial distance and tissue morphology in spatial transcriptomics. 
stLearn normalizes gene expression matrices using histology 
images, called SME normalization (Eq 1), considering neighboring
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Figure 1. Schematic overview of two SRT approaches. (A) Image-based methods: I. f luorescent in situ hybridization (FISH) approach: Probes labeled 
with fluorophores are individually hybridized to predefined RNA targets, allowing visualization of gene expression in fixed tissue. This approach has 
been enhanced with shorter probes, leading to quantitative measurements of transcripts (smFISH) [23]. Sequential hybridizations (seqFISH) [24] were  
introduced to expedite the process and multiplexed error-robust FISH (MERFISH) [25] utilized binary codes to distinguish targeted transcript. II. In situ 
sequencing methods (ISS): RNA sequencing is performed directly on the RNA content within the tissue using using padlock probes to target genes. STARmap 
[26] is an ISS method, employing barcoded padlock probes and additional primers. Xenium [27] is a hybrid ISS and ISH platform that utilizes gene-
specific barcoded padlock probes, with the enzymatic amplification step employing the Rolling Circle Amplification technique for enhanced detection 
sensitivity. (B) Sequencing-based methods: This category enables unbiased analysis of the complete transcriptome and can be divided into I.Array and 
Bead-Based Technologies: In these methods the targeted tissue is placed on a microscopic slide with a barcoded array, capturing spatial information of 
each probe. Probes containing spatial barcodes and RT primers are inserted into the tissue. After tissue removal, cDNA-mRNA complexes are extracted 
for library preparation and next-generation sequencing readout. Gene expressions are measured in spots or beads, accompanied by a high-resolution 
histology image obtained from stained tissue sections of the same tissue. Probes dimensions vary across technologies, such as 100 μm (ST) or 55 μm (10X 
Visium), or utilizing ordered bead arrays (HDST) or barcoded beads (Slide-seq) of specific sizes (10 μm). II. Microdissection-Based Approach: Laser Capture 
Microdissection (LCM) [28] utilizes a concentrated infrared laser pulse for isolating a chosen region within a tissue sample. This technique ensures the 
accurate extraction of specimens from targeted anatomical areas, effectively reducing the risk of contamination. It allows for the detailed analysis of 
transcriptomes at the cellular level [29]. (Created with BioRender.com). 

Table 1: Summary of DL models and formulas 

Model Explanation Formula Denotation 

DNNs Feed-forward neural networks with multiple hidden layers and 
activation functions. Approximate nonlinear transformations for 
specific goals. 

yn = f (xn−1 · wi + b) yn: output of neuron n, xn−1: output of 
neuron (n − 1), wi: weight of neuron i, b: 
bias,f : activation function 

AEs Deep generative models for dimensionality reduction. Encode input 
data into latent variables and reconstruct input data. 

Z = Eθ (X), X̂ = Dφ(Z) Z: latent variable, Eθ : encoder network, X̂: 
reconstructed input, Dφ : decoder network 

VAEs Encode inputs as distributions over the latent space. Learn latent 
features through multi-layer neural networks. 

Z ∼ qθ (Z|X), X̂ = Dφ(Z) Z: latent variable, qθ : conditional 
distribution, X̂: reconstructed input 

CNNs Supervised models for image processing. Extract features from 
multidimensional input data using convolutional and pooling layers. 

S = X ∗ W S: feature  map,  X: input matrix, W: kernel 

GNNs Generalized models for graph data processing. Aggregate and transform 
node information through various network architectures like graph 
convolution network (GCN) and graph attention network (GAT). 

H(l+1) = f (H(l), A) H: hidden layer, l: layer,  A: adjacency 
matrix, f : function that aggregates and 
transforms the hidden state of nodes. 
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Figure 2. Graphical representations of the A. Pre-processing step: For the gene expression matrix, preprocessing includes the elimination of genes with 
expression below a certain threshold across a specified number of spots, followed by dimension reduction to simplify the data, and normalization, 
which involves log-transformation and Z-transformation to standardize the expression levels. In parallel, spatial coordinates are utilized to construct 
an adjacency matrix that captures the spatial relationships between different spots within the tissue—each spot is represented by a node, and the edges 
reflect the spatial proximity to neighboring spots. For the histology image preprocessing, the original image is partitioned into patches, which allows for 
a detailed analysis of the tissue’s histological features by breaking down the image into manageable segments for further computational processing. 
B. Surveyed DL models in SRT: These methods include DNN, deep AE, VAE, CNN and GNN. The circled numbers adjacent to each model’s name indicate 
the total number of papers that have employed the respective model up to September 2023. 

spots with similar gene expression and morphology distance 
( MD). 

GE′
i = GEi +

∑n 
j=1 GEj.MDij 

n 
, (1)  

where GE′
i is the normalized gene expression spot Si. GEi and GEj 

are the raw gene expression for spot Si and its n neighbor spots 
Sj. It employs global and local unsupervised clustering, using PCA 
or UMAP [53] methods, and a k-means clustering applied to a 
KNN graph constructed based on Euclidean distance. Despite its 
advances, stLearn uses an unrelated pre-training dataset and a 
fixed radius for identifying neighboring spots. In contrast, Hu et al. 
[40] developed SpaGCN to link the spatial domain with biological 
functions, integrating SRT data types using a GCN. SpaGCN con-
structs an undirected graph (G(V, E) where each node’s feature is 
the gene expression at each spot ∈ V, and the edge’s value (w) 
between two spots v1 and v2 is determined via spatial coordinates 
and histological features (Eq 2). 

w(v1, v2) = exp
(

− d(v1, v2)
2 

2l2

)
, (2)  

where d(v1, v2) is the Euclidean distance between the two spots 
and l is a hyper-parameter. 

Unlike stLearn, SpaGCN incorporates all spots simultaneously 
for gene expression aggregation. It employs PCA to reduce the 
dimensionality of the gene expression matrix and utilizes a GCN 
for node clustering. However, using RGB channels for dimension-
ality may yield inaccurate results due to image noise. On the other 
hand, Fu et al. [41] proposed SEDR as an alternative to SpaGCN, 
highlighting that the integration of histology images and spatial 
information in SpaGCN is oversimplified. SEDR employs an AE 
to learn a low-dimensional latent representation of gene expres-
sion and incorporates spatial data using the variational graph 
autoencoder (VGAE) model. The resulting embeddings are con-
catenated into the final latent representation for spatial clus-
tering. While SEDR excludes histology images, both SpaCell and 
stLearn have demonstrated the advantages of including them, 
particularly in addressing tissue heterogeneity. 

Dong et al. [42] then proposed STAGATE, a graph attention 
(GAT) AE that corrects predefined similarity measurements in 
SEDR, integrating spatial data and gene profiles to identify spatial 
domains in SRT data. In preprocessing, tissue-external areas are
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Figure 3. SRT and its six sub-categories with corresponding applications. SRT combines gene expression profiling with spatial information in tissues. 
Gene expressions are measured in spots, accompanied by high-resolution histology images of the same tissue section. The resolution of spots varies 
based on the SRT technique, ranging from cellular to sub-cellular levels. DL methods have been employed to analyze SRT data in the following domains: 
(1) Identifying spatial domains, (2) Identifying SVGs, (3) Imputing missing genes, (4) Enhancement of GER, (5) Cell–cell interactions and (6) Cell-type 
deconvolution. Each model in the figure represents the SRT data used (blue: histology image, red: gene expression, cyan: spatial information). 

removed, and log-transformed gene expressions serve as input. 
STAGATE’s novelty lies in its adaptive construction of a spatial 
neighbor network via a standard adjacency matrix with spatial 
data, radius as a predefined parameter, and through GAT using a 
pre-clustered gene expression matrix. These modules can be alter-
nately chosen as input for the graph attention layer. STAGATE’s 
encoder consists of two neural layers, the first adopted to the 
attention layer. The two layers can be obtained as 

h1 
i =

∑
j∈Si 

att1 
ijσ(W1h0 

j ), (layer1) (3) 

h2 
i = σ(W2h1 

i ), (layer2), (4)  

where h1 
i is the input gene expression spot i, W is the trainable 

weight matrix, Si is the neighboring set of spot i, σ is the nonlinear 
activation function and attij is the output of the graph attention 
layer (refer to the supplementary data). It then applies mclust [54] 
and Louvain clustering on labeled and unlabeled data’s learned 

features, respectively. Despite STAGATE’s success, its reliance on 
a predefined radius parameter for identifying neighboring spots 
is a limitation. 

Chang et al. [43] criticized SpaGCN [40] and stLearn [39] for lack-
ing spatial information in tissue architecture. They introduced 
RESEPT, a DL method that reconstructs and segments RGB images 
from spatial transcriptomics. RESEPT employs a graph AE with a 
GCN to transform transcriptomics data into a three-dimensional 
RGB latent space. It integrates a pre-trained ResNet101 backbone 
network and utilizes a decoder module. However, RESEPT’s fixed 
neighbor count in the adjacency matrix limits its learning ability 
and introduces parameter bias. 

Chelebian et al. [44] proposed ECNN, an adaptation of ensemble 
CNN [55], to extract holistic features from histology images and 
transcriptomics signatures. ECNN utilizes 30 Inception V3 [56] 
models for prostate image classification, generating ensemble 
latent feature vectors. UMAP downscales the vectors for unsuper-
vised clustering, reducing dimensions to three for visualization. 
A relative mean intensity matrix confirms genetic relevance.
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Figure 4. Identifying spatial domains with DL algorithms on a synthetic tissue. Mainly, the reviewed papers leveraged deep models to learn latent 
embedding and then pass them into the unsupervised clustering algorithm; or the papers leveraged DL models to segment the spatial domains. 

Despite pre-training on related data, ECNN does not consider 
spatial information in SRT data. 

Littman et al. [45] responded to the limitations of RNA 
hybridization-based methods by introducing JSTA, a DL-based EM 
approach for enhanced RNA hybridization image segmentation. 
JSTA uses two inputs: the gene expression level of cells and 
pixels, described by matrices Ec and Ep. The watershed algorithm 
is initially applied to Ep for segmentation. A three-layer DNN 
is used on Ec to link each gene to the cell type with higher 
likelihood. Another DNN is trained on Ep to get each pixel’s cell 
type probability. These steps form the E-step in the EM algorithm. 
The M-step involves applying the trained pixel classifier to 
border pixels for reclassification, followed by updating the 
image segmentation and cell classifier. The cross-entropy loss 
function is used in both classification models to minimize error. 
The process repeats until convergence, improving optimization. 
However, JSTA lacks generalizability as it is specific to RNA 
hybridization-based methods. Zong et al. [46] presented conST, 
a user-friendly multi-modal contrastive learning framework (in 
preprint status as of 10 December) addressing challenges in SRT 
research. It incorporates gene expression, spatial and morphology 
information to learn low-dimensional embeddings for clustering. 
The AE model initializes a general encoder ε in pre-training, 
while contrastive learning is used in the main training stage. 
conST employs a pre-trained masked AE [57] for morphological 
features, a deep AE for gene expression embedding and VGAE 
for spatial information. The combined embeddings maximize 
mutual information. However, conST requires parameter tuning 
and utilizes non-histology datasets for pre-training. Li et al. [47] 

introduced a method called CCST, utilizing GCNs to analyze 
spatial gene expression data. CCST combines gene expression 
profiles with spatial information to enhance cell clustering 
and subtype discovery. It involves encoding spatial data into 
matrices, using a hybrid adjacency matrix and a single-cell 
gene expression profile matrix. These matrices are processed 
through Deep Graph Infomax [58] networks to calculate cell 
embedding vectors, integrating both spatial structure and gene 
expression. The CCST approach’s two main drawbacks are its 
high computational demands, stemming from the utilization of 
four graph layers, and its challenges in accurately aligning with 
pathological annotations. GraphST [48] introduces an approach 
leveraging self-supervised learning (SSL) with a contrastive 
loss function. This method aims to generate a corrupted gene 
expression matrix by shuffling the feature matrix, intending 
to widen the distance between the original and the corrupted 
matrices. A graph, constructed with the three nearest neighbors, 
integrates two GCN layers within the AE framework. The mclust 
clustering algorithm is subsequently applied to the decoder’s 
output, utilized as the latent space. However, using the decoder 
output as the latent space might introduce limitations such as the 
potential loss of essential data features and sensitivity to noise, 
with these issues being contingent upon the decoder’s quality. 
Furthermore, while GraphST proposes a novel loss function to 
enhance model learning, it does not provide clear insights into 
the distinctive impacts of employing SSL on the effectiveness 
of their approach. Recent papers have introduced multi-view 
graph learning as a novel approach in this field, aiming to obtain 
latent embeddings by processing different views of input data
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within their models. For instance, Wang et al. [49] generate two 
graphs from gene expression and spatial information, fusing these 
representations to achieve a final embedding, which is then used 
to reconstruct the gene expression matrix through a Zinb decoder. 
Similarly, Shi et al. [50] construct two graphs employing distinct 
similarity metrics (Euclidean and Cosine similarity) and utilize 
an attention mechanism to merge the two resulting embeddings. 
Nevertheless, it is important to note that multi-view learning can 
be computationally intensive and sensitive to parameter tuning. 
This approach might also face alignment challenges between 
different data views, posing risks of poor generalization to new 
datasets. Building upon the concept of contrastive learning, Peng 
et al. [51] introduced STGNNks, an AE model encompassing four 
GCN layers. The model employs a hybrid adjacency matrix, a 
fusion of an identity matrix and an initial adjacency matrix 
A0 as defined by Eq 5. This matrix enhances the depiction of 
the spatial distribution of gene expression. The researchers also 
crafted a corrupted adjacency matrix by randomly eliminating 
edges. The encoder’s embeddings are derived twice: once using 
the hybrid matrix (h) and once with the corrupted version 
(ĥ). These embeddings are then fed to the readout function 
S. The primary goal is to maximize the approximated mutual 
information between h and the output of the readout function, 
optimizing the learning of spot-specific embedding features. 

A = λ × I + (1 − λ)A0 (5) 

Identifying SVGs 
SVG detection in tissue sections is a crucial task that aims 
to identify spatial expression patterns. While some statistical 
methods [59–61] have been developed, they overlook tissue 
taxonomy and miss morphology-related markers. SVG detec-
tion approaches can be divided into cluster-based and whole 
tissue-based methods. Cluster-based methods (e.g. SpaGCN, 
STAGATE,MGCN and conST) employ statistical tests on spatial 
domains derived from clustering algorithms, but they fail to 
detect genes with gradient expression and samples resistant 
to grouping. Whole tissue approaches are necessary in such 
cases. ML methods for SVG detection can be spectral or deep-
based. Spectral methods, like RayleighSelection [62], calculate 
the combinatorial Laplacian score (CLS) for each gene, where 
lower CLS values indicate greater spatial variability. However, 
spectral methods are computationally intensive and struggle with 
large datasets. Zhang et al. [63] investigated the computational 
efficiency of recent methods for detecting SVGs. They put forward 
ScGCO, a novel approach that leverages a probabilistic graph 
model to encapsulate both statistical and spatial characteristics 
of the modeled variables in order to accurately identify SV genes. 
Leveraging H&E-stained histology images, methods combining 
SVG detection and these images are desirable. DL-based methods, 
incorporating techniques like in situ hybridization and in situ 
sequencing, have demonstrated superiority. DL methods such 
as CoSTA, ST-NET, SPADE, HisToGene, CNNTL and DeepSpaCE 
have been proposed for SVG detection in both cluster and 
deep-based domains. Figure 5 provides an overview of distin-
guishing SVGs using DL models, as reviewed in this paper. 

Hu et al. [40] introduced SpaGCN, a methodology devised for 
identifying SVGs within certain clusters. The approach utilizes 
the Wilcoxon rank-sum test to pinpoint SVGs, focusing on genes 
with high expression levels within dispersed domains referred to 
as ‘metagenes’. By modifying threshold values, selecting founda-
tional genes and managing the addition/subtraction of positive/ 

negative genes, SpaGCN efficiently identifies metagenes specific 
to target domains. The method also features a sub-cluster option 
to articulate heterogeneity and demonstrates superior perfor-
mance compared with SPARK [61] and SpatialDE [60] in SVG detec-
tion, as assessed by Moran’s I statistic [64]. Nonetheless, since 
SpaGCN’s primary function is to train deep models for clustering, 
the marker genes it identifies might not accurately reflect tissue 
heterogeneity. 

In a similar vein, Zong et al. [46] employed conST for the 
identification of spatial marker genes within clusters, leveraging 
this as a subsequent task to validate the accuracy of cluster-
ing. conST mirrors SpaGCN’s approach, applying it to the latent 
embeddings derived from its principal algorithm, and exhibits 
enhanced performance in Moran’s I evaluations conducted on the 
spatialLIBD dataset [65], especially at the boundary of the white 
matter layer. 

Another model, STAGATE, also aims to identify SVGs within 
spatial domains, albeit without being specially trained for this 
purpose. Like SpaGCN, it identifies SVGs that do not necessarily 
correlate with the tissue morphology. STAGATE implements the 
Wilcoxon test from SCANPY [66] to spotlight SVGs within each 
spatial domain. When tested on the Slide-seqV2 dataset derived 
from mouse olfactory bulb tissue, STAGATE identified a greater 
number of genes within smaller tissue structures compared with 
the SPARK-X algorithm. 

Finally, MGCN [50] also identifies SVGs following the procedure 
outlined in SpaGCN and contrasts its performance with both 
SpaGCN and SpatialDE using Moran’s I statistic test. The results 
indicate that MGCN can identify a larger number of SVGs than 
the aforementioned methods. Instead, Xu et al. [67] proposed  
CoSTA, a cluster-based approach which employs an unsuper-
vised CNN to learn spatial relationships between genes using 
pixel position information from spatial transcriptomic images. Its 
pre-processing includes pixel binning, gene matrix normalization 
[60] and scaling. The method consists of two steps: clustering and 
neural network training. Initially, CoSTA feeds normalized images 
into a ConvNet, composed of three convolution boxes, each con-
taining convolution, batch normalization and max-pooling layers. 
Post clustering, labels are generated for ConvNet training. During 
the second step, a fully connected layer with a softmax activation 
function is added, providing the probability of jth sample belong-
ing to the ith cluster by an auxiliary target distribution (Eq 6). 

qij = 
p2 

ij/fi∑N 
i=1 p

2 
ij/fi 

, (6)  

where N is the total number of clusters and fi =
∑M 

j=1 pij, and  pij is 
obtained through Eq 7. 

p(y = i | x) = 
e1/di∑N 
i=1 e1/di 

, (7)  

where di is Euclidean distances between sample i to cluster cen-
troids ci. This layer is only used during training and discarded 
subsequently. CoSTA outperforms SpatialDE and Spark in identi-
fying gene similarities in the MERFISH dataset. It effectively iden-
tifies spatial pattern-dependent genes in Slide-seq data. However, 
CoSTA requires extensive parameter tuning and is assessed only 
on high-resolution SRT data. Meanwhile, ST-Net [68] combines  
spatial transcriptomics with histology images to predict high-
resolution gene expression in breast cancer patients. It utilizes a 
pre-trained DenseNet-121 CNN on ImageNet [69], achieving low 
mean square error and high Pearson’s correlation on a breast can-
cer spatial transcriptomics dataset. However, ST-Net underutilizes
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Figure 5. SVGs detection with DL methods on a synthetic four-layered tissue, including four layers (i.e. spatial domains). (A) Some studies train a 
deep model to predict marker gene values as a primary task. (B) Other studies use ML or statistical methods to detect SVGs in each spatial domain 
determined by clustering algorithms. 

available spatial data. Refer to the Supplementary material for 
more details. 

Bae et al. [70] proposed SPADE, a CNN model that combines gene 
expression data with image patches to detect SVGs. SPADE utilizes 
VGG-16 features and PCA for DR. Normalized genes (obtained by 
Limma [71]) are fitted to PCA-processed image features through 
linear regression. Genes are ranked based on their correlation 
with PCA values, and spatial marker genes are selected using a 
false discovery rate threshold and variance explained by principal 
components. SPADE successfully identified tissue-specific mark-
ers in breast cancer, olfactory bulb and prostate cancer datasets. 
However, Marker gene identification is influenced by spot density 
and distance. Pang et al. [72] introduced HisToGene (in preprint 
status as of 10 December) as a solution to the limitations of ST-
Net, which does not fully utilize spatial information in its CNN 
model. HisToGene incorporates an AE with an attention-based 
mechanism to predict gene expression values, taking into account 
spatial location and histology images. The model undergoes pre-
processing steps such as gene removal, UMI count normalization 
and transformation to a natural log scale. HisToGene extracts 
patches from histology images, creating a new matrix that consid-
ers variations in spot numbers within tissues, analogous to sen-
tence lengths in natural language processing (NLP). The encoder 
encodes the new image matrix and spatial coordinate through a 
single layer, and the sum of these encoding matrices forms the 
final embedding matrix. Multi-head attention layers, consisting of 
eight layers and 16 attention heads, are then applied (see [31] for  
attention model details). HisToGene consistently demonstrated 
superior correlation compared with ST-Net in its evaluation on 
high-resolution SRT data. 

Abed-Esfahani et al. [73] proposed CNNTL, a CNN-based 
method with contrastive loss, to embed gene expression patterns 
from human brain images in the ISH method. CNNTL was 
designed as an alternative to classification-based approaches 
and employed triplet loss during training. It achieved a rank-1 
accuracy of 38.3% on the Cortex dataset, outperforming single 
ResNet and random models. However, CNNTL’s application is 
limited to a small subset of genes in brain layers and was pre-
trained on an unrelated dataset. 

Monjo et al. [74] introduced DeepSpaCE, a CNN model 
specifically tailored for in situ capturing technology in Spatial 

Transcriptomics, with a focus on oncology. DeepSpaCE utilizes a 
VGG16 network to predict the expression of 24 genes, including 
breast cancer markers. When evaluated on a human breast 
cancer dataset, DeepSpaCE showed a correlation coefficient 
of 0.588 between measured and predicted values. However, 
DeepSpaCE’s capacity is limited to predicting a specific number 
of genes. 

Imputing missing genes 
scRNA-seq provides detailed gene expression profiles but lacks 
spatial context [75, 76]. Alternatively, Spatial Transcriptomics 
retains spatial context, but its resolution is limited. To address 
these limitations in each technology, recent studies proposed 
integrating scRNA-seq and SRT to predict unmeasured genes 
[77–80]. ML methods, such as LIGER [77] and  SpaGE [78], use joint 
dimension reduction techniques, like NMF and PCA, respectively, 
followed by linear models for joint embedding. GimVI, a joint non-
linear model, uses deep generative models for domain adaptation 
[79]. However, as Shengquan et al. [80] noted, these methods 
often rely on shared genes between the datasets and potentially 
misleading metrics, like the Spearman correlation coefficient. 
Therefore, they proposed an AE model, stPlus, which uses the 
k-NN algorithm for gene prediction. stPlus outperformed SpaGE, 
Seurat, Liger and gimVI across four clustering metrics: AMI, ARI, 
Homo and NMI (Supplementary Table S1). In the following text, 
we focus on the DL models and investigate the three DL models in 
detail. Figure 6 represents the process of gene imputation along 
with cell type deconvolution (refer to the next section) in SRT 
data. 

Lopez et al. [79] proposed gimVI (in preprint status as of 10 
December), which employs a VAE model to analyze gene expres-
sion matrices from scRNA-seq and SRT experiments. It distin-
guishes between the two by utilizing a binary variable and gen-
erates a latent vector to represent cell types. gimVI incorporates 
a K-NN algorithm in the latent space to impute missing genes. It 
demonstrated superior imputation performance compared with 
Liger and Seurat, although the results can be influenced by the 
choice of K and evaluation limited to a fraction of genes in the 
SRT dataset. 

Biancalani et al. [81] developed Tangram, which uses DL for 
mapping spatial information into scRNA-seq data and aligning

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae082#supplementary-data
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Figure 6. Imputing missing genes and cell-type deconvolution with DL models on a synthetic tissue. This figure illustrates the use of DLmodels to 
impute missing genes and decompose cell types in a synthetic tissue. While sequencing-based techniques only capture spot-specific transcriptomes, 
single-cell sequencing covers all genes but loses spatial information due to tissue dissociation. By integrating SRT and scRNA-seq data from identical 
tissues, DL models can detect unmeasured genes and determine cell proportions in each spot. (Created with BioRender.com). 

histological data to anatomical positions. It employs noncon-
vex optimization to update the alignment based on an objective 
function that compares cell-density distributions and evaluates 
gene expression. While primarily designed for spatial map recon-
struction, Tangram also performs gene imputation effectively. 
No quantitative comparison with other imputation methods was 
provided in the original paper. A recent study [ 82] ranked Tangram 
as the third-best imputation method, after stPlus and gimVI, 
noting its longer running time. 

Cell-type deconvolution 
In spatial transcriptomics, transcripts are captured at spatial 
locations or ‘spots’ [83] comprising mixed, low-resolution cells. 
Spot-level cell composition identification is crucial due to 
varying cell numbers from tissue heterogeneity or Spatial 
Transcriptomics technology [84]. Computational methods for 
this task fall into three categories: inference-based, multivariate 
analysis/linear algebra-based and DL-based methods. Inference-
based methods like Stereoscope [85], RCTD [86], cell2location 
[87], DestVI [88] and STdeconvolve [89] employ likelihood-based 
approaches, assuming input data distribution. Multivariate anal-
ysis and linear algebra-based methods, such as SPOTlight [90] and  
SpatialDWLS [91], incorporate both ML and statistical elements, 
yet have limitations as outlined in Section 1). Meanwhile DL-
based methods like GIST, Tangram and GraphST estimate cell-
type proportions with DL models. Even though some methods 
such as VAE are probability-based, they are still categorized as DL 
methods in this paper. However, these methods also have real-
world application limitations. 

Song et al. [92] proposed DSTG, a semi-supervised graph con-
volution network method for decomposing cell mixtures in SRT 
data. It creates pseudo-ST data from scRNA-seq data, constructs 
a linked graph and utilizes a GCN network with three convolution 
layers to predict cell type proportions. DSTG outperforms the 
SPOTlight [90] method on synthetic and real SRT datasets. How-
ever, comparing pseudo-ST and real-ST using Euclidean distance 
may not provide a fair comparison. 

Biancalani et al. [81] addressed the limitations of inference-
based deconvolution methods that overlook spatial information, 

leading to flawed cell-type detection. They developed Tangram, 
which performs deconvolution on ST/Visium technology, specif-
ically low-resolution SRT data. Tangram calculates cell counts 
through initial segmentation and maps cell-type ratios consis-
tently in multiple datasets. However, the reliance on prior knowl-
edge about cell numbers for segmentation may be a drawback, 
especially in high-density tissues like tumors [81]. 

Zubair et al. [93] proposed GIST, a joint model integrating 
SRT and image-derived data to enhance cell-type deconvolution. 
GIST utilizes DL on images to provide preliminary information 
for cell type identification within a Bayesian framework. A CNN 
model estimates cell-type abundance, particularly immune cells, 
by processing JPEG images into encoded TIFF format and gener-
ating probability maps. Spot-level probabilities are calculated by 
weighted summation of overlapping patches. GIST outperformed 
the base model using only expression data in identifying immune 
cells in breast cancer pathology. However, comparative evalua-
tions with Tangram and DSTG are needed to determine its relative 
performance. 

Long et al. [48] aim to derive a mapping matrix M that indicates 
the cell percentage in each spot. Initially, they utilize an AE model 
to obtain the reconstructed cell gene expression matrix HC from 
sCRNA-seq data and the reconstructed gene expression HS from 
ST data. Subsequently, they predict the spatial gene expression 
matrix HS by integrating it with the mapping matrix, expressed as 
H

′
S = MT × HC. The authors endeavor to learn the mapping func-

tion M through a mechanism of augmentation-free contrastive 
learning. 

Enhancement of GER 
Improving GER in SRT data, often limited at the single-cell 
level, has led to the proposal of various DL methods. These aim 
to enhance GER in SRT data by borrowing information from 
neighboring areas to fill gaps between spots (Figure 7). While 
SRT technologies like Visium and SLIDE-seq [32] provide high-
resolution cell morphology information, statistical methods like 
RCTD, which estimate cell-type-specific gene expression per 
spot based on deconvolution probability, can be unreliable as 
their accuracy depends on the deconvolution step. BayesSpace
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Figure 7. Enhancing GER and cell–cell interactions in SRT data. (A) Since the distances between spots are different based on the utilized sequencing-
based approaches, borrowing information from neighboring spots makes it possible to enhance the GER in empty areas between spots. (B) The spatial 
location of each spot facilitates the understanding of finding ligand–receptor interactions of each cell in SRT data. 

addresses this by dividing each spot into equal-size sub-spots 
and inferring gene expression, keeping total expression constant. 
However, the variability in splitting methods can lead to different 
outcomes, complicating the determination of an optimal solution. 
Given their ability to integrate multiple data, DL methods utilizing 
histology images have been proposed to enhance GER, a tactic not 
utilized by the aforementioned methods. 

Bergenstrahle et al. [94] developed XFuse, a tool that inte-
grates low-resolution in situ sequencing gene expression data 
with high-resolution histology images to infer high-resolution 
spatial gene expression. XFuse assumes negative binomial and 
Gaussian distributions for gene expression data and histology 
images, respectively. It utilizes a convolutional generator network 
to map parameters from the latent tissue state. Through vari-
ational inference, XFuse estimates the posterior of the latent 
variable by minimizing the Kullback–Leibler divergence. Histology 
images are mapped to the latent tissue state using a convolutional 
recognition network. XFuse outperformed a method using non-
missing neighbors’ information and successfully revealed dis-
tinct patterns in mouse olfactory bulb and human breast cancer 
datasets. It exhibited lower median RMSE, accurately predicted 
unseen samples, and showed better prediction of gene expression 
patterns compared with in situ hybridization data. However, XFuse 
is limited to detecting genes with spatial patterns resembling the 
histology images. 

Pang et al. [72] extended their previous work on HisToGene to 
develop HisToGene∗, a super-resolution gene expression predic-
tion method using dense histology image patches. HisToGene∗ 
applied the trained model to estimate spot-level resolution gene 
expression by treating spots as sentences in NLP. Sub-patches 
covering four patches each were created to predict higher resolu-
tion gene expression compared with the original spot. The results 
showed that HisToGene∗ predictions had higher correlations with 
observed spot-level gene expression in 19 sections, while HisTo-
Gene showed superior correlations in six sections. HisToGene∗ 

predicted gene sets demonstrated a direct link between thyroid 
hormones and breast cancer risk [95], indicating the presence of 
more biologically significant information. 

Utilizing super-resolution techniques for spatial gene expres-
sion and tissue section imputation, Monjo et al. [74], employed 
semi-supervised learning (SSL) to enhance prediction perfor-
mance. DeepSpaCE uses a trained model to estimate unmeasured 
genes in images with inadequate gene expression. The method 
was tested on a human breast cancer dataset with various tissue 
sections, using certain sections for training and others for testing. 
The model, acting as a ‘teacher’ in SSL, improved Pearson’s 
correlation coefficients (PCC) between actual and predicted 
expression when using unlabeled data from other sections. 
Applying the SSL approach to ImageNet’s cat and dog images 
and the Cancer Genome Atlas (TCGA) dataset did not yield any 
improvement. 

Cell–cell interactions 
Cell–cell interactions, a crucial extracellular communication 
process involving ligand–receptor interactions (LRI), is a primary 
focus in understanding intercellular communication [96]. Existing 
computational methods often concentrate on intracellular 
interactions or are limited to small-scale experiments. Spatial 
transcriptomics, offering gene expression profiles in spatial 
coordinates within cells, shows promise in predicting LRIs 
(Figure 7). Giotto [97] is a comprehensive framework for analyzing 
such data, including a cell–cell interaction module. Statistical 
methods like Giotto and ML frameworks like MISTy [98] identify 
cellular niche interactions by modeling expression of markers 
and generating pairwise distances, respectively. MISTy uniquely 
identifies interactions within specific regions, aiding marker inter-
action understanding, but it is computationally intensive. While 
non-DL models’ performance is impacted by growing SRT data 
diversity, DL methods can better identify cell interactions in large 
SRT datasets. Pham et al. [39] developed stLearn, a method for
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Table 2: Independent benchmarking links for each category 

Category Link 

Identifying spatial domain Teng Liu et al. [102] 
AndrewCheng [103] 

Identifying SVG Charitakis et al. [104] 
Cell-type deconvolution Li et al. [105] 

Yan and Sun [106] 
Gene expression imputation Avsar and Pir [82] 
Cell–cell interaction Liu et al. [107] 

analyzing cell type diversity and identifying receptor–ligand 
interactions (RLIs) in tissue sections. It involves quantifying cell-
type diversity and calculating co-expression of ligand–receptor 
pairs using CellPhoneDB [ 99]. A significant ligand–receptor pair 
matrix (CCI matrix) is created, and tissue regions with similar 
co-expression are clustered. stLearn combines cell density and 
CCI measures to identify areas with high cell–cell interaction 
probability. Validated on a breast cancer dataset, stLearn revealed 
significant interactions between tumor and immune cells. 

Yuan and Bar-Joseph [100] proposed GCNG, a graph convolu-
tional network for gene expression, to overcome limitations in 
extracellular interaction detection from Spatial Transcriptomics 
data (like Giotto). GCNG takes spatial cell locations and gene 
expression pairs as inputs, constructing an adjacency matrix 
based on Euclidean distance. The model maps the matrices’ prod-
uct to an embedding vector, enabling investigation of interactions 
between indirectly linked cells. GCNG outperformed other models, 
achieving high AUROC/AUPRC values. However, its predefined 
distance criteria for neighbor cell selection may introduce biases. 
Lastly, conST leveraged the advantages of clustering, SVG detec-
tion, and trajectory inference. This method identified target recep-
tors on breast cancer cells and analyze their microenvironment in 
IDC regions. Initially, it derives latent features from the dataset 
and segregates them into 20 clusters. It then identifies three 
clusters containing significant lesion areas and applies trajectory 
inference for pseudotime ordering. The SVG detection algorithm is 
used to identify marker genes responsible for the tumor microen-
vironment. Finally, cross-cluster CCI analysis is performed using 
TraSig [101], and within-cluster analysis is carried out by label 
transfer from Seurat to identify active ligand–receptor pairs. The 
results showed conST’s capability to detect IDC, DCIS and edge 
tumor cell regions and active L-R pairs within IDC regions. 

DISCUSSION AND FUTURE LOOK 
In this study, we delve into the strengths and limitations of DL 
methods for analyzing spatial transcriptomics data. Our in-depth 
technical overview provides insights into the performance of each 
method. The analysis of SRT data is a swiftly progressing area 
featuring a wide array of methods and applications across various 
categories. To ensure an unbiased comparison of these methods 
regarding their applicability, it is crucial to explore independent 
benchmarking techniques. Such an approach allows for an equi-
table assessment of these methods, especially considering how 
the benchmarks themselves are executed. Consequently, we have 
compiled a list of the latest benchmarking methods, categorized 
accordingly, in Table 2. 

We also comprehensively summarized the reviewed DL algo-
rithms proposed for SRT data analysis in Table 3, providing an 
opportunity to readers to quickly overview each method. 

To underscore the efficacy of DL methods in processing SRT 

data, we contrast them with non-DL techniques. It is important 
to note that the success of many downstream tasks is contingent 
on the effective functioning of individual components within the 
overall workflow. For instance, the identification of SVGs hinges 
on the clustering algorithm, meaning any overlooked biologi-
cally relevant feature could hinder downstream analysis. Con-
sequently, we propose incorporating ‘pathway information’ into 
SRT data via phylogeny-aware clustering techniques [108], which 
are becoming increasingly prevalent in the analysis of biological 
datasets. This could involve integrating KEGG-level pathways or 
other reference assignments into the effect size of a gene. Such 
an approach helps recognize that the impact of changes in two 
genes functioning within the same pathway is less significant 
overall compared with alterations in genes from entirely different 
pathways. 

Despite the abundant information in SRT data, we found that 
the current techniques do not fully exploit the rich information 
in SRT data. There is a clear need for robust DL methods that uti-
lize spatial data, scRNA-seq and high-resolution histology image 
data together. While CNNs have shown promise in analyzing 
SRT data, challenges arise due to the unique, complex nature of 
histology images, especially when combined with spatial data. 
We advocate for proof that features extracted by deep models 
hold biological significance. For instance, ECNN [44] and ST-NET 
[68] have visualized features from intermediate or latent vec-
tors. Additionally, CCST [47] has incorporated cell cycle phase 
identification as a means to verify the biological relevance of 
clustered cell groups, using differential expression analysis and 
Gene Ontology (GO) term enrichment. The clusters were mapped 
to different cell cycle phases, providing a biologically meaningful 
interpretation of the clustering results. Dealing with large histol-
ogy images also requires novel methods to unify small patches, 
akin to words in NLP techniques [72]. Although HisToGene [72] 
has linked patches through an attention-based model, most tech-
niques do not account for the relationship between patches, 
leading to batch effect sensitivity in CNN-based models. Future 
approaches could consider patches as time-series problems, lever-
aging DL methods on sequential data, like RNN, LSTM [109] and  
transformers. 

Another essential issue in SRT data processing is the batch 
effects, which amplified by the volume of spatial transcriptomic 
datasets, remain a significant challenge. While DL methods have 
been developed to address this in scRNA-seq [110, 111], the 
problem is more complex in SRT due to spatial dependency 
and the association with histology images. SEDR [41] and  
STAGATE [42] represent initial efforts to mitigate batch effects, 
but neither account for histology images, necessitating methods 
that evaluate gene expression and histology images together. 
SRT, allowing analysis of imaging and molecular features, 
could significantly advance disease diagnosis. Both SpaCell and 
CNNTL [73] exemplify the use of image and gene expression 
data in disease classification. As SRT technology evolves and 
data generation costs drop, its use in routine disease diagnosis 
could be transformative, particularly when capturing parallel 
biological variables like sex, race and age. Such inclusion in SRT 
data could revolutionize disease identification. Pre-processing 
is another critical step in SRT data analysis, impacting the 
results significantly. The gene expression matrix generated from 
sequencing machines constitutes compositional data, describing 
gene abundance as proportions to other genes within a sample 
[112]. Instead of residing in Euclidean space, these compositional 
data lie within a subspace called the simplex [113]. While 
Aitchison distance is proposed within the simplex, methods
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like log-ratio transformation map data to real space, making 
Euclidean distance relevant and preventing data misinterpre-
tation [113]. Although the majority of reviewed techniques 
use Euclidean distance for spatial coordinates appropriately, 
applying PCA or clustering algorithms on untransformed data 
contradicts the compositional data hypothesis. Only 13 methods 
of those reviewed considered log-transformation on the gene 
expression matrix. For example, stLearn employs SMEClust 
normalization, executing PCA and UMAP on normalized genes 
sans transformation. It is recommended that future work 
considers gene expression matrix compositionality and explores 
other transformation and normalization approaches. 

SRT data’s gene expression matrix is sparse, presenting signif-
icant overdispersion and zero values, which poses challenges for 
count data modeling. Given that many statistical and DL models, 
like VAE models, directly engage with count data, understanding 
gene expression’s overdispersion and zero inflation patterns is 
crucial. It helps determine whether sparsity arises from platform-
based issues necessitating imputation or from tissue location-
based gene expression heterogeneity requiring overdispersion and 
zero inflation management. Poisson or negative binomial models 
are preferable for most SRT technologies [114], handling overdis-
persion without additional zero inflation term. Excessive zero 
count potentially signifies biological variation, where imputa-
tion might introduce noise through non-zero values, negatively 
affecting analysis. We highly recommend reassessing existing 
imputation methods like gimVI and Tangram, considering these 
limitations. 

All the methods we have mentioned are reference-based, 
requiring a matching scRNA-seq dataset from the same tissue 
to estimate cell proportions. Chen et al. [115] evaluated the 
impact of gene-subset selection and the effectiveness of decon-
volution methods using both internal and external inference. 
They found Tangram and DSTG performed best with perfectly 
matched internal references and that gene selection can impact 
deconvolution performance. In particular, top cell-type marker 
genes outperformed highly variable gene subsets for external 
reference use. Many studies treated dimension reduction methods 
as error-free techniques to obtain low-dimensional features. 
However, we suggest future studies to develop a unified loss 
function for dimension reduction and clustering and evaluate 
the performance of dimension reduction approaches [37]. 

In Liu et al.’s [107] recent research, the focus was on exploring 
the impact of spatial distances on CCI analysis. The findings 
underscored the value of combining various data types, such as 
SRT and scRNA-seq, to improve the accuracy of CCI predictions. 
The study highlighted a significant limitation in current ST 
approaches, particularly the spatial resolution constraints. 
These limitations tend to cause a mix of gene expression 
patterns from different cell types within the same spatial 
location, thereby affecting the precision of CCI predictions. 
Consequently, there is a necessity to use scRNA-seq data as 
a reference for discerning cell types in ST-guided CCI studies. 
The introduction of some SRT technologies, like Stereo-seq 
[116], which provide single-cell resolution, marks a significant 
advancement. However, the development of effective downstream 
analytical methods for technologies like Stereo-seq remains 
a work in progress. With the ongoing advancements in high-
resolution SRT data, there is an expectation for the emergence of 
more sophisticated CCI tools. These tools would be capable of ana-
lyzing single-cell SRT data without relying on scRNA-seq-based 
approaches, paving the way for more accurate and detailed CCI 
studies [107]. 

Assay for Transposase Accessible Chromatin with high-
throughput sequencing [117] provides genome-wide chromatin 
accessibility profiling, and its single-cell variant, scATAC-seq, 
offers single-cell resolution. Despite several spatial chromatin 
accessibility profiling advancements [118, 119], existing epige-
nomic methods lack spatial resolution. VAEs have recently been 
employed for tasks like gene imputation, such as in gimVI, and 
understanding the interplay between gene expression and TCR 
sequence [120]. There is growing interest in integrating multi-
omics data, including transcriptional and chromatin landscapes 
of single cells [121–123]. Therefore, it is suggested that developing 
DL models for integrating scATAC-seq and spatial ATAC-seq to 
jointly learn the latent embedding could be innovative [124]. 
Lastly, the computational demands of DL methods in spatial 
transcriptomics are significant, as shown by Liu et al.’s [102] 
comprehensive evaluation. This study analyzed the efficiency of 
various GNN-based approaches in spatial domain identification 
across multiple datasets. It highlighted the high resource 
requirements of methods like CCST, which, even with a high-
end GPU, faced memory issues with complex datasets like Slide-
seqV2 and seqFISH. Similarly, GraphST and conST, integrating 
multiple neural networks, needed more computational resources, 
resulting in increased runtimes and memory usage. Also, in 
another benchmarking study by Cheng et al. [103] various 
ML and DL methods used in spatial transcriptomics were 
compared for computational efficiency across seven different 
datasets. SpaCell showed the lowest memory usage, followed 
by SpaGCN and Seurat. BayesSpace and stLearn, which account 
for spatial locations, were more memory-intensive. Regarding 
runtime, Seurat, SpaGCN and Giotto had similar efficiencies, 
with most methods showing a linear increase in runtime as 
dataset size grew. However, Giotto runtime significantly increased 
with larger datasets. These findings underscore the substantial 
impact that both dataset characteristics and the architectural 
complexity of GNNs exert on the computational demands of 
spatial transcriptomics analyses. 

Building on the previously discussed challenges and advance-
ments in spatial transcriptomics, particularly those related to 
computational demands and accuracy, it becomes essential to 
delve deeper into the specifics of cell segmentation. This aspect is 
especially critical in image-based techniques within the field. 
Recent attempts to refine cell segmentation can be broadly 
divided into two main categories. The first category includes 
methods that solely rely on imaging, like Watershed algorithms 
[125] and CellPose [126]. These approaches, while useful, often 
face limitations due to the inherent noise in images and labels. 
Furthermore, as they typically focus on nuclei staining, they 
tend to capture nuclear boundaries more accurately than the 
actual cell boundaries [127], making them less suitable when 
transcriptomic data are not incorporated. The second category 
encompasses methods that integrate spatial positioning of RNA 
sequences to infer cell boundaries. This group includes innovative 
techniques such as JSTA, Baysor [128] and GeneSegNet [127]. 
As the volume of genes captured increases and computational 
methods continue to evolve rapidly, there is a growing need for 
efficient, capable methods. These methods must not only handle 
the large sizes of image and spatial data but also adapt to the 
intricacies of spatial transcriptomic analysis. 

CONCLUSION 
In conclusion, this paper exhaustively reviewed the DL methods 
for addressing the analysis challenges in SRT data. DL algorithms
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excel at recognizing complex patterns and processing large, multi-
modal data, making them ideal for the increasingly diversified 
SRT data. Methods were categorized into six tasks: identifying spa-
tial domains, identifying SVGs, imputing missing genes, enhanc-
ing GER, analyzing cell–cell interactions and performing cell-type 
deconvolution. We aim for this review to guide the use of DL in SRT 
analysis and inspire collaborations to create innovative methods 
integrating gene expression, spatial information, single-cell data 
and digital pathology. 

Key Points 
• Spatially resolved transcriptomics is a new technology 

providing the position of captured expression across the 
tissue at single-cell level resolution. 

• A total of 26 deep learning-based methods are sys-
temically reviewed in this paper and categorized into 
six main groups based on the tasks and downstream 
analyses. 

• A brief discussion of the current machine learning 
approaches is presented for each category to assess the 
advantages of deep learning models proposed for that 
category in comparison with the traditional machine 
learning models. 

• A unified description of the model and result corre-
sponding to each deep learning model is presented, and 
the mathematical model is also discussed in the supple-
mentary section. 

• Lastly, a comprehensive summary of the deep learn-
ing algorithm, evaluation metrics and datasets by each 
approach is tabulated. 
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