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Abstract 

T he adv ent of perturbation-based massiv ely parallel reporter assa y s (MPRAs) technique has f acilitated the delineation of the roles of non-coding 
regulatory elements in orchestrating gene e xpression. Ho w e v er, computational eff orts remain scant to e v aluate and establish guidelines f or 
sequence design strategies for perturbation MPRAs. In this study, we propose a frame w ork f or e v aluating and comparing various perturbation 
strategies for MPRA experiments. Within this framework, we benchmark three different perturbation approaches from the perspectives of 
alteration in motif-based profiles, consistency of MPRA outputs, and robustness of models that predict the activities of putative regulatory 
motifs. While our analyses show very similar results across multiple benchmarking metrics, the predictive modeling for the approach involving 
random nucleotide shuffling shows significant robustness compared with the other tw o approaches. T hus, w e recommend designing sequences 
by randomly shuffling the nucleotides of the perturbed site in perturbation-MPRA, f ollo w ed b y a coherence c hec k to pre v ent the introduction of 
other variations of the target motifs. In summary, our evaluation framework and the benchmarking findings create a resource of computational 
pipelines and highlight the potential of perturbation-MPRA in predicting non-coding regulatory activities. 
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Introduction 

Advances in high-throughput technologies have allowed a de-
tailed characterization of the human genome, encompassing
regulatory elements such as enhancers. These enhancers, hous-
ing binding motifs for transcription factors (TFs), play a cen-
tral role in the transcriptional regulation of gene expression.
Aberrations in the non-coding regions of the genome have
been linked to numerous polygenic disorders such as cancer,
heart, and neurological disorders ( 1–3 ), making the study of
non-coding regions a pivotal area of research. 

However, linking the non-coding genome to the etiology of
diseases is largely limited by the low throughput of conven-
tional ‘luciferase reporter assays’, especially when investigat-
ing numerous non-coding regions of interest. To address this
challenge, massively parallel reporter assays (MPRAs) were
developed to simultaneously measure the activity of thou-
sands of regulatory elements and their variants in a single ex-
periment ( 4–14 ). Furthermore, a perturbation-based MPRA
approach was introduced to elucidate the regulatory effects
of transcription factor (TF) binding motifs instead of single
nucleotide variants ( 15–17 ). The essence of this technique is
to analyze the change in the transcription activity of reporter
genes after altering the DNA sequence of putative functional
regulatory regions. 

In our recent studies, we have utilized the perturbation
MPRA technique to successfully identify over 500 non-coding
genomic regions that temporally regulate gene transcription
during neural differentiation ( 18 ,19 ). However, insufficient at-
tention has been given to the comprehensive evaluation of var-
ious perturbation approaches. As a result, a gold standard of
perturbation sequence design strategies remains scant. 

Motivated by the scarcity of the gold standard for DNA
sequence designing strategies for the MPRAs technique, we
propose a framework for assessing and comparing perturba-
tion strategies (Figure 1 ). Within this framework, we bench-
mark three different perturbation approaches using a publicly
available dataset recently generated by our team ( 18 ,19 ). This
dataset includes 591 wild-type (WT) sequences, 2144 mo-
tif perturbation sequences, with each sequence perturbed us-
ing three different perturbation approaches, and 591 negative
control sequences. Perturbation approaches 1 and 2 (PERT1
and PERT2) involve replacing the target motifs with a con-
stant ‘non-motif’ sequence that is respectively identified; the
perturbation approach 3 (PERT3) shuffles the nucleotides of
target motifs ( Supplementary Methods ). 

For benchmarking, we first define five metrics to evalu-
ate the achievement of the perturbation goals comprehen-
sively. These metrics include, for example, the perturbation
rate that indicates the impact on the target motifs both in-
situ and ex-situ , and the perturbation specificity metric in-
dicating the proportion of WT motifs that ‘survive’ the per-
turbation processes. Our analysis reveals that PERT3 exhibits
the highest specificity with the lowest perturbation rate. Ad-
ditionally, we compare the consistency of MPRA outputs,
both in functional regulatory site (FRS) identities and nu-
meric regulatory effects. Although our analyses revealed a
high correlation among the three perturbation approaches,
we also found a constant bias in the results of PERT1 and
PERT2. This is likely attributed to their insertion of fixed se-
quences, which may introduce systematic biases to the assayed
regions. 

Finally, we extract multiple genomic features for each tested
sequence, and we use the difference in the features between the
perturbation sequences and their WT equivalents as indepen- 
dent variables to fit predictive machine-learning models. Our 
results for these predictive models demonstrate the robustness 
of both classifiers and regressors based on PERT3 data. 

To the best of our knowledge, this is the first study that 
assesses and compares different perturbation approaches of 
MPRA experiments. Our study fills this gap by constructing 
a blueprint evaluation framework for perturbation sequence 
designing strategies. Additionally, our results provide guid- 
ance for establishing a gold standard of perturbation MPRA 

techniques, and our prediction pipeline holds great promise 
for further computational identification of functional genomic 
regulatory regions. 

Materials and methods 

Dataset overview 

We utilized a publicly available dataset of perturbation MPRA 

that was recently generated by our team ( 18 ). The MPRA ex- 
periment was conducted in the human embryonic stem cell 
line across seven time points after neural differentiation in- 
duction (0, 3, 6, 12, 24, 48 and 72 h). 

Description of the assa y ed sequences 
The experiment assayed four groups of genomic sequences: 

(1) The wild-type group consists of 591 wild-type sequences 
(denoted as ‘WT’). Each WT sequence represents a 171- 
nucleotide genomic region whose regulatory activity dif- 
fers over time (see Supplementary Methods for the selec- 
tion procedure of region and motif combinations) ( 19 ); 

(2) The motif perturbation group consists of 2144 se- 
quences. Each sequence houses a single-perturbed motif 
within the genomic region of its WT equivalent . Fur- 
thermore, each sequence is perturbed using three differ- 
ent perturbation approaches, denoted as ‘motif_PERT1’,
‘motif_PERT2’ and ‘motif_PERT3’ (Figure 1 , see details 
in Supplementary Methods ): 
i) motif_PERT1: A target motif is substituted with the 

artificially scrambled motif so that the number of mo- 
tifs is the least within the region extending from 3 bp 

upstream of the motif’s start position to 3 bp down- 
stream of the motif’s end position. (Details regarding 
the selection of the scrambled motif are described in 

Supplementary Methods ) 
ii) motif_PERT2: similar to PERT1, A target motif is sub- 

stituted with the artificially scrambled motif so that 
the number of motifs is minimized across the entire 
genomic region of the p sequence. (Details regarding 
the selection of the scrambled motif are described in 

Supplementary Methods .) 
iii) motif_PERT3: the target motif is scrambled by ran- 

domly shuffling its nucleotides. 
(3) The negative control group 1 includes 591 scrambled se- 

quences (denoted as ‘SCRAM’). Scrambled sequences are 
based on WT sequences with shuffled nucleotides, creat- 
ing a set of negative controls; 

(4) The Negative control group 2 is a set of all the 591 

WT sequences where we perturbed a sub-sequence in 

the length of the average motif (12 bp) in a random 

location within the WT sequence using the same three 
perturbation approaches (denoted as ‘RAND_PERT1’,
‘RAND_PER T2’ and ‘RAND_PER T3’). The RAND 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae012#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae012#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae012#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae012#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae012#supplementary-data
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Figure 1. An outline of the frame w ork f or e v aluation of perturbation-based massiv ely parallel assa y s technique. In the ‘T hree sequence designing 
approaches’ box, we used the ‘GA T A_known9’ motif as an example. In detail, the GA T A motifs are a group of sequences conforming to the consensus 
WGA T AR (W = A or T and R = A or G) (marked by the wavy underline), that can be recognized and bound by GA T Abinding transcription factors ( 45 ). 
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sequences are perturbed using the same three perturba-
tion approaches as described above. 

escription of the MPRA output 
he experimental read-out of the perturbed sequences is then
ubjected to the MPRAnalyze ( 20 ) and the MPRAflow ( 21 )
ools to assess the motifs’ regulatory effect over time, repre-
ented by the Log 2 -fold changes (Log 2 FC) of PERT read-outs
ompared to WT and SCRAM at each time point. Sequences
re further classified as activating (Log 2 FC > 0) or repressing
Log 2 FC < 0). 

To identify the functional regulatory sites (FRS), we applied
 set of four filters to the PERT sequences using MPRAnalyze
 18 ,20 ): 

(1) At one or more time points, the activity of a PERT se-
quence significantly deviates from its WT equivalent. 

(2) The temporal activity of a PERT sequence significantly
deviates from its WT equivalent. 

(3) The activity of either a PERT sequence (at one or more
time points) or a WT sequence (across all the time points)
is significantly higher than its corresponding SCRAM
negative control sequence. 

(4) The temporal activity of either a PERT or a WT sequence
is significantly higher than its corresponding SCRAM
negative control sequence. 

The target motif of a sequence will be labeled as an FRS if
the sequence passes all four filters and shares consistent effects
(either activating or repressing) in PERT3 and either PERT1
or PERT2. 

In summary, the MPRA output consists of the numeric reg-
ulatory effect (Log 2 FC) and the multi-class FRS identities at
seven time points. These two modalities of MPRA outputs are
used as input variables for training the prediction models. 

Metrics for assessing motif-based profiles 

The motif-based profiles of each sequence were constructed
using the Find Individual Motif Occurrences (FIMO) pro-
gram. In brief, FIMO systematically scans a given sequence
to identify individual matches to each motif from the
#ENCODE / CIS-BP motif databases, treating each motif inde-
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pendently . Subsequently , we extracted motif occurrences of a
given sequence and their reverse complements, selecting those
with a P value less than 10 

−4 . These sequence-specific motif-
based profiles were then used to calculate the following five
metrics: 

Hit rate (HR) 
A ‘hit’ sequence indicates the in-situ elimination of the target
motif ( in-situ elimination = ‘genomic-position-specific elimi-
nation’). In detail, we regard a sequence as ‘hit’ if all potential
variations of its target motif are absent at the target genomic
location in the scanning results of the Find Individual Mo-
tif Occurrences (FIMO) program ( 22 ), matched by the motif
name, DNA strands, and genomic coordinates; otherwise, it’s
a ‘fail.’ The hit rate of PERT i is denoted as HR i : 

HR i = 

N Hit i 

N i 
, (1)

where N Hit i is the number of ‘Hit’ sequences and N i is the total
number of designed sequences in PERT i . 

P erturbation r ate (PR) 
A ‘perturbed’ sequence indicates that all possible variations
of the target motif are removed within the designated genomic
region. In detail, we define a sequence as ‘perturbed’ if none of
the variations of target motif is found in its FIMO scanning re-
sults, regardless of its genomic position. It encompasses both
ex-situ and in-situ motif perturbation, regardless of the spe-
cific genomic position. To this end, the perturbation rate of
PERT i is formulated as: 

PR i = 

N Perturbed i 

N i 
, (2)

where N Perturbed i is the number of ‘perturbed’ sequences and
N i is the total number of designed sequences in PERT i . 

Perturbation specificity (PS) 
To assess how many WT motifs are impacted by the pertur-
bation, we introduce the ‘perturbation specificity’ metric. For
the designed sequence j of PERT i , its perturbation specificity
is formulated as: 

PS ij = 

M survived ij 

M WT ij 
, (3)

where M WT ij is the number of motifs that overlap with the
target motif in the corresponding WT sequence of designed
sequence j of PERT i , and M survived ij is the occurrence of wild-
type motifs that are still present within the designed sequence j
of PERT i . Both M WT ij and M survived ij are obtained from FIMO
scanning results. 

Ne wl y introduced target motifs per sequence (NTM) 
Of note, motifs in the context of genomic sequences do
not necessarily correspond to a single, fixed nucleotide se-
quence. This means that motifs of the same name found in
different genomic positions can exhibit some degree of vari-
ability or degeneracy. For example, motif ‘BHLHE40_disc2’
has 432 variations, including CCCGCGCCCGGGCGCGC,
GGGA CA GCCCGGA GGCC, CCCCCGCGCCCGGGCGC,
etc. Since the perturbation process alters the orders of nu-
cleotides, it becomes possible that the newly introduced motifs
are variations of the target motif, thus retaining the function-
ality of the ‘supposedly perturbed’ motifs. To assess the im-
pact of the perturbation approaches, we calculated and com- 
pared the ‘number of newly introduced target motifs per se- 
quence’ among the three perturbation approaches. For PERT i ,
its ‘newly introduced target motifs per sequence’ metric is for- 
mulated as: 

NTM i = 

q i 

n i 
, (4) 

where q i is the number of newly introduced motifs that are 
identical to the target motif names in PERT i , and n i is the total 
number of designed sequences in PERT i . 

Gener al alter ation in the number of motifs 
To assess the non-specific impacts of the perturbation, we ob- 
tained and compared these metrics among the three perturba- 
tion approaches: 

(1) The number of gained motifs 
(2) The number of lost motifs 
(3) The net change in the number of motifs 

Consistency analysis of MPRA outputs 
The MPRA outputs consist of two parts: the multi-labeled 

FRS identities and the numerical regulatory effects. To analyze 
the consistency of FRS identities, we counted the number of 
overlapped and unique activators / repressors that are specific 
to their genomic coordinates and DNA strands across three 
perturbation approaches. And the results are visualized by an 

UpSet plot ( 23 ). As for the agreement in numerical regulatory 
effects, we tested the correlation of Log 2 FCs between any two 

of the three perturbation approaches using three correlation 

tests: Pearson r correlation, Spearman’s rank correlation, and 

Kendall’s rank correlation test. 

Features extraction for designed sequences 

The features are a major determinant of the performance of 
predictive models ( 24 ,25 ). The features used in this work can 

be grouped into two main categories: sequence-based features 
and time-specific features. 

Group A: sequence-based features 
Since this group of features is based on the nucleotide se- 
quences, each assayed sequence, either WT or perturbed, has 
its own set of features: 

• DNA 5-mer frequencies: 1024 features indicating the 
counts of all possible nucleotide 5-mers. 

• #5-mers: a single feature summarizing the number of dis- 
tinct 5-mers. 

• DeepBind scores: 515 predicted scores of all pre-trained 

DeepBind models for transcription factor (TF) binding 
( 26 ). 

• #DeepBind-top: a single feature summarizing the num- 
ber of models above the 90th percentile across all the 
DeepBind models for TF binding ( 26 ). 

• DeepSEA scores: 21 907 chromatin profiles (transcrip- 
tion factor, histone marks, and chromatin accessibility 
profiles across a wide range of cell types) from the un- 
derlying DeepSEA learning model ( 25 ). 

• #DeepSea-top: a single feature summarizing the number 
of chromatin profiles above the 90th percentile across all 
the DeepSEA profiles ( 25 ). 

• DNA shape metrics: 13 predicted DNA shape features,
that are: helix twist (HelT), Rise, Roll, Shift, Slide, Tilt,
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Buckle, Opening, propeller twist (ProT), Shear, Stagger,
Stretch, and minor groove width (MGW) ( 27 ,28 ). 

• Max polyA / polyT lengths: two features indicating the
length of the longest polyA and polyT subsequences, re-
spectively. 

• #ENCODE / CIS-BP motifs: 4,706 features, showing the
number of significant DNA-binding ENCODE / CIS-BP
( 29–31 ) motifs from simple DNA-binding motif scor-
ing using the Find Individual Motif Occurrences (FIMO)
tool ( 22 ). 

• ENCODE / CIS-BP motif summaries: four features indi-
cating the number of motifs, and the maximum num-
ber of ENCODE / CIS-BP motifs within a 20 bp window
in the sequence, as determined by FIMO scanning algo-
rithm ( 22 , 30 , 31 ). 

• #TF family: fourteen features indicating the frequency of
major TF families based on the FIMO scanning results
against ENCODE / CIS-BP databases, which are: Basic
Domain Group, Beta-Scaffold Factors, Helix-turn-helix,
Other Alpha-Helix Group, Unclassified Structure and
Zinc-Coordinating Group ( 32 ). 

For each perturbed sequence, we subtract its sequence-
pecific features from that of its WT equivalent. Additionally,
e calculate the Levenshtein similarity scores between the per-

urbed sequences and their respective correspondent WT se-
uences ( 33 ,34 ). In total, 28 189 features are yielded from
roup A. 

These differences in features (denoted as �‘[feature name]’,
.g., �#5-mers), along with the Levenshtein similarity scores,
re then subject to the feature normalization process (see Sec-
ion ‘Feature normalization’). 

roup B: time-specific features 
he time-specific features used in this study are the experimen-

al read-outs of WT sequences ( 19 ). These features include the
ignals of three genomic assays at seven time points (0, 3, 6,
2, 24, 48 and 72 h): 

• A T AC-seq: the normalized number of reads using DE-
Seq2 ( 35 ) from overlapping A T AC-seq peaks within the
designed genomic region 

• H3K27ac ChIP-seq, the normalized number of reads us-
ing DESeq2 ( 35 ) from an overlapping H3K27ac peak
within the designed genomic region 

• RNA-seq: mRNA expression of the nearest gene to the
designed region 

In total, three features are yielded from group B. For each
erturbed sequence, we use the time-specific feature of its
orresponding WT sequence as its feature to fit prediction
odels. 

eature normalization 

erforming principal component analysis (PCA) is a com-
on technique to reduce the number of features in high-
imensional data to avoid over-fitting and improve the gen-
ralization performance of machine learning models. In this
tudy, PCA was applied to the large number of group A fea-
ures (28,189) to reduce them into a smaller set of princi-
al components (PCs) that capture the maximum amount of
ariability in the data. By selecting the number of PCs such
hat they explain at least 99% of the variance in the data, the
most important information in the original features is retained
while reducing their dimensionality. 

In this study, we employed PCA to transform the 28 189
group A features into 1500 PCs for each perturbation ap-
proach. Together with the time-specific features of group 2,
a total of 1503 features were used as input for subsequent
prediction tasks. This approach helps to prevent over-fitting
and improves the accuracy of the machine learning models. 

Calculation of the feature importance scores 

We first defined the importance score I of feature i as the
largest loading score of feature i across 1,500 PCs. In par-
ticular, from the PCA step, we obtain a matrix L to denote
the loadings matrix that explains the correlations between the
original features and the PCs. L is a 28, 189 × 1, 500 ma-
trix with rows representing features and columns representing
1500 PCs. For feature i , its loading score on the j th dimension
is denoted as L ij . We then define the importance score I of
feature i as its largest loading score across the 1500 PCs: 

I i = max { L i 1 , L i 2 , ..., L i j } , j ∈ { 1 , ..., 1500 } (5)

Gene ontology analysis 

We conducted the Gene ontology (GO) over-representation
analysis using the genes corresponding to the top 2500 im-
portant TF binding features. The results were determined us-
ing the R package ClusterProfiler ( 36 ). The significance of GO
terms was defined as an FDR-adjusted P < 0.05. 

Model training 

Classification models 
We utilized six classification models to predict the FRS identity
of perturbation sequences: 

(1) SGD: linear SVM classifiers with stochastic gradient de-
scent (SGD) training ( 37 ) 

(2) SVC: C-Support vector classifiers ( 38 ) 
(3) KNN: classifiers based on k -nearest neighbors voting

( 39 ) 
(4) ET: ExtraTrees classifiers ( 40 ) 
(5) HGB: histogram-based gradient boosting classifiers ( 41 )
(6) MLP: multilayer perceptron classifiers ( 42 ) 

All classifiers were run with the default settings of the scikit-
learn package ( 43 ). The 1503 normalized feature values were
used as input. To generate target values, the FRS identity la-
bels at seven time points were concatenated and stacked into
a single variable. 

Regression models 
We utilized six regressors to predict the Log 2 FC of perturba-
tion sequences: 

(1) SGD: SGD: linear regressors fitted by minimizing a reg-
ularized empirical loss with SGD training ( 37 ) 

(2) S VC: S VR: Epsilon-Support vector regressors ( 38 ) 
(3) KNN: regressors based on k -nearest neighbors voting

( 39 ) 
(4) ET: ExtraTrees regressors ( 40 ) 
(5) HGB: histogram-based gradient boosting regressors ( 41 )
(6) MLP: multilayer perceptron regressors ( 42 ) 

All regressors were run with the default settings of the
scikit-learn package ( 43 ). The 1503 normalized feature val-
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ues were used as input. The Log 2 FCs at seven time points were
concatenated and stacked into a single variable, and then re-
garded as target values. 

The randomized 10-fold cross-validation 

We performed 10-fold cross-validation tests to evaluate the
performances of different models. A 10-fold cross-validation
test was chosen as it provides a good balance between mini-
mizing bias and reducing variance. In detail, the dataset is ran-
domly partitioned into 10 subsets, with one subset utilized as
the testing dataset and the other nine together as the train-
ing data set. This procedure was conducted 10 times, with
each subset being used once as a testing dataset to generate
ten models. The average performance of these ten models was
used to evaluate the performance of the different models. 

To ensure a fair and objective comparison among the mod-
els, we strictly implemented their algorithms and optimized
parameters to build models on the same training dataset and
subsequently benchmark their performance on the indepen-
dent test datasets. 

Model performance measures 

The performance of classification models is evaluated using
the area under the receiver-operating characteristic curve (AU-
ROC). For the regression models, we evaluated their perfor-
mance using three correlation tests: Pearson, Spearman, and
Kendall. Specifically, we tested the correlation between the
predicted Log 2 FC values and the observed Log 2 FC values for
each fold. 

Statistical tests 

For the motif-based profile metrics, the Kruskal–Wallis one-
way analysis of variance and post-hoc pairwise Dunn’s mul-
tiple comparisons test was used to identify statistically sig-
nificant differences in continuous variables, including the
perturbation specificity and the number of gained / lost mo-
tifs. Moreover, the pairwise Fisher’s exact test was con-
ducted to compare the count data, including hit and pertur-
bation rates. The pairwise exact binomial test was performed
to compare newly introduced target motifs per sequence
(NTM). 

For the consistency analyses, the correlation of Log 2 FCs
was indicated by three correlation coefficients: Pearson’s r ,
Spearman’ s ρ, and Kendall’ s τ coefficient. The P values of cor-
relation tests were subsequently adjusted for multiple com-
parisons at seven different time points by the Benjamini–
Hochberg method. 

For the performance evaluation of prediction models, we
performed pairwise Wilcoxon rank sum tests on the AUROC
and correlation coefficients. For all pairwise tests, a threshold
of 0.05 was applied to the P values adjusted by the Benjamini-
Hochberg method. An α level was considered 0.05 for all sta-
tistical tests in this study. 

Results 

To evaluate the three perturbation approaches, we first defined
five motif-based metrics: (i) hit rate , representing the rate of in-
situ motif perturbation, defined as the proportion of designed
sequences that successfully eliminate the target motif at the
target genomic locale, (ii) perturbation rate , which represents
the rate of both ex-situ and in-situ motif perturbation and is
defined as the proportion of designed sequences that eliminate 
all the motifs that match the target motif name within the 171- 
nucleotide genomic region, (iii) perturbation specificity , indi- 
cating the global impact of perturbation on all the motifs that 
lie within the perturbed sequence, and is defined as the pro- 
portion of WT motifs that are still found in the perturbation 

sequence, (iv) newly introduced target motifs per sequence ,
which reflects the occurrence of gained motifs that are iden- 
tical to the target motif name, and is calculated by dividing 
the total number of such gained motifs by the total number of 
perturbation sequences, (v) non-specific changes in the num- 
ber of motifs , which include the number of gained, lost mo- 
tifs, as well as the net change in the number of motifs within 

the perturbation sequence. We then assess the differences in 

these aforementioned metrics across the three perturbation 

approaches (Figure 1 , part I). Next, we assess the important 
features representing variability among all perturbation ap- 
proaches (Figure 1 , part II). Third, we compare the consistency 
of MPRA outputs (Figure 1 , part III). Finally, to evaluate the 
generalizability in referencing non-coding regulatory activity 
across different perturbation approaches, we compare the per- 
formance of different prediction models across the three per- 
turbation approaches (Figure 1 , part IV). 

Three perturbation approaches show similar hit 
rates and perturbation rates 

Fundamentally, the primary goal of motif perturbation is the 
precise elimination of the target motif from its designated 

genomic position. To assess how well each perturbation ap- 
proach is in reaching this goal, we computationally identi- 
fied the occurrences of the motifs in the sequences, using the 
FIMO ( 22 ) scanning results and matching the motif names,
DNA strands, and genomic coordinates (section ‘Materials 
and methods’). 

Prior to our analyses, we excluded the sequences that didn’t 
pass the quality check of the library processing (marked as 
‘N / A’ in Figure 2 , Supplementary Notes ). After this exclu- 
sion of low-quality sequences, a sequence yielding a ‘non- 
occurrent’ result is defined as a ‘hit’ indicating a successful 
perturbation; otherwise it is labeled as a ‘fail’ (refer to the ‘Ma- 
terials and methods’ section; Figure 2 A). Then, we calculated 

and compared the proportion of hit and fail sequences for 
each perturbation approach (equation 1 ). Although all three 
perturbation approaches exhibit high hit rates ( HR 1 = 98% ,
HR 2 = 99% , HR 3 = 98% ), the PERT3 is significantly lower 
than the other two approaches (pairwise Fisher’s exact test,
PER T1 versus PER T2, P = 1.00; PER T1 versus PERT3, P = 

1.42 × 10 

−3 ; PERT2 versus PERT3, P = 1.42 × 10 

−3 ). 
The expected high hit rates in both the PERT1 and 

PERT2 approaches stem from their fundamental re- 
placement of target motifs with ‘non-motifs’ (refer to 

Supplementary Methods ). Conversely, the observed disparity 
in the hit rate of PERT3 can be attributed to the inherent 
nucleotide sequence variability of specific motifs. As an 

example, consider the motif ‘BCL6_M6136_1.02.’ In its 
native or wild-type sequence, this motif is represented as 
‘CAAA GA GA GAA GGGGAA GGGGGTTGGGGAA’. Upon 

subjecting this motif to the randomly stuffing approach 

(PERT3), one of the resultant sequences becomes ‘AGGGGA- 
GA GGGGGAA GA GA GAATCGA GATG.’ Notably, this 
perturbed sequence exhibits a discernible variation from 

the original ‘BCL6_M6136_1.02’ motif while retaining the 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae012#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae012#supplementary-data


Nucleic Acids Research , 2024, Vol. 52, No. 4 1619 

35
(2%)

32
(1%)

2
(0%)

2,111
(98%)

2,114
(99%)

2,099
(98%)

45
(2%)

(n = 2,146)(n = 2,146)(n = 2,146)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

motif_PERT1 motif_PERT2 motif_PERT3

P
er

ce
nt

ag
e

N/A Hit FailB

1,766
(84%)

1,757
(83%)

1,650
(79%)

345
(16%)

357
(17%)

449

(21%)

(n = 2,099)(n = 2,114)(n = 2,111)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

motif_PERT1 motif_PERT2 motif_PERT3

P
er

ce
nt

ag
e

Perturbed Non-perturbedD

Hit rate (HR): the proportion of ‘hit’ sequences
HR = NHit/NAll

Illustrative examples of “Hit” and “Fail” sequences: 

· · · AATGGGCAAAACAAAGGGCAGGAAGGAAAGGAAGTGGT · · ·

· · · AATGACTAAAGAATCTACAAATGATCTCTCAAATTGGT · · ·
· · · AATGCGAGCATCTTTAAGAGTTAGAGTAGGCAAATGGT · · ·

· · · AATGAAAAAGGCGAGAAAGAAGGCGAAAGGGAGCTGGT · · ·

WT sequence

PERT1: “Hit”
PERT2: “Hit”

PERT3: “Fail”

in-situ target motif: BCL6_M6136_1.02

no in-situ BCL6_M6136_1.02 motif

in-situ target motif: BCL6_M6136_1.02

A

· · · GCCCCGCTGCGGCCCCAGCCCGCGG · · ·

· · · GCCCACTAAAGAATCTACAAAGCGG · · ·
· · · GCCCCGAGCATCTTTAAGAGTGCGG · · ·

· · · GCCCGGCTCGACGCCCGCCCCGCGG · · ·

in-situ target motif: BHLHE40_disc2

in-situ target motif: BHLHE40_disc2

WT sequences

no in-situ target motif

no in-situ target motif
no in-situ target motif

Perturbation rate (PR): the proportion of ‘perturbed’ sequences
PR = NPerturbed/NAll

Illustrative examples of “Perturbed” and “Non perturbed” 
sequences:

C

in-situ target motif: BHLHE40_disc2

Figure 2. Evaluations of perturbation-wise metrics. ( A ) Examples of ‘hit’ and ‘fail’ sequences. Please refer to the Supplementary Notes for the full 
perturbation sequences. ( B ) A comparison of hit rates among three perturbation approaches. The ‘N / A’ category represents the sequences that are 
e x cluded from this study because their barcodes failed the sequencing quality c hec k ( Supplementary Notes ). ( C ) Examples of ‘perturbed’ and 
‘non-perturbed’ sequences. ( D ) A comparison of perturbation rates among three perturbation approaches. 
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hysiological activity of the same motif ‘BCL6_M6136_1.02.’
hus, this sequence designed by PERT3 is rendered a ‘Fail’
equence. 

This inherent motif diversity underscores the challenges en-
ountered in achieving precise genomic-position motif pertur-
ations, particularly when utilizing the PERT3 approach. De-
pite the high hit rate of PERT3, such motif variability empha-
izes the importance of coherence checks when simply shuf-
ing nucleotides for MPRA experiments. 
Apart from the primary goal, one of the advanced goals of
otif perturbation is to reduce the regulatory activity of the

arget motif to the baseline, that is, to eliminate all the motifs
hat are identical to the target motif name within the 171-
ucleotide genomic region of perturbation sequence. Hence,
e further quantified the occurrence of the target motif in

ach ‘hit’ sequence using the FIMO scanning results by match-
ng only the motif name and not its position. Sequences were
efined as ‘perturbed’ if no designed target motif was found
ithin their genomic region, and the perturbation rate was

hen calculated as the proportion of ‘perturbed’ sequences
Figure 2 C). In simple words, this metric indicates the rate of
oth ex-situ and in-situ motif perturbation that is not specific
o the target genomic position (section ‘Materials and meth-
ds’, equation 2 ). 
Comparing the perturbation rate of the three PERTs, we
found that PERT1 and PERT2 possess similar perturbation
rates of over 80%. Although the perturbation rate of PERT3
is significantly lower than those of the other two, it is still as
high as 79% (Figure 2 D, P R 1 = 84% , P R 2 = 83% , P R 3 =
79% ; pairwise Fisher’s exact test, PERT1 versus PERT2, P
= 0.649; PERT1 versus PERT3, P = 8.79 × 10 

−5 ; PERT2
versus PERT3, P = 4.58 × 10 

−4 ). These results indicate that
the strategic design of perturbation sequences (PERT1 and
PERT2), instead of simply shuffling the nucleotide sequences
(PERT3), leads to a higher chance of perturbing non-position-
specific target motifs within genomic regions. 

Perturbation specificity is similar among the three 

approaches 

Another advanced goal of motif perturbation is to keep the
impact on the overall motifs as low as possible—since the per-
turbation process essentially alters the DNA sequence within
a certain range of the genome, the motifs that overlap with
the target motifs are likely to be affected. To assess such a
global impact of the perturbation on all the motifs that lie
within the perturbation sequence, we introduced the perturba-
tion specificity metric. It is defined as ‘the proportion of WT

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae012#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae012#supplementary-data
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Perturbation specificity (PS): the proportion of overlapped, 
non-target WT motifs that “survived” the perturbation

PS = nWT_survived/nWT

An illustrative example for identifing nWT_survived and nWT :

· · · TGTCTTCTGCCCTGCCCCTTCTTCCTTTCTGAAA· · ·

· · · TGTCTTCTGCCCTGCCCCCGAGCATCTTCTGAAA· · ·

WT sequence

in-situ target motif: ATF5_M2977_1.02

IRF_disc4

VDR_3

CCNT2_disc2

no in-situ target motif

nWT overlapped,
non-target WT motifs

Perturbation
sequence

nWT_survived“survived”
non-target motifs

NF4_known12

IRF_disc4

CCNT2_disc2

Kr Wallis, P
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· · ·GCGCACAGCGCCCCGCCTGCAGGAGCCCGGGCGCGCT· · ·
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Perturbation
sequence
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target motifs

Newly introduced target motifs per sequence (NTM):
NTM = q/NAll

An illustrative example --
A PERT3 sequence that introduces new target motifs: 

C

P -27

Figure 3. Evaluations of motif-based metrics. ( A ) An example of calculating perturbation specificity. Refer to the Supplementary Notes for the full 
perturbation sequences. ( B ) A comparison of perturbation specificity among three perturbation approaches. Significant P values ( P < 0.05) are shown in 
red. ( C ) An example of calculating ‘newly introduced target motifs per sequence’. Please refer to the Supplementary Notes for the full perturbation 
sequences. ( D ) A comparison of ‘newly introduced target motifs per sequence’ among three perturbation approaches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

motifs that are still present within the genomic region after
perturbation’ (section ‘Materials and methods’, equation 3 ,
Figure 3 ). 

Comparing the perturbation specificity among three PERTs,
we found that all three perturbation approaches vastly af-
fect the WT motifs. Namely, only 10% of the overlapping
WT motifs ‘survived’ the perturbation processes. Specifically,
PERT3 has the highest perturbation specificity, which implies
that randomly shuffling nucleotides exerts the least overall
impact within the genomic regions of perturbed sequences
(Figure 3 B, P S 1 = 7% , P S 2 = 7% , P S 3 = 11% ; pairwise
Dunn’s test, PERT1 versus PERT2, P = 5.73 × 10 

−3 ; PERT1
versus PERT3, P = 8.95 × 10 

−27 ; PERT2 versus PERT3,
P = 1.14 × 10 

−15 ). 
On the other hand, another advanced goal is to avoid ‘cre-

ating’ target motifs in the perturbation sequences. In detail,
motifs are typically short, conserved sequences that represent
a binding site for transcription factors or other regulatory pro-
teins. Found in multiple positions within a genome, motifs can
exhibit some degree of variability or degeneracy. This variabil-
ity allows motifs to occur in various sequence contexts while
still maintaining their functional significance. 

In the context of experiment design, while people can at-
tempt to synthesize different shuffled sequences for cases
where new motif instances are created, it’s important to rec-
ognize that these newly synthesized sequences may still con-
tain those motifs or motif-like elements due to the inherent
variability of motifs. In this case, the newly introduced target 
motifs could retain the functionality of the ‘supposedly per- 
turbed’ motifs. 

To this end, we sought to investigate which perturbation ap- 
proach introduces the highest number of new motifs that are 
identical to the target motif name. We defined the newly intro- 
duced target motifs per sequence metric, which is calculated 

by dividing the total number of ‘newly introduced target mo- 
tifs’ by the total number of sequences for each perturbation 

approach (section ‘Materials and methods’, equation 4 , Fig- 
ure 3 C). The highest metric is produced by PERT3, indicating 
that shuffling the nucleotides increases the probability of gen- 
erating the same motifs as the target ones (Figure 3 D, NTM 1 

= 0.0043, NTM 2 = 0.0085, NTM 3 = 0.17; pairwise exact bi- 
nomial test, PERT1 versus PERT2, P = 0.122; PERT1 versus 
PERT3, P = 2.35 × 10 

−92 ; PERT2 versus PERT3, P = 1.73 ×
10 

−82 ). 

All three perturbation approaches vary in motif 
gain / loss 

To gain a better perturbation effect, the impacts that are non- 
specific to the target motifs should also be minimized as much 

as possible. To address such impacts, we evaluated the overall 
motifs gained or lost across motif perturbation approaches 
(Figure 4 A) and found that PERT3 gains significantly 
over 30 more motifs on average than PERT1 and PERT2 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae012#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae012#supplementary-data
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General alteration in the number of motifs:
1. The number of gained motifs
2. The number of lost motifs
3. The net change in the number of motifs

· · · CAATAAACATTAAACATTTAAACAATTAGGAA · · ·

· · · CAATAAACATACTAGCTAAAAACAATTAGGAA · · ·

WT sequences

in-situ target motif

non-target motif Bnon-target motif A

non-target motif C

non-target motif C

no in-situ target motif

Perturbation
sequences

newly gained motif D

Gained: motif D
Lost: motif A, motif B

A

Figure 4. Evaluation of general alteration in the number of motifs. ( A ) Toy examples of calculating general alteration in the number of motifs. (B–D) The 
results for motif perturbations: ( B ) the number of gained motifs, ( C ) the number of lost motifs and ( D ) the net change in the number of motifs. Significant 
P values ( P < 0.05) are shown in red. (E–G) The results for random perturbation sequences: ( E ) number of gained motifs, ( F ) number of lost motifs and 
( G ) net change in the number of motifs. Significant P values ( P < 0.05) are shown in red. 
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Figure 4 B, PERT 1 ∼ = 8.45, PERT 2 ∼ = 10.63, PERT 3 ∼
 43.26; pairwise Dunn’s test, PERT1 versus PERT2, P =
.18 × 10 

−5 ; PERT1 versus PERT3, P = 1.55 × 10 

−206 ;
ERT2 versus PERT3, P = 2.18 × 10 

−199 ). However, the num-
er of motifs lost was similar among the three approaches
Figure 4 C, PERT 1 ∼ = 101.12, PERT 2 ∼ = 99.95, PERT 3

= 90.73; pairwise Dunn’s test, PERT1 versus PERT2, P
 0.771; PERT1 versus PERT3, P = 0.0811; PERT2 versus
ERT3, P = 0.109). 
We also compared the net change in the number of motifs

or each perturbation approach. We observed that PERT3 re-
ulted in a significantly greater net change compared to the
ther two approaches. In contrast, there was no significant
ifference between PERT1 and PERT2 (Figure 4 D , PER T 1 ∼
 − 92.72, PERT 2 ∼ = − 89.38, PERT 3 ∼ = − 47.50; pair-
ise Dunn’s test, PERT1 versus PERT2, P = 0.232; PERT1

ersus PERT3, P = 3.63 × 10 

−69 ; PERT2 versus PERT3, P =
.58 × 10 

−60 ). 
We then compared these non-specific metrics for the RAND

erturbation sequences. We found similar results to the motif
erturbation group: PERT3 resulted in the most motif gains
Figure 4 E, PERT 1 ∼ = 8.02, PERT 2 ∼ = 9.98, PERT 3 ∼
 29.35; pairwise Dunn’s test, PERT1 versus PERT2, P =
.451; PERT1 versus PERT3, P = 8.03 × 10 

−55 ; PERT2 ver-
us PERT3, P = 5.74 × 10 

−50 ), with no significant difference
n the number of lost motifs (Figure 4 F, PERT 1 ∼ = 44.07,
ERT 2 ∼ = 43.56, PERT 3 ∼ = 38.67). In addition, the net
 

change in the number of motifs of PERT3 is negative but
the highest (Figure 4 G, PERT 1 ∼ = − 38.63, PERT 2 ∼ =
− 36.12, PERT 3 ∼ = − 12.02; pairwise Dunn’s test, PERT1
versus PERT2, P = 0.44; PERT1 versus PERT3, P = 7.03 ×
10 

−23 ; PERT2 versus PERT3, P = 8.26 × 10 

−20 ). These find-
ings further support that the differences in the non-specific
impacts are due to the perturbation approach used. 

The three perturbation approaches share similar 
important features, specifically neural 
developmental features 

We then set out to investigate which innate features represent
the variances among perturbation sequences, and whether
these features differ using different perturbation approaches.
First, we queried the top 10% of the features ( ∼2500) that
explain the variability among perturbed sequences (section
‘Materials and methods’). We found that a majority of these
features (1601) are shared by at least two perturbation ap-
proaches (Figure 5 A). Notably, these features mainly fall into
‘the change in the number of ENCODE / CIS-BP motifs’ and
‘5-mers frequencies’ categories. 

Further scrutiny of the top 30 features revealed a substan-
tially large overlap among the three perturbation approaches
(Figure 5 B). Since a majority of the shared features are tran-
scription factor (TF) binding motifs, we conducted gene on-
tology analysis on the TFs corresponding to the top 2500
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binding motifs. The analysis revealed consistent enrichment
of early embryonic development ontologies, including neural
development pathways among three perturbation approaches
(Figure 5 C). These findings suggest that the three perturbation
approaches share important features related to neural devel-
opment, as expected. 

The MPRA outputs are largely consistent across 

dif ferent per turbations 

After assessing the basic and advanced goals of perturbation
approaches, we next evaluated the consistency of MPRA out-
puts among three perturbation approaches. The MPRA out-
put consists of two parts: the multi-class FRS identities, and
the numeric regulatory effect (Log 2 FC) at seven time points of
neural differentiation (section ‘Materials and methods’). 

For the FRS identities, the activities of 419 functional
regulatory sites are consistent across three perturbation ap-
proaches, and 95% (399) of them are activators (Figure 6 A).
Additionally, 262 sites are consistent in any of two of the ap-
proaches but not in the remaining one (Figure 6 A). 

In terms of the Log 2 FC, we found a high correlation among
all three perturbations across all time points (Figure 6 B–D).
However, we found that PERT2 yielded the highest Log2FC
than the other two approaches across all the seven time points
(Figure 7 , Supplementary Figure S1 ). Regarding the RAND se-
quences, PERT2 exhibits the highest, Log 2 FC while PERT1
exhibits the lowest Log 2 FC across all time points. This in- 
dicates that using a perturbation approach where a constant 
sequence replaces the target motifs can introduce a constant 
bias in the results (e.g. higher Log 2 FC for PERT2). This higher 
Log 2 FC also explains the higher proportion of activators iden- 
tified using PERT2 (Figure 6 A). 

Predictive models of MPRA activity perform the 

best in PERT3 

The perturbation MPRA technique, if designed appropriately,
has the potential to predict the activity of non-coding regula- 
tory genomic regions ( 24 ). Namely, it is feasible to predict the 
regulatory activity of a motif by fitting predictive models using 
the difference in the features between its WT sequence and per- 
turbation sequence. Consequently, this leads to a critical ques- 
tion: which sequence design approach for motif perturbation 

could yield the best performance of such prediction models? 
This suggests that by designing the perturbation sequences,
we may expand the applicability of perturbation MPRA from 

experimentally identifying regulatory motifs only within de- 
signed genomic regions to computationally predicting regula- 
tory elements throughout the non-coding genome and under 
different cellular contexts. In light of this, we further com- 
pared the performances of three perturbation approaches us- 
ing the supervised models as described in the Materials and 

methods section. 
Briefly, we use the difference of features between perturba- 

tion sequences and their equivalent WT sequence as the in- 
dependent variables to fit both classification and regression 

models. Next, we perform a 10-fold cross-validation for each 

perturbation data. To benchmark the performance of the mod- 
els, we statistically compared the AUROC for classifiers and 

the Pearson correlation coefficient for regressors on the inde- 
pendent test data sets in each fold. 

For the classification models that predict the measure of 
motif FRS identities, we report the receiver-operating char- 
acteristic curve (AUROC) of three perturbation approaches 
(Figure 8 ). We found that three non-linear models (ET, HGB,
and MLP) exhibit high robustness in predicting the FRS iden- 
tities in the three perturbations. Furthermore, using the re- 
sults from ET models, we found that PERT3 significantly out- 
performs PERT2 and PERT1, and PERT1 significantly out- 
performs PERT2 (pairwise Wilcoxon rank sum test, PERT1 

versus PERT2, P = 5.58 × 10 

−5 ; PERT1 versus PERT3, P = 

3.24 × 10 

−5 ; PERT2 versus PERT3, P = 3.24 × 10 

−5 ). 
For the regression models that predict the quantitative mea- 

sure of motif regulatory effect, we report the Pearson cor- 
relation coefficients for the three perturbation approaches 
(Figure 9 , Supplementary Figures S2 and S3 ). Similarly, the 
model-wise comparison shows the robustness of the ET and 

HGB model, and PERT3 significantly outperforms the other 
two approaches, while PERT2 outperforms PERT1 (pairwise 
Wilcoxon rank sum tests, PERT1 versus PERT2, P = 2.57 ×
10 

−3 ; PER T1 versus PER T3, P = 3.89 × 10 

−5 ; PER T2 versus 
PERT3, P = 3.89 × 10 

−5 ). 

Discussion 

Comprehensively deciphering the regulatory activity of non- 
coding loci is crucial to the understanding of gene expres- 
sion dynamics. Shedding light on this, the perturbation- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae012#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae012#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae012#supplementary-data
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ased MPRA technique has enabled the identification of
egulatory elements such as enhancers, promoters, and
ilencers ( 15 , 18 , 19 ). However, insufficient attention has
een given to the comprehensive evaluation of vari-
us perturbation approaches. As a result, a gold stan-
ard of perturbation sequence design strategies remains

cant.  
Motivated by this scarcity, we proposed a framework for
assessing different perturbation approaches, with the aim of
better identifying regulatory elements using the perturbation-
based MPRA technique. Further, we took advantage of a
publicly available data set, which contains the MPRA re-
sults acquired from three perturbation approaches (PERT1,
PER T2 and PER T3), to conduct an all-inclusive characteriza-
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tion and comparison of these approaches. In short, PERT1
and PERT2 replaced the target motif with two different
‘non-motif’ sequences identified respectively ( Supplementary 
Methods and Supplementary Notes ), and PERT3 shuffled the
nucleotides of target motifs. 

Starting from the essential ideas of perturbation, which is
to eliminate the regulatory effects from target motif(s) within
a certain genomic region, we first defined five metrics for as-
sessing the impact of different perturbation approaches (hit
rate, perturbation rate, perturbation specificity, newly intro-
duced target motifs per sequence, and general alteration in
the number of motifs, see Section ‘Methods’). These metrics
allowed us to scrutinize the overall modification of motif-
based profiles within perturbation sequences from different
perspectives. Based on our findings, the three approaches ex-
hibit consistently high rates of removing the target motifs at
their targeted positions, which indicates success in in-situ mo-
tif perturbation. Additionally, the perturbation rate is kept
high across the three perturbation approaches (80%), with
PERT3 being the lowest (79%), while not significantly dif-
ferent. This implies a further achievement in both in-situ and
ex-situ removal of target motifs of the three approaches. We
note that PERT3 shows a higher probability of introducing
target-identical motifs. Despite these, PERT3 brings minimal
alterations to the WT motifs within the sequence region, im-
plying that the perturbation specificity of PERT3 is the high-
est. Moreover, PERT3 leads to the least non-specific motif
changes. So far, our observation suggests that the selection of
perturbation approaches is a trade-off: for the researchers, it
becomes a question of whether to sacrifice the perturbation
specificity to achieve a high perturbation rate, or whether to
pursue a higher specificity at the cost of a lower perturbation

rate. 
The next part of our framework is the comparison of 
MPRA outputs since they are crucial for inferring the activ- 
ity of target motifs. Particularly, MPRA outputs consist of 
two parts: (i) the functional regulatory site (FRS) identities 
that indicate whether the target motif is a non-functional,
repressing, or activating element; (ii) the numeric regulatory 
effects (Log 2 FC) that quantify the FRS motifs. According to 

our results, the FRS identities are largely consistent, and the 
Log 2 FC are highly correlated among all three perturbations.
Yet, we also observed a constant skew in the results of PERT2,
which indicates that inserting repeated / fixed sequences across 
the assayed regions is likely to introduce systematic biases in 

downstream results. The results of this part demonstrated that 
PERT3 is less likely to introduce systematic biases in MPRA 

outputs, albeit the high-consistency and high-accuracy pro- 
filing for the regulatory activity across all three perturbation 

approaches. 
The final part of the framework is to evaluate the potential 

of perturbation-MPRA in predicting the regulatory activity of 
non-coding motifs since our previous works have shown ro- 
bustness in predicting the activity of putative regulatory el- 
ements ( 24 ,44 ). Specifically, by adequately designing pertur- 
bation sequences, the MPRA outputs could be computation- 
ally predicted by machine-learning models using the biological 
features of designed sequences as predictor variables. This ap- 
proach, in some cases, can efficiently identify functional reg- 
ulatory regions so as to reduce the time and cost of wet lab 

experiments. Therefore, we developed data-driven models to 

predict the regulatory activity of target motifs by using the dif- 
ference in over 28 000 predictive features between perturba- 
tion and wild-type sequences. Comparing the performance of 
models that are built upon the three perturbation approaches,
we found that PERT3 significantly outperforms the other two 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae012#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae012#supplementary-data
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n both classification and regression tasks. These findings fur-
her support the notion that using a perturbation approach
here the nucleotides are being shuffled randomly works gen-

rally better than approaches that replace the target motif with
 constant ‘non-motif’ sequence (see Materials and methods,
upplementary Methods , and Supplementary Notes ). 

In summary, we proposed a framework for the evalua-
ion of perturbation sequence design strategies for MPRA
xperiments, and we utilized this framework to compare
hree perturbation-based MPRA approaches. From a compu-
ational perspective, this study is the first to evaluate the li-
rary design of the MPRA technique comprehensively. From
n experimental perspective, our results provide deep in-
ights into understanding the impacts of motif perturbation in

PRA experiments. Given the inherent challenge of provid-
ng precise guidance in the absence of verifiable in-vivo ground
ruth, we advocate for a prudent approach to perturbation

PRA sequence design. In the context of unbiased prediction
f non-coding functional genomics, we recommend a design
trategy that involves random nucleotide shuffling within the
erturbed site. Additionally, we advise prioritizing sequences
hat introduce the fewest new target motifs to maintain the
delity of the experimental setup. 
In conclusion, our study has the potential to catalyze a

ew era in non-coding genomic research utilizing MPRA tech-
iques and foster the development of innovative, compre-
ensive computational methodologies. By providing a robust
ramework and shedding light on the intricacies of sequence
erturbations in MPRA experiments, our findings hold signif-
cant promise for advancing not only the field of non-coding
enomics but also related domains such as enhancer character-
zation, regulatory genomics, and computational biology. This
nterdisciplinary value, situated at the convergence of molec-
ular biology, genomics, and computational biology, broadens
the scope of our work, making it relevant to a diverse audi-
ence keen to unravel the intricate interplay between sequence
perturbations and transcription factor binding. As researchers
across these disciplines continue to harness the insights from
our study, they will contribute to an increasingly refined un-
derstanding of the functional impacts of non-coding regula-
tory elements, driving the progress of genomics research. 
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