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Abstract 
The prediction of molecular interactions is vital for drug discovery. Existing methods often focus on individual prediction tasks and 
overlook the relationships between them. Additionally, certain tasks encounter limitations due to insufficient data availability, resulting 
in limited performance. To overcome these limitations, we propose KGE-UNIT, a unified framework that combines knowledge graph 
embedding (KGE) and multi-task learning, for simultaneous prediction of drug–target interactions (DTIs) and drug–drug interactions 
(DDIs) and enhancing the performance of each task, even when data availability is limited. Via KGE, we extract heterogeneous features 
from the drug knowledge graph to enhance the structural features of drug and protein nodes, thereby improving the quality of features. 
Additionally, employing multi-task learning, we introduce an innovative predictor that comprises the task-aware Convolutional Neural 
Network-based (CNN-based) encoder and the task-aware attention decoder which can fuse better multimodal features, capture the 
contextual interactions of molecular tasks and enhance task awareness, leading to improved performance. Experiments on two 
imbalanced datasets for DTIs and DDIs demonstrate the superiority of KGE-UNIT, achieving high area under the receiver operating 
characteristics curves (AUROCs) (0.942, 0.987) and area under the precision-recall curve ( AUPRs) (0.930, 0.980) for DTIs and high AUROCs 
(0.975, 0.989) and AUPRs (0.966, 0.988) for DDIs. Notably, on the LUO dataset where the data were more limited, KGE-UNIT exhibited a 
more pronounced improvement, with increases of 4.32% in AUROC and 3.56% in AUPR for DTIs and 6.56% in AUROC and 8.17% in AUPR 
for DDIs. The scalability of KGE-UNIT is demonstrated through its extension to protein–protein interactions prediction, ablation studies 
and case studies further validate its effectiveness. 
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INTRODUCTION 
Drug discovery and development is a lengthy and costly process 
[1]. Various studies focus on understanding molecular interac-
tions and associations, such as DDIs, DTIs and protein–protein 
interactions (PPIs). These interactions play a crucial role in down-
stream applications, including drug repurposing, prediction of 
drug side effects and drug discovery. 

In recent years, a series of computational methods have 
been proven effective for a specific task of predicting molecular 
interactions. These methods can be broadly categorized into three 
groups: similarity-based methods, matrix factorization-based 
methods and network-based methods. Similarity-based methods 
assume that if two pairs of nodes are similar, their interactions 
will also be similar [2, 3]. However, these methods overlook 
crucial features and information, such as molecular structure, 
functionality and metabolic pathways. Matrix factorization-
based methods involve the decomposition and reconstruction 
of an adjacency matrix to infer novel molecular interactions. 

These methods utilize mathematical techniques to factorize the 
matrix into lower-dimensional representations, which capture 
latent features and relationships between molecules. Examples of 
matrix factorization-based methods include neighborhood regu-
larized logistic matrix factorization [4], semi-nonnegative matrix 
factorization [5] and manifold regularized matrix factorization 
[6]. Matrix factorization-based methods often assume that the 
molecular interaction data can be represented by a low-rank 
matrix, which may not accurately capture the complex and het-
erogeneous nature of molecular interactions. Furthermore, these 
methods primarily rely on the inherent structure of the interac-
tion matrix, neglecting other relevant features such as molecular 
descriptors, chemical structures or biological pathways. 

Network-based methods have emerged as effective approaches 
for downstream link prediction based on constructed networks. 
GCN-DTI [7] was the first approach to introduce graph neural 
network (GNN) into the field of DTI prediction. And more and 
more methods, GNN [8, 9] and other variants, such as graph con-
volutional network (GCN) [10] and graph attention network (GAT)
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[11, 12], have been demonstrated relatively better performance 
in predicting molecular interactions. In addition, network-based 
methods have been further developed by heterogeneous data 
from multiple omics resources, such as genomics, proteomics and 
metabolomics. These networks consist of multiple types of nodes 
(such as drug, protein and disease) and edges (such as interaction 
indicators and similarity scores of nodes). For example, Luo 
et al. [13] proposed DTINet, which constructs heterogeneous 
networks to integrate drug- and protein-related information. Wan 
et al. [14] introduced NeoDTI to learn low-dimensional feature 
representations of drugs and proteins from heterogeneous data, 
enhancing the prediction performance of DTIs. Lin et al. [15] mined 
and fused multi-source features of heterogeneous data using a 
multi-network structure to facilitate DDI prediction. Furthermore, 
studies utilizing knowledge graphs (KGs) have achieved ground-
breaking results in predicting molecular interactions [8, 16]. 
For instance, Mohamed et al. [17] developed TriModel, which 
employs knowledge graph embedding (KGE) techniques to learn 
vector representations of drugs and proteins, enabling the 
discovery of unknown DTIs. Lin et al. [18] proposed KGNN,  an  
end-to-end framework that captures drug information and its 
potential neighborhood entities to predict DDIs. Both TriModel 
and KGNN demonstrate the effectiveness of KG in molecular 
interaction prediction. 

There exists a certain degree of interconnectedness among 
molecular relationship prediction tasks. For instance, the mech-
anism of action for drugs often involves specific interactions with 
protein targets, and the interaction between drugs and protein tar-
gets can be influenced by other drugs or proteins. This implies the 
presence of correlations and mutual influences between drug– 
drug interactions (DDIs) and drug–protein target interactions [19]. 
However, the current focus of research in molecular relationship 
prediction tasks is predominantly on individual tasks, often dis-
regarding the potential relationships and interactions between 
them. Furthermore, given the limited number of known molec-
ular interactions in comparison to the vast number of potential 
interactions, certain methods may encounter limitations in pre-
dicting specific tasks due to insufficient data. To overcome the 
challenge of data scarcity, leveraging information and knowledge 
from other labeled tasks has emerged as a feasible solution. Multi-
task learning takes advantage of the high correlation present in 
labeled data through implicit data augmentation and has shown 
superiority over traditional single-task learning in drug discovery 
[20, 21]. DeepDISOBind [22] models the interaction between DNA, 
RNA and proteins to simultaneously predict these three types 
of interactions, achieving better results than single-task mod-
els. Given the potential relationships among various molecular 
relationships and node data, multi-task learning can effectively 
leverage correlations between different molecular relationship 
tasks and improve model performance. KG-MTL [23] joint pre-
serves the semantic relations of drug entities and the neighbor 
structures of the compound, resulting in improved predictions 
of drug–target and compound–protein interactions. However, the 
implementation of multi-task learning is challenging and requires 
careful consideration of the correlation between tasks [24]. 

Overall, the existing methods primarily focus on individual 
tasks without considering the potential correlation information 
among different molecular interactions prediction tasks. Addi-
tionally, certain tasks encounter limitations due to insufficient 
data availability, thereby impeding the algorithms’ performance. 
In the study, to overcome the abovementioned drawbacks, we 
present a pioneering approach that combines a large-scale KG 
and multi-task learning, named KGE-UNIT, for joint prediction of 

multiple types of molecular interactions. Based KGE, we extract 
heterogeneous features from the drug KG to supplement the 
structural features of drug and protein nodes, thereby improving 
the quality of features. Based multi-task learning, we propose an 
effective and novel predictor consisting of the task-aware CNN-
based encoder and the task-aware attention decoder. This predic-
tor has the capability to simultaneously predict multiple types 
of molecular interactions, and it can improve the performance 
of each respective task even under conditions of limited data 
availability. The encoder is responsible for fusing multimodal 
features, while the attention decoder is designed to capture the 
interacting context of molecular interactions tasks by the task-
interacted attention block, impose constraints specific to each 
task and enhance task awareness by the task-aware attention 
block, ultimately leading to improve their respective performance. 
The ablation study proves that the performance enhancement of 
single tasks, particularly in data-scarce tasks, by multimodal fea-
tures and multi-task learning. Furthermore, relevant experiments 
show that KGE-UNIT outperforms some state-of-the-art methods 
for both DDIs prediction and DTIs prediction. The main code can 
be accessed through https://github.com/zcc1203/KGE-UNIT. 

METHODS AND MATERIALS 
In the section, we first formulate the joint multiple types of inter-
actions prediction problem (refer Section 2.1). And, we introduce 
the proposed KGE-UNIT in detail (refer Section 2.2). 

Problem formulation 
Knowledge graph. We consider a KG that provides heterogeneous 
information of drug–target and drug–drug pairs, denoted by G = 
(E, R), where  E (resp., R) is the set of entities (resp., relations). 
The KG stores information as triplets that represent interactions 
between two entities. A triplet can be denoted by Ti = (ehi, ri, eti), 
where ehi, eti ∈ E and ri ∈ R. Problem definition. To facilitate 
the understanding of our proposed methods, in this study, we 
chose two representative interaction prediction tasks: DTIs and 
DDIs prediction. We formulate these tasks as binary classifica-
tion problems and aim to estimate interaction probabilities ydti 

i,j 

of a drug–target pair (di, tj) and yddi 
i,j of a drug–drug pair (di, dj). 

Given the SMILES sequences S = {s1, ..., sn} for n drugs, protein 
sequences A = {a1, ..., am} for m proteins and the KG G, the  
goal is to learn a multi-task prediction function (ydti 

i,j , yddi 
i,j ) = 

F((di, tj), (di, dj)|γ , A, S, G), where  γ denotes the model parameters. 

Workflow of KGE-UNIT 
The workflow of KGE-UNIT (Figure 1) includes three main parts: 
multi-modal feature extraction through KGE and CNNs, integra-
tion and encoding of features with a CNN-based encoder and task-
aware feature decoding with a task-aware attention decoder. 

KG construction and heterogeneous features extractor 
Molecular interaction prediction involves multiple dimensions of 
information, including the structure, function and interactions of 
molecules. Building a KG allows for the integration of multi-source 
data, enabling a better capture of complex associations between 
molecules. In the study, we employed the integration of hetero-
geneous data from genomics, proteomics and metabolomics to 
construct a KG, in which biomedical concepts are represented 
as nodes and interactions/associations (such as DTIs, DDIs and 
drug–disease interactions) are represented as edges. For instance,
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Figure 1. The structure of KGE-UNIT. 

the triple representation <DB15035, DTI, P04626> in the KG illus-
trates the interaction between drug DB15035 and protein P04626. 
Therefore, we can obtain the KG triples with plenty of information, 
including the topological structure and semantic relations. 

After constructing the KG, we employed KGE models to learn 
the topological structures and semantic relation of all entities 
and relations. In this study, we tried many KGE methods to test 
the performance of heterogeneous features extractor, and finally, 
we utilized ConvE [25] as the KGE model of choice. ConvE is a 
KGE model in which the interactions between input entities and 
relationships are modeled by convolutional and fully connected 
layers. And ConvE has consistently proven to be a powerful base-
line model on the drug discovery in prior studies [26]. Compared 
with other KGE models, ConvE exhibits a superior suitability for 
tasks involving the prediction of molecular interactions. This 

heightened suitability is chiefly attributed to its use of convolu-
tion to enhance feature learning capability. 

Structural features extractor 
The structural features extractor is designed to extract the struc-
tural characteristics of both drug and protein entities from drug 
SMILES structures and protein sequences. To accomplish this, the 
drug SMILES structures are transformed into molecule graphs 
using RDKit [27], which represents atoms as nodes and chemical 
bonds as edges. Additionally, the protein sequences are trans-
formed into high-dimensional feature vectors through the Com-
position, Transition and Distribution method [28]. Given the high 
dimensionality and potential for noise in these feature vectors, 
we apply Principal Component Analysis to reduce the dimen-
sions while preserving the essential information contained within
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the relevant entity features. Then, we employ task-aware CNN-
based encoders to extract local chemical contexts and molecular 
structures from the drug and protein structures, respectively. 
CNN have demonstrated remarkable success and have become 
popular in a wide range of bioinformatics tasks. Deepconv-dti [29] 
utilizes CNNs to extract local features of protein sequences for the 
purpose of DTI prediction. MDeePred [30] employs CNNs to encode 
target proteins and generate multi-channel fusion features for the 
prediction of drug–target binding affinity. CNNs extract features 
through local connections, enabling them to integrate both local 
and global features, thereby improving the quality of the features 
in the context of molecular relationship prediction. The forward 
propagation of convolutional layer l is calculated as follows: 

hl = Wlal + bl, (1)  

where Wl and bl are the weight matrix and bias vector for lth 
layer, al and hl are the input and output of the forward propagation 
process, respectively. 

Joint multi-task predictor 
To unit multiple molecular interactions tasks, we have developed 
a novel encoder–decoder predictor in KGE-UNIT. The task-aware 
CNN-based encoder is designed to fuse heterogeneous and struc-
tural features. The task-aware attention decoder is composed of 
task-interacted attention blocks, task-aware attention blocks and 
task-specific prediction heads as shown in Figure 2. The  task-
interacted attention block is utilized to capture the interactive 
impacts between different molecular interactions. And the task-
aware attention block is proposed to optimize their representa-
tions for individual tasks in the context of DDIs, DTIs and other 
relevant interactions. Both blocks consist of an Multi-head self 
attention (MHSA) [31] and a multi-layer perceptron (MLP). MHSA 
have been proven effective in multi-task learning [32], and we 
have chosen it as a crucial component of our predictor due to 
the following advantages; MHSA has the capability to incorporate 
both local and global information, thereby facilitating the gen-
eration of feature representations that are more comprehensive 
and enriched in content. The independent learning ability of each 
attention head enables them to attend to various positions in 
the input sequence, effectively capturing the feature information 
associated with amino acid residues and atoms present in the 
target and drug molecules. By conducting scaled dot-product 
attention computations in parallel, MHSA operates on three key 
entities, namely the query, key, and value, which are all repre-
sented as vectorized forms. MHSA can be calculated as 

MHSA(Q, K, V) = softmax

(
QKT√

dk

)
V, (2)  

where Q, K and V are the query, key and value matrices, respec-
tively. 
Task-interacted Attention Block 

The goal of the task-interacted attention block is to exploit the 
interacting infomation of different molecular interactions tasks. 
As shown in Figure 2, we integrated heterogeneous and structural 
features by the CNN-based encoder for each task as follows: 

Fi = CNN(concat(HFi, SFi)), (3)  

where HFi, SFi are heterogeneous and structural features of ith 
task, Fi is mixed features. CNN represents the CNN-based encoder, 
including convolutional layers, batch normalization layers and 

activation layers. Specifically, we employed the LeakyReLU [33] 
function as the non-linearity activation. The mixed features Fi 

serve as input to the task interaction block. First, we concatenate 
these features as follows: 

Fi = CNN(concat(HFi, SFi)), (4)  

where N is the number of tasks, concat(∗) is the concatenate 
operator. Then, Fc serves as the query, key and value of MHSA in 
task interaction block as follows: 

Q = LN(Fc), K = LN(Fc), V = LN(Fc) (5) 

F̂ = MLP(MHSA(Q, K, V)), (6)  

where Q, K and V are query, key and value entities. LN is Layer Nor-
malization [ 34], MLP is a multi-layer perceptron, which includes a 
fully connected layer and batch normalization layer. 
Task-aware Attention Block 

Task-aware attention blocks are used to learn the representa-
tion of DDIs and DTIs tasks while considering their interacting 
contexts. They can comprehend the interactions of tasks and 
dynamically assign different attention to each specific task. Each 
task is processed by its corresponding task-aware attention block. 
These two blocks possess a similar structure but differ in the 
entities of query, key and value. In task-specific attention blocks, 
the output of the task-interacted attention block is employed as 
the key and value, while the output of CNN-based encoder serves 
as the query as follows: 

Q
′
i = LN(Fi), K

′
i = LN(F̂), V

′
i = LN(F̂) (7) 

F̂
′
i = MLP(MHSA(Q

′
i , K

′
i, V

′
i)), (8)  

where Fi denotes mixed features, which are the outputs of the ith 
CNN-based encoder. F̂ denotes the output of the task-interacted 
attention block, and F̂

′
i denotes task-interacted features, which 

are the outputs of the ith task-aware attention block. Then, we 
integrated task-interacted features and mixed features to get 
task-aware features as follows: 

F̂
′′
i = Fi + γ F̂′

i, (9)  

where γ is a hyper parameter. 
Task-specific Prediction Head 

After the extraction of task-aware features, we employ task-
specific prediction heads to make predictions for molecular inter-
actions, which are treated as binary classifications. Each task is 
processed by its corresponding task-specific prediction head. A 
task-specific prediction head consists of fully connected layers, 
batch normalization layers and activation layers, defined as fol-
lows: 

z1 = σ1(W1(f latten(F̂
′′
i )) + b1) (10) 

z2 = σ2(W2(z1) + b2) (11) 

· · ·  

zL = σL(WL(zL − 1) + bL), (12) 
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Figure 2. The structure of the joint multi-task predictor in KGE-UNIT. 

where L is the number of fully connected layers. And flatten(∗) is  
flatten operator. Wi, bi, and  σi are the weight matrix, bias vector 
and activation function for ith layer. In the study, σL(xi) = exi /

∑
exi 

is the softmax function. σ1, · · ·  , σL−1 are LeakyReLU function. 

Multi-task loss optimization 
Prediction DTIs and DDIs are all treated as binary classification 
tasks. Given the DTI and DDI pairs in the training process, our 
optimization goal is to minimize the cross-entropy loss as follows: 

Lossdti = −
∑

ydti 
i,j logŷdti 

i,j + (1 − ydti 
i,j )log(1 − ŷdti 

i,j ) (13) 

Lossddi = −
∑

yddi 
i,j logŷddi 

i,j + (1 − yddi 
i,j )log(1 − ŷddi 

i,j ), (14) 

where ŷdti 
i,j (resp.,ŷddi 

i,j ) is the prediction of DTI pair (di, tj)(resp., DDI 
pair (di, dj)). ydti 

i,j (resp., yddi 
i,j ) is the true label of DTI pair (di, tj) 

(resp., DDI pair (di, dj)). The performance of a multi-task model is 
sensitive to the choice of loss weight in the training process, as it 
determines the relative importance of each task on the joint loss. 
To balance loss contribution for multiple tasks, we employ weight 
αt to determine the loss contribution for the task t. We generate 
a weighted sum of task-specific losses, Ltotal, thereby ensuring the 
accurate evaluation of each task’s relative importance 

LOSStotal = 
T∑

t=0 

αtLOSSt (15) 

where LOSSt is a loss function for task t. 
For specific parameter settings of KGE-UNIT, please refer to 

Supplementary Section 1 Parameters settings (see Supplementary 
Data available online at http://bib.oxfordjournals.org). 

Evaluation metrics 
In this study, the area under the receiver operating characteristics 
curve (AUROC) and the area under the precision-recall curve 
(AUPR) are adopted to evaluate each method’s performance. 

RESULTS 
Datasets 
In the study, we use two benchmark datasets, Luo’s dataset [13] 
and BioKG [35], to compare KGE-UNIT with other state-of-the-art 
methods for DDI and DTI predictions. Luo’s dataset contains 12 
015 types of nodes and 1 895 445 types of edges, and the BioKG uti-
lized in the study comprises of 105 524 unique nodes and 2 043 846 
unique edges. (See Supplementary Section 2 Datasets, see Supple-
mentary Data available online at http://bib.oxfordjournals.org). 

The distribution of edge categories in both datasets is some-
what imbalanced. In Luo’s dataset, the number of DDIs is five 
times greater than that of DTIs, while in BioKG, the number of 
DDIs is nearly 50 times greater than DTIs. Moreover, the volume of 
DTI data is significantly insufficient in comparison to that of DDIs. 

We consider the known DTIs and DDIs as positive samples 
and choose non-existing DTIs and DDIs as negative samples to 
create the experimental dataset. Futhermore, our experiments 
are divided into two scenarios: the warm start and the cold start 
for drugs. In the scenario of warm start, we apply 10-fold cross-
validation (10-CV) and split all DTIs and DDIs into 10 subsets. 
Then, we randomly select negative samples to maintain a 1:1 
ratio between positive and negative samples. In the scenario of 
cold start for drugs, we employ 10-CV on drugs. We randomly 
divide the drugs into 10 subsets and utilize one of them for testing 
drugs. 

Evaluations on DTIs prediction task 
We compared our proposed KGE-UNIT with the existing meth-
ods: SVM, DNN, TransE [36], DistMult [37], ConvKB [38], RGCN 
[39], ConvE [25], CrossE [40], RotatE [41], DistMA [42], MuRE [43], 
AutoSF [44], BoxE [45], PairRE [46], DeepDTI [47] and KGE_NFM [48] 
(See Supplementary Section 3 Baselines, see Supplementary Data 
available online at http://bib.oxfordjournals.org) on the DTIs pre-
diction task. In order to eliminate potential accuracy differences 
caused by different implementation frameworks, we conducted 
experiments on all KGE models using the PyKEEN [49] framework.  
As shown in Table 1, KGE-UNIT demonstrates a clear superiority 
over all other state-of-the-art methods. Specifically, on the Luo’s 
dataset, KGE-UNIT achieves a significant improvement of at least 
4.32% in AUROC score and 3.56% in AUPR score. Similarly, on the
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Table 1: DTIs Prediction Results on Luo’s Dataset and BioKG Dataset in the scenario of the warm start. 

Luo BioKG 

Methods AUROC±std AUPR±std AUROC±std AUPR±std 

SVM 0.654±0.037 0.739±0.045 0.730 ±0.041 0.803±0.021 
DNN 0.882±0.031 0.881±0.026 0.934±0.018 0.933±0.014 
TransE 0.731±0.042 0.725±0.033 0.756±0.011 0.799±0.018 
DistMult 0.752±0.025 0.745±0.038 0.903±0.049 0.889±0.031 
ConvKB 0.823±0.010 0.826±0.036 0.911±0.029 0.913±0.015 
RGCN 0.842±0.032 0.848±0.045 0.915±0.017 0.902±0.026 
ConvE 0.795±0.033 0.828±0.041 0.922±0.032 0.925±0.029 
CrossE 0.862±0.015 0.874±0.027 0.931±0.041 0.928±0.039 
RotatE 0.869±0.025 0.872±0.013 0.946±0.019 0.952±0.032 
DistMA 0.837±0.028 0.838±0.019 0.928±0.025 0.930±0.041 
MuRE 0.839±0.028 0.839±0.053 0.931±0.052 0.937±0.015 
AutoSF 0.733±0.040 0.731±0.058 0.877±0.034 0.885±0.049 
BoxE 0.857±0.054 0.843±0.030 0.913±0.047 0.916±0.026 
PairRE 0.831±0.017 0.828±0.044 0.915±0.027 0.911±0.062 
DeepDTI 0.859±0.039 0.840±0.017 0.973±0.024 0.970±0.036 
KGE_NFM 0.903±0.026 0.898±0.019 0.946±0.016 0.946±0.028 
KGE-UNIT 0.942±0.025 0.930±0.034 0.987±0.035 0.980±0.042 

BioKG dataset, it achieves a minimum improvement of 1.44 % in 
AUROC and 1.03 % in AUPR. These results indicate that, firstly, 
all methods perform better on the BioKG dataset compared with 
the LUO dataset. This is because the BioKG dataset contains 
richer data information, including drug–target interactions (DTIs) 
and the heterogeneous information composed of all types of 
drug-related entities. Secondly, among the 12 tested heteroge-
neous data-driven KGE models, BoxE and RotatE achieved the best 
performance, while DistMult and TransE exhibited the poorest 
performance. This is primarily attributed to the limited capacity 
of DistMult and TransE in capturing semantic information from 
the drug KG. Similar conclusions have also been demonstrated in 
[26, 50]. Furthermore, compared with feature-based methods (e.g. 
SVM, DNN, DeepDTI) and heterogeneous data driven methods (e.g. 
BoxE, RotatE), under using the same heterogeneous data-driven 
methods, methods which integrate multiple types of features 
(e.g. KGE_NFM, KGE-UNIT) outperform bettaer. Furthermore, in 
tasks with relatively limited data, KGE-UNIT not only considers 
the features of the target entities but also extensively explores 
the potentially useful features from other nodes related to the 
task. This leads to a substantial improvement in algorithm per-
formance. 

Evaluations on DDIs prediction task 
We compared our proposed KGE-UNIT with the existing methods: 
SVM, DNN, TransE, DistMult, ConvKB, RGCN, ConvE, CrossE, 
RotatE, DistMA, MuRE, AutoSF, BoxE, PairRE, DeepDDI [51] and  
KGNN [18] (See Supplementary Section 3 Baselines, see Supple-
mentary Data available online at http://bib.oxfordjournals.org) 
on the DDIs prediction task. In the BioKG dataset, there is a 
total of 1 334 085 DDIs information, accounting for 65.27% of all 
the relationship information. However, in the Luo dataset, there 
are 10 036 DDIs, which represent a mere 0.53% of the total. It 
represents a substantial disparity in the distribution between the 
two datasets. From the results of DDIs prediction shown in Table 2, 
it can be observed that on the Luo’s dataset, KGE-UNIT (AUROC= 
0.975, AUPR=0.966) outperforms other methods, exhibiting at 
least 6.56% in AUROC and 8.17% in AUPR. On the BioKG dataset, 
due to the larger volume of the dataset, all methods perform 
better, especially the heterogeneous data-driven methods, 

and KGE-UNIT achieved the best performance. The results 
indicate that based on the ability to effectively integrate and 
learn from multiple types of features, KGE-UNIT showcases 
exceptional performance even in scenarios with limited data 
availability. 

Influence of KGE methods on KGE-UNIT 
To further illustrate the impact of different heterogeneous feature 
extraction methods on KGE-UNIT, we conducted experiments by 
varying the KGE methods within the KGE-UNIT framework. The 
results of DTI and DDI predictions on Luo’s dataset are shown 
in Figure 3 (more in Supplementary Table 4, see Supplementary 
Data available online at http://bib.oxfordjournals.org), respec-
tively. From the results, it can be observed that compared with 
using KGE methods individually, KGE-UNIT consistently exhibits 
improved performance, with the most significant improvement 
observed for DistMult. Specifically, ConvE-UNIT achieves the high-
est performance, surpassing the second-ranked DistMult-UNIT. 
Notably, the results of DistMult-UNIT and ConvE-UNIT are sim-
ilar. Compared with the third-ranked RotatE-UNIT, in DTI tasks, 
ConvE-UNIT achieves an improvement of 0.85% in AUROC and 
0.97% in AUPR, while in DDI tasks, it achieves an improvement of 
3.39% in AUROC and 4.78% in AUPR. This suggests that the perfor-
mance of KGE-UNIT is not solely correlated with the performance 
of KGE methods. Other factors to consider include the integration 
of multi-modal features and the capability of extracting features 
of the joint multi-task predictor in KGE-UNIT. 

Evaluations in the scenario of the cold start for 
drugs 
Then, we discussed the performance of KGE-UNIT in the scenario 
of the cold start drugs. As described in 3.1 Datasets, we applied 
10-cv on drugs, randomly divided the drugs into 10 subsets. The 
results on Luo’s dataset are shown in Table 3. In the cold start 
scenario for drugs, we observed that KGE-UNIT performed best in 
both DTIs and DDIs prediction tasks. For the DTI task, it achieved 
an AUROC of 0.956 and an AUPR of 0.947. In the DDI task, it 
attained an AUROC of 0.935 and an AUPR of 0.939. And in the cold 
start scenario, the performance reduction of the KGE models is 
more significant. Overall, methods that incorporate multi-modal
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Table 2: DDIs Prediction Results on Luo’s Dataset and BioKG Dataset in the scenario of the warm start. 

Luo BioKG 

Methods AUROC±std AUPR±std AUROC±std AUPR±std 

SVM 0.700±0.018 0.774±0.015 0.761±0.041 0.785±0.044 
DNN 0.902±0.022 0.889±0.035 0.967±0.034 0.964±0.020 
TransE 0.725±0.016 0.715±0.032 0.915±0.038 0.906±0.032 
DistMult 0.741±0.016 0.736±0.019 0.908±0.053 0.910±0.068 
ConvKB 0.866±0.023 0.853±0.034 0.947±0.018 0.944±0.017 
RGCN 0.853±0.013 0.848±0.020 0.938±0.038 0.943±0.054 
ConvE 0.822±0.035 0.831±0.019 0.929±0.033 0.928±0.068 
CrossE 0.894±0.016 0.892±0.015 0.948±0.031 0.945±0.044 
RotatE 0.885±0.018 0.879±0.021 0.943±0.042 0.947±0.016 
DistMA 0.842±0.031 0.823±0.036 0.936±0.031 0.941±0.036 
MuRE 0.848±0.017 0.836±0.033 0.946±0.038 0.942±0.064 
AutoSF 0.755±0.015 0.762±0.028 0.929±0.033 0.925±0.027 
BoxE 0.902±0.017 0.898±0.053 0.945±0.027 0.936±0.022 
PairRE 0.879±0.018 0.863±0.036 0.932±0.029 0.921±0.051 
DeepDDI 0.915±0.030 0.893±0.024 0.972±0.025 0.968±0.047 
KGNN 0.812±0.040 0.769±0.023 0.947±0.038 0.944±0.024 
KGE-UNIT 0.975±0.024 0.966±0.032 0.989±0.027 0.988±0.035 

Figure 3. Influence of KGE methods on KGE-UNIT on DTIs and DDIs Prediction. 

features, such as KGE-UNIT and KGE_NFM, demonstrate better 
predictive performance for cold start drug scenarios. 

Ablation study 
To explore how the heterogeneous features, structural features 
and multi-task joint structure improve the performance of 
KGE-UNIT, we conduct the ablation study on the following 
variants: 

KGE-UNIT without structural features and joint multi-task pre-
dictor (w/o SF +MP) is the variant of KGE-UNIT where we only 
used ConvE to predict DTIs and DDIs, respectively. It should be 
noted that the result is slightly different from Tables 1 and 2, 
because the result of ConvE on Table 1 (resp., Table 2) is got by 
training all DTI (resp., DDI) samples. 

KGE-UNIT without structural features (w/o SF) is the variant of 
KGE-UNIT where we only applied the heterogeneous features of 
drug–drug pairs and drug–target pairs learnt from the KG as input 
of the predictor. 
KGE-UNIT without heterogeneous features (w/o HF) is the vari-
ant of KGE-UNIT where we only used the structure features learnt 
from drug and protein structure as input of the predictor. 
KGE-UNIT without DTI task (w/o DTI) is the variant of KGE-UNIT 
that is designed as a single-task method specifically focused on 
the DDI task. 
KGE-UNIT without DDI task (w/o DDI) is the variant of KGE-UNIT 
that is designed as a single-task method specifically focused on 
the DTI task. 

The ablation study results on Luo Dataset are shown in 
Figure 4. It is evident that the KGE-UNIT, which incorporates all 
modules, achieves the best performance. And both heterogeneous
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Table 3: DTIs and DDIs Prediction Results on Luo’s Dataset in the scenario of the cold start for drugs. 

DTIs DDIs 

Methods AUROC±std AUPR±std AUROC±std AUPR±std 

TransE 0.640±0.062 0.635±0.057 0.603±0.072 0.599±0.088 
DistMult 0.617±0.069 0.623±0.043 0.621±0.057 0.622±0.082 
ConvKB 0.690±0.075 0.701±0.051 0.611±0.064 0.620±0.059 
RGCN 0.682±0.072 0.705±0.049 0.616±0.072 0.626±0.051 
ConvE 0.692±0.061 0.687±0.046 0.621±0.039 0.639±0.051 
CrossE 0.749±0.053 0.762±0.049 0.635±0.074 0.639±0.069 
RotatE 0.721±0.064 0.727±0.071 0.661±0.085 0.642±0.077 
DistMA 0.655±0.039 0.659±0.058 0.592±0.074 0.597±0.088 
MuRE 0.723±0.058 0.736±0.041 0.650±0.075 0.646±0.089 
AutoSF 0.637±0.057 0.651±0.042 0.593±0.089 0.600±0.073 
BoxE 0.742±0.049 0.763±0.057 0.603±0.062 0.611±0.059 
PairRE 0.717±0.043 0.727±0.038 0.652±0.041 0.669±0.074 
DeepDTI/DeepDDI 0.793±0.068 0.825±0.053 0.825±0.081 0.829±0.077 
KGE_NFM/KGNN 0.903±0.041 0.909±0.033 0.713±0.086 0.701±0.098 
KGE-UNIT 0.956±0.055 0.947±0.066 0.935±0.127 0.939±0.112 

Figure 4. Results of ablation study. 

features and structural features contribute to the prediction of 
molecular interactions, with each providing certain benefits. 
However, compared with heterogeneous features, structural 
features have a more significant impact. Furthermore, compared 
with the DDIs task, in the DTIs task, using multi-task learning 
has a more significant performance improvement than single 
task learning. To further elucidate the role of each module, 
we extracted the learned representations of each module from 
the trained KGE-UNIT model and projected them into a two-
dimensional space using t-SNE [ 52]. We present the visualization 
results on the Luo’s test set in Figure 5. It can be observed that 
KGE methods, despite being trained, exhibit limited capability in 
discriminating molecular pairs. In contrast, KGE-UNIT effectively 
distinguishes interacting and non-interacting pairs by integrating 
multiple features through the CNN-based encoder and the task-
aware attention decoder, further enhancing the discriminative 
ability of KGE-UNIT. 

Scalability discussion 
To further demonstrate the effectiveness and scalability of KGE-
UNIT, we extended the prediction module to support DTIs, DDIs 
and PPIs prediction tasks. The KGE-UNIT structure is shown in 
Figure 6. The corresponding results on Luo’s dataset are presented 
in Table 4. The results prove that based on the rich multiple types 
of features and the fusion of CNN and MHSA in the predictor, 

Table 4: The results of KGE-UNIT for DTI, DDI and PPI prediction 
tasks. 
Tasks AUROC±std AUPR±std 

DTI 0.903±0.027 0.916±0.015 
DDI 0.935±0.036 0.941±0.032 
PPI 0.892±0.019 0.887±0.013 

KGE-UNIT maintains good performance even when extended to 
more tasks. 

Case study 
Next, we conducted case studies using KGE-UNIT to validate its 
effectiveness. We identified several DDIs and DTIs that are not 
present in the DrugBank database [53], and we obtained some 
supporting evidence from other studies. 
Drug–target interactions 

(i) Mitochondrial acyl-CoA dehydrogenase 9 (ACAD9) deficiency 
was demonstrated to improve with the use of coenzyme Q10 
[54]. 

(ii) Acetaminophen was found that had the potential to upreg-
ulate the expression of myeloperoxidase [55]. 

(iii) The expression of ABCB1 was found to reduce the cellular 
accumulation of rivaroxaban, thereby confirming the role of 
ABCB1 in the active efflux of rivaroxaban [56]. 
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Figure 5. The learned representations of each module from KGE-UNIT on the Luo’s test set. 

Figure 6. The structure of joint multi-task predictor for DTI, DDI and PPI prediction tasks. 

Drug–drug interactions 

(i) Zelavespib (PU-H71) was shown to synergize with borte-
zomib and significantly inhibits the growth of Ewing sar-
coma [57]. 

(ii) Rivaroxaban may potentially cause bleeding in patients due 
to gastroduodenal ulcers [58], while Dihydroxyaluminum 
sodium carbonate is commonly used to treat conditions such 
as peptic ulcers. 

(iii) Garozzo et al. [59] found that N-acetytcysteine (NAC) and 
oseltamivir significantly improve the therapeutic efficacy 
against influenza virus. 

The above case studies illustrate the ability of KGE-UNIT to 
identify new DTIs and DDIs. Therefore, KGE-UNIT has a positive 
impact on the design and development process of new drugs. 

DISCUSSION 
The prediction of molecular interactions, such as DTIs and DDIs 
prediction, plays a crucial role in various aspects of drug discov-
ery. While several methodologies have been proposed to uncover 
molecular interactions within specific domains, most existing 
methods tend to focus on individual prediction tasks with limited 
consideration for diverse task features. Simultaneously, many 
tasks face bottlenecks due to the impact of data scarcity. 

In the study, we propose KGE-UNIT, a novel method that com-
bining both merits of KGE and multi-task learning for multiple 
types of molecular interactions prediction. By leveraging superior 
multimodal features and employing a predictor that effectively 
mines task interaction information and emphasizes task-specific 

features, this method enhances the performance of individual 
tasks. 

In conclusion, the results of two public available datasets with 
varying distributions of molecular relationships demonstrate that 
KGE-UNIT outperforms both state-of-the-art DTIs and DDIs pre-
diction algorithms. Moreover, the framework of KGE-UNIT is easily 
extensible to solving more molecular interaction prediction prob-
lems simultaneously. Furthermore, the results obtained by KGE-
UNIT in discovering unknown DTIs and DDIs are supported by 
existing literature. This not only demonstrates the reliability of 
our findings but also highlights the effectiveness of KGE-UNIT in 
identifying real-world drug interactions. 

In summary, KGE-UNIT offers improved performance and scal-
ability compared with existing methods. This research opens up 
possibilities for further advancements in multi-task learning and 
the application of unified frameworks in the field of molecular 
interaction prediction. In the future, we will take more attention 
on further improvements of the prediction ability of this frame-
work and explore the scalability on other downstream tasks. 

We summarized the limitations and future improvements of 
KGE-UNIT. First, our KGE-UNIT framework has not yet considered 
the incorporation of 3D structures of drugs and proteins. Models 
based on 3D structures should ideally be trained on highly reliable 
datasets containing measured ligand-receptor affinities and co-
crystal structures of ligands and proteins. However, these datasets 
are relatively scarce due to their high costs and the need for 
experimental validation of structural information. Therefore, one 
direction that requires consideration that how to fully leverage 
the advantages of 3D structural features when dealing with 
limited data volume. Second, in the section Ablation Study, we 
have discussed the importance of structural features within the
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KGE-UNIT framework. Nevertheless, it is worth noting that not 
all nodes related to drugs can offer structural features, especially 
for those newly discovered. The absence of structural features 
can impact the performance of KGE-UNIT, and this limitation is 
inherent to the approach. Therefore, one direction that requires 
consideration that how to integrate more multimodality features 
and more kinds of associations expand heterogeneous data to 
enhance feature quality. Last, a common challenge in KGE is the 
necessity to retrain the model when introducing new entities or 
relations, which consumes substantial time and computational 
resources. This challenge also applies to our model. Therefore, 
one direction that requires consideration that how to learn 
feature representations by pretrained models and reduce training 
process. 

Overall, there are still some related works to be done in future. 
(i) Using pre-trained models and transfer learning to optimize 
the feature extraction process and quality. (ii) Integrating various 
forms of structural features to enhance stability, such as sequence 
strings, molecular graphs and 3D structures. And constructing a 
larger-scale KG to improve the quality of heterogeneous informa-
tion. (iii) Further optimizing the KGE-UNIT framework and apply 
it to a broader range of multi-task drug relationship predictions. 

Key Points 
• We present a unified framework, which combines KG 

embedding and multi-task learning, named KGE-UNIT, 
for joint prediction of DTIs and DDIs. KGE-UNIT enables 
simultaneous prediction of multiple types of molecular 
interactions and enhances the performance of each task, 
even when data availability is limited. 

• Through KGE, KGE-UNIT can extract heterogeneous fea-
tures from the drug KG to enhance the structural fea-
tures of drug and protein nodes, which ultimately leads 
to an improvement in the quality of the features. 

• Based on multi-task learning, in KGE-UNIT, a novel 
and effective encoder–decoder predictor (i.e. task-aware 
CNN-based encoder and task-aware attention decoder) 
is proposed to fuse better multimodal features, cap-
ture the contextual interactions of molecular tasks and 
enhance task awareness, leading to improved perfor-
mance of all tasks. 
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