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Abstract 

Alpha-di v ersity indices are an essential tool for describing and comparing biodiversity. Microbial ecologists apply indices originally 
intended for, or adopted by, macroecology to address questions relating to taxonomy (conserved marker) and function (metagenome- 
based data). In this Perspecti v e piece , I be gin by discussing the natur e and mathematical quirks important for interpr eting r outinel y 
employed alpha-di v ersity indices. Secondl y, I pr opose a meta genomic alpha-di v ersity index ( M D ) that measures the (dis)similarity 
of protein-encoding genes within a community. M D has defined limits, whereby a community comprised mostly of similar, poorly 
di v erse pr otein-encoding genes pulls the index to the lower limit, while a community rich in di v erg ent homologs and unique g enes 
dri v es it tow ard the upper limit. With data acquir ed fr om an in silico and three in situ meta genome studies, I deri v e M D and typical 
alpha-di v ersity indices applied to taxonomic (ribosomal rRNA) and functional (all protein-encoding) genes, and discuss their relation- 
ships with each other. Not all alpha-di v ersity indices detect biological trends, and taxonomic does not necessarily follow functional 
biodi v ersity. Thr oughout, I explain that protein Richness and M D provide complementary and easily interpreted information, while 
pr oba bility-based indices do not. F inally, consider ations re garding the unique nature of microbial metagenomic data and its relevance 
for describing functional biodi v ersity ar e discussed. 

Ke yw ords: biodi v ersity ecosystem function; micr obial ecolo gy; statistical ecolo gy; Theoretical ecolo gy 
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Introduction 

As microbial ecologists, we are interested in how microorgan- 
isms shape the world around us. No taxon single-handedly drives 
an y giv en bioc hemical pr ocess in isolation, and so when we 
wish to understand how a process functions, we must con- 
sider taxa at the scale of the communities they exist in. Ulti- 
mately, we seek to explain how each respective taxon within a 
community contributes to w ar d (or hinders) a given process of 
inter est, succinctl y termed as the biodiversity-ecosystem func- 
tion (BEF) relationship (Manning et al. 2018 ). Typically, success- 
ful enquiries consider three avenues of investigation in combi- 
nation: (i) the biodiversity of a community (alpha-diversity); (ii) 
the composition of that community (beta-diversity); and (iii) what 
makes them differ (determined via differential abundances, bio- 
c hemical anal yses etc). For example, we may be interested in 

how antibiotics can inadv ertentl y disrupt the typical function 

of the gut microbiome. After seven days of clindamycin appli- 
cation, many commensal Bacteroidota within an individual’s gut 
ar e driv en to extinction (decr eased alpha-div ersity), a small num- 
ber of Bacteroidota taxa fill the ne wl y unoccupied nic hes (shifted 

beta-di versity), because the y ar e antibiotic-r esistant (incr eased 

abundance of antibiotic-resistance genes) (Jernberg et al. 2007 ).
T hus , we can describe the impact of antibiotics on the gut mi- 
crobiome, understand the consequences of local extinction (i.e .
se v er el y r educed alpha-div ersity), and e v en make some predic- 
tions . For example , we could expect that the long-term persis- 
tence (over two years) of r elativ el y poorl y div erse comm unities 
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hat host ele v ated antibiotic-r esistance genes may incr ease the
isk of resistant pathogens becoming established (Macfarlane 
014 ). 

This Perspective piece will focus on the first avenue of investi-
ation, i.e . alpha-diversity, specifically within the context of deriv-
ng measures of functional biodiversity from metagenomic data.
ssues regarding the application of historical alpha-diversity in- 
ices fr om macr oecology will be discussed. Finall y, a simple index
o derive the biodiversity of a set of protein-encoding genes is pro-
osed and its application demonstrated. The examples here show 

ow alpha-diversity indices are an essential tool for explaining 
ow communities respond to environmental stressors, changing 
onditions or de v elop ov er time. The v alue of these indices goes
eyond acting as explanatory tools, though, and ultimately have 
he potential to act as quantitative predictors of (un)desirable 
cosystem functions (Petchey and Gaston 2006 ), e.g. an x increase
n rhizosphere functional biodiversity is associated with a y in-
rease in plant growth. 

n abridged discussion of alpha-di v ersity indices 

ost alpha-diversity indices are univariate metrics that measure 
pecific qualities of the ranked Species Abundance Distribution 

SAD), whic h r epr esents one of the fundamental means by whic h
cologists consider a community (McGill et al. 2007 ). Each index
as its own nuances and quirks that must be taken into consider-
tion when comparing between communities. 
 is an Open Access article distributed under the terms of the Cr eati v e 
s.org/licenses/by- nc- nd/4.0/ ), which permits non-commercial r e pr oduction 
red or transformed in any way, and that the work is properly cited. For 

https://doi.org/10.1093/femsec/fiae019
https://orcid.org/0000-0002-0366-4422
mailto:damien.finn@thuenen.de
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:journals.permissions@oup.com


2 | FEMS Microbiology Ecology , 2024, Vol. 100, No. 3 

 

(  

n  

b  

b  

d  

s  

w  

t  

2  

o  

b  

t  

t
a

 

a  

s

 

n  

d  

a  

b  

a  

t  

s  

l  

h  

p  

a  

f  

r  

c  

p  

p  

t  

fi  

c  

a  

f
 

S

t  

y  

l  

s  

l  

l  

s  

n  

v  

r  

n  

o  

(

 

q  

o  

R  

p  

a  

e  

l  

d  

a  

S  

t  

m  

s  

t  

r  

t  

c  

(  

t  

e  

2  

w  

a  

t  

(  

m  

n  

r  

b

I
W  

p  

t  

h  

m  

s  

e  

b  

i  

s  

t  

u  

u  

y  

s  

j  

t  

a  

t  

k  

s  

b  

a  

i  

(  

u  

O
 

s  

s  
The simplest and most intuitive is the Richness of taxa present
 T R ), whic h r epr esents the sum of unique taxa within a comm u-
ity. It is expressed as the length of the SAD. This metric is un-
ounded and can, theor eticall y, v ary fr om one to an infinite num-
er of taxa. Ho w e v er, T R is the metric most sensitive to sampling
epth (i.e. total number of observations per sample) and sampling
cale (Gotelli and Colwell 2001 ). Care must therefore be taken
hen defining what is meant by a ‘community’ in the context of

he experiment, e.g. the community of Prokaryotes living within a
 mg soil a ggr egate versus all Prokaryotes present within 500 mg
f a composite soil (Szoboszlay and Tebbe 2021 ). Clearly T R will
e higher in the latter. In the same fashion, it makes little sense
o compare T R between environmental samples of similar proper-
ies where sampling depth differs greatly, e.g . a sample with 10 3 

mplicon sequences versus a sample with 10 5 . 
Evenness is a measure of equality between taxon abundances,

nd is r eflectiv e of the slope of the SAD . T ake , for example , Simp-
on’s Diversity index as a measure of Evenness, as: 

D = 1 −
∑ 

p 2 i 

Where p i is the proportional abundance of the i th taxon. (Please
ote that this is a simplified expression of Simpson’s original in-
ex (Simpson 1949 )). Specifically, D asks ‘If I choose two individu-
ls from a community at random, what is the likelihood that these
elong to different taxa?’ D is bound between 0 and 1–1/ T R , with
 v alue a ppr oac hing 0 indicating an une v en comm unity wher e
here is a high chance that the two selected individuals share the
ame taxonomy. It follows logically that a high probability of se-
ecting individuals from the same taxon means the community
as a low biodiv ersity. As D a ppr oac hes 1–1/ T R , this r epr esents a
erfectl y e v en comm unity wher e all taxa ar e equall y abundant
nd there is a high probability of randomly selecting individuals
rom distinct taxa. In microbial ecology, we could expect nutrient-
ic h envir onments dominated by a small number of fast-gr owing,
opiotrophic taxa or environments subject to extremes in tem-
er atur e , pH etc . to ha ve a D a ppr oac hing 0. Unlike T R , D is a pro-
ortional metric, and is ther efor e less biased by sampling depth
han T R . Although D was conceived to handle communities of in-
nite population sizes (Simpson 1949 ) in practice, the T R of mi-
r obial comm unities is m uc h gr eater than for plants or animals,
nd ‘large’ numbers can render D difficult to interpret (described
urther below). 

A third example that is widespread in microbial ecology is the
hannon diversity index, as: 

H 

′ = −
∑ 

ln ( p i ) p i 

Where , as abo ve , p i is the proportional abundance of the i th 

axon. H 

′ was not originally intended for ecological applications,
et somewhat like D , it asks a probability-based question: ‘How
ikely is it that the next individual in a sequence belongs to the
ame taxon as the current individual?’ As H 

′ increases, it is less
ikely that these two individuals belong to the same taxon. Un-
ike D , H 

′ is not strictly proportional, and so it is relatively more
ensitive to sampling constraints . Furthermore , H’ acts in a highly
on-linear fashion, meaning that it increases rapidly in poorly di-
 erse comm unities and slowl y in mor e complex comm unities. In
egard to the SAD, H’ functions as an intermediary between Rich-
ess and Evenness. As they measure different, but unified, aspects
f the SAD, it is possible to derive them as extensions of each other
Hill 1973 ). 
With the advent of metagenomics, alpha-diversity indices were
uic kl y a pplied to discr ete counts of pr otein-encoding genes in
rder to quantify the functional biodiversity of communities . T he
ic hness of pr otein-encoding genes ( P R ) can corr elate str ongl y and
ositiv el y with T R acr oss temper atur e gr adients (Ruhl et al. 2022 ),
ridity gradients (Song et al. 2019 ), and with seasonality (Galand
t al. 2018 ). Similarly, the H 

′ of protein-encoding genes can corre-
ate positiv el y with taxonomic-based H 

′ (Fier er et al. 2013 ). Alpha-
iv ersity measur es of pr otein-encoding genes hav e also been used
s one of our three pillars of investigating ecosystem processes.
uch studies support general concepts such as: functional po-
ential of host-associated microbiomes change over host develop-

ental life-stages (e.g. early versus late growth stages of Arabidop-
is rhizosphere (Chaparro et al. 2014 )); greater functional poten-
ial conveys benefits for host physiology (e.g. corals become more
 esistant to bleac hing (Cardenas et al. 2022 )); and increased func-
ional potential is linked to higher rates of certain ecosystem pro-
esses (e.g. increased greenhouse gas emissions from peatlands
Pavia et al. 2023 )). Tracking alpha-diversity changes also shows
hat it is possible to r estor e lost functional potential in disturbed
cosystems , e .g. r e-v egetation of defor ested landsca pes (Guo et al.
018 ). These are fundamentally important basic questions to-
 ar d understanding BEF relationships. Ho w ever, sequencing data
lso allows us to consider underlying genetic relationships be-
ween taxa, e.g . alpha- and beta-diversity metrics that compare
dis)similarity between taxa that share a single conserved genetic

arker (Faith 1992 , Lozupone et al. 2007 ), and we should ther efor e
ot feel limited to treating genes simply as discrete counts in a se-
ies, nor to only employ indices that ask fairly abstract probability-
ased questions. 

magine a forest 
her e e v ery tr ee r epr esents a unique pr otein-encoding gene , e .g.

yruvate kinase, ammonia mono-oxygenase, predicted but func-
ionally unknown proteins, and so on. Some of these trees will
av e long br anc hes that spr ead far fr om the trunk, ending in
any individual lea ves . T hese branch lengths represent the dis-

imilarity in the gene between taxa (the leaves of the branch) that
ncode for the same gene (at the end of different, but connected,
r anc hes). We could speculate that these are the most interest-

ng trees in this forest as the y re present homologous genes that
hare a common ancestor, yet have diverged over time, and while
he protein’s k e y function is shared, they may perform optimally
nder differ ent nic hes , e .g. low-affinity versus high-affinity partic-
late methane mono-oxygenase. Other trees may be very large,
 et ‘stump y’ in terms of their br anc h lengths . T hese would r epr e-
ent highl y-conserv ed homologous genes that ar e unlikel y sub-
ect to (or direct contributors to w ar d) nic he differ entiation be-
ween taxa, e.g. glutamate synthase. Some short trees are more
kin to shrubs—these have relatively few lea ves (i.e . fewer taxa in
he community encode for these proteins), yet may still carry out
 e y functions , e .g. nitrogenase . In this analogy, the genetic diver-
ity inherent within certain communities will give rise to dense,
r oad-br anc hed leafy forests whereas others will be more like an
rid shrubland. This is not to say that the genetic diversity in the

maginary arid shrubland is unimportant for that given ecosystem
Shade 2017 ), but one can r easonabl y expect a greater potential for
nique functionality under more variable conditions in the forest.
ur aim is to quantify this in a meaningful manner. 
Let us ask ‘What is the biodiversity amongst a set of ob-

erv ed pr otein-encoding genes?’ We have a set number of ob-
ervations ( N ) that could be entire coding sequences from a
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collection of genomes, or pr edicted pr otein-encoding genes from 

a metagenome, depending on what is being analysed. These are 
the leaves in our forest. There are also a set number of unique 
protein-encoding genes, the protein Richness ( P R ), to which N are 
distributed amongst, acting as the trees that support each leaf.
Eac h pr otein-encoding gene (leaf) that belongs to a P (tree) also dif- 
fers from the other lea ves , calculated as a % of dissimilarity in se- 
quence identity ( d ) (pair-wise br anc h length). Ther efor e, the biodi- 
versity within the i th P is simply a ratio of the sum of pair-wise dis- 
similarities ( d i ) to the number of pair-wise combinations amongst 
the protein-encoding genes in the i th P ( c i ). This is summed to give 
the biodiversity across all P : 

∑ d i 
c i 

It should be noted that this ratio is compatible with gene clus- 
tering algorithms that report pair-wise (dis)similarities between a 
r epr esentativ e gene and all others within the homolog, including 
a self-comparison, and ther efor e in these cases c i will always be 
at least 1 (see Supplementary Fig. S1 for a conceptual visualiza- 
tion of this). This simplistic ratio will, ho w ever, lose information 

from so-called Orphan proteins that are only detected once (i.e.
singletons). The d i of a protein-encoding gene observ ed onl y once 
will be 0, and so it will not contribute to the biodiversity sum. As 
these Orphans are protein-encoding genes that may be rare (yet 
potentiall y inter esting!) within the comm unity, or our sequencing 
depth may simply not be deep enough to observe its homologs, we 
still wish to retain information from their detection. To save the 
Orphans, we adjust the biodiversity ratio as so: 

∑ 

1 + 

d i 
c i 

Such a value is inherently tied to P R , ho w ever, and as de- 
scribed abo ve , such alpha-diversity indices are sensitive to sam- 
pling depth and scale. To impr ov e compar ability between samples 
(i.e. communities) w e w eight the ov er all v alue by our total obser- 
vations N . This has the added benefit of creating upper and lo w er 
boundaries on the index. Our meta genomic alpha-div ersity index 
( M D ) is thus: 

M D = 

1 
N 

∑ 

(
1 + 

d i 
c i 

)

M D incr eases for comm unities with div erse functional gene ho- 
mologs associated with either completely unique and/or dissim- 
ilar protein-encoding genes . Con versely, communities dominated 

by protein-encoding genes that are highly similar will yield a low 

M D . Somewhat similar to D , M D is bound between a theoretical 
lo w er limit of no biodiversity among protein-encoding genes, 1/ N ,
and a theoretical upper limit of ‘perfect’ biodiversity where each 

protein-encoding gene is absolutely unique, 1 (please consult the 
supplementary material for a simplified mathematical proof). 

Let us consider a simple example. Imagine three in silico ‘com- 
munities’ as: (i) varying Escherichia coli strains; (ii) commensal host- 
associated human gut taxa ( Bacteroides thetaiotaomicron , Bacteroides 
fr agilis , Faecalibacterium pr ausnitzii , Clostridium butyricum , Lactobacil- 
lus acidophilus , Bifidobacterium lactis ) (Newton et al. 2013 ); and (iii) 
a phototrophic biological soil crust (BSC) of free-living taxa ( Mi- 
crocoleus vaginatus , Stenotrophomonas maltophila , Pelomonas saccha- 
rophila , Azotobacter beijerinckii , Lactiplantibacillus plantarum, Methy- 
lobacterium aerolatum ) (Couradeau et al. 2019 ) (Table 1 ; Table S1 
for genome source information). Each community has six distinct 
taxa ( T R ). Amino acid sequences of protein-encoding genes among 
enomes, N , wer e cluster ed dependent on shared kmers, and pair-
ise dissimilarity between clustered homologs calculated, with 

MSeqs2 (Steinegger and Söding 2017 ) (although other pairwise 
ompar ativ e methods could be emplo y ed, such as all-vs-all BLAST
Price et al. 2008 ) or mapping predicted protein-encoding genes
ack to custom databases (Galand et al. 2018 )). The lo w er cut-off
 value of homologs clustered by MMSeqs2 was ca . 10 −4 , which
quates to a false discovery rate of incorrectly assigning a protein-
ncoding gene to a group of homologs as roughly 10 −4 (Steinegger
nd Söding 2017 ). A minimum sequence identity cut-off was not
mposed. P R , H 

′ and D were calculated from the proportional sizes
f clustered homologs . T he log 10 P dissimilarity and M D are also
eported. The indices P R , H 

′ and M D show expected trends of E.
oli < Human Gut < BSC. As mentioned abo ve , D suffers from the
large’ numbers of P R here. 

While P R , H 

′ and M D all indicate that BSC has the greatest
unctional potential, I argue that the value of M D lies in its in-
er pr etability. Rather than asking an abstr act, pr obability-based
uestion, it specifically asks how m uc h div ersity exists amongst
he observ ed pr otein-encoding genes. It is immediatel y a ppar ent
r om the M D a ppr oac hing 0 that the protein-encoding genes in the
. coli group (0.21) are highly similar to each other relative to the
ut and BSC groups , i.e . there is high redundancy, poor biodiversity
nd ultimately lo w er potential for varied functionality. 

As the theoretical upper limit of 1 indicates that e v ery pr otein-
ncoding gene is absolutely unique, and the lo w er limit is effec-
iv el y 0, the BSC M D of 0.62 indicates that most of the protein-
ncoding genes in this gr oup ar e either div er gent within/between,
r ar e completel y unique to, these six taxa. P R is also quite sim-
le to inter pr et, e.g. ther e ar e 3 x mor e unique pr otein-encoding
enes in the BSC group than the E. coli group. Indeed, while P R 
nd M D provide distinct information, they have a complementary 
nter pr etation—the ca . 3 x more unique protein-encoding genes in
SC versus E. coli also equates to ca . 3 x more genetic dissimilarity
mongst these genes. In isolation, though, P R cannot provide in-
ormation regarding genetic dissimilarity and/or potential func- 
ional redundancy among the six taxa. For example, while the P R 
f the BSC group is ca . 50% greater than the gut taxa, M D is only
ar ginall y higher in the BSC group, and this implies a r elativ el y

r eater ov erla p in gener al functionality amongst these six free-
iving taxa. 

In contrast, H 

′ seems to suggest that the functional biodiversity
mong six E. coli strains (8.25) is not that dissimilar from the two
roups comprised of distinct prokaryotes (8.87 and 9.29). Due to
he highly non-linear nature of H 

′ , one cannot interpret this dif-
erence as ca . 10% greater diversity in the BSC versus E. coli groups.
 

′ can only tell us that diversity in BSC is higher than E. coli . 

ut what about metagenomes? 
he following three examples of measuring functional biodiver- 
ity ar e fr om meta genomes. For specific methods of how metage-
omic data was pr ocessed, please r efer to the Supplementary
ethods . 
The first example considers changes in taxonomic and func- 

ional biodiversity across a steep temperature gradient within a 
eothermal hotspring (Ruhl et al. 2022 ). The original study found
hat both T R (as operational taxonomic units) and P R (as Pfam
nnotated protein-encoding genes) decreased as temperature in- 
reased. The bioinformatic approaches used here differed, e.g. all 
r otein-encoding genes wer e anal ysed and not onl y those that
ould be assigned a functional annotation. Even so, the same 
tr ong tr ends unifying both taxonomic and functional biodiv er-

https://academic.oup.com/fem/article-lookup/doi/10.1093/fem/fiae019#supplementary-data
https://academic.oup.com/fem/article-lookup/doi/10.1093/fem/fiae019#supplementary-data
https://academic.oup.com/fem/article-lookup/doi/10.1093/fem/fiae019#supplementary-data
https://academic.oup.com/fem/article-lookup/doi/10.1093/fem/fiae019#supplementary-data
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Table 1. Alpha-diversity index comparisons within three simplistic, in silico communities. T R = taxonomic Richness; N = total number 
of protein-encoding genes compared within the in silico community; P R , H 

′ , D , Log 10 P dissimilarity and M D = respectively as Richness, 
Shannon, Simpson Ev enness, pr otein dissimilarity and meta genomic div ersity indices deriv ed fr om pr otein-encoding genes within the 
community. 

Community T R N P R H 

′ D 

Log 10 P 
dissimilarity M D 

E. coli 6 28 029 5 485 8 .25 0 .999 3 .77 0 .21 
Human Gut 6 20 007 10 456 8 .87 0 .999 4 .06 0 .57 
Biological Soil Crust 6 26 814 15 318 9 .29 0 .999 4 .22 0 .62 
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ity are clear (Fig. 1 ). Ruhl et al., concluded that the r a pid decr ease
n taxonomic and functional biodiv ersity acr oss the gradient was
 consequence of heat-stress selecting for r elativ el y simple com-
unities of thermophilic taxa. Additionally, the thermophilic taxa
ere also predicted to have on average smaller genomes than
esophiles, further contributing to the decreased functional bio-

iv ersity. Fr om the anal yses performed her e (Fig. 1 ), this str ong
emper atur e-dependent tr end was a ppar ent r egar dless of ho w
axonomic biodiversity ( T R , H 

′ , D ) or functional biodiversity ( P R , H 

′ ,
 D ) w as considered. Regar dless, comparing P R betw een the coldest

nd hottest communities, we see that the mesophilic community
as ca . 10 000 more unique protein-encoding genes, equivalent to
 ca . 20% increase in Richness. Similarly, M D shows that there is
 ca . 15% increase in the genetic diversity with these additional
0 000 unique protein-encoding genes present. Ho w ever, as above
ith the E. coli example, an increase in H’ from 10.77 (hottest) to
0.98 (coldest), or r oughl y a 1% increase, does not tell us anything
bout the underlying relationship between temperature and func-
ional diversity here, other than that mesophilic communities are

or e div erse than thermophilic. 
Example number two comes from observations during a natu-

 al, annual e v ent: how a dr amatic incr ease in summer daylight
ours gives rise to a bloom of life in the pelagic Arctic Ocean

Puente-Sanchez et al. 2022 ). Samples were taken in March, April,
a y and J une . In early spring a 2 m thick ice-sheet cov er ed the

ea, no photosyntheticall y activ e r adiation (PAR) could r eac h the
ela gic comm unities and integr ated c hlor ophyll a was < 2 mg
 

−2 . Over time as the season transitioned into summer, ice-
elt was prolific, sea ice was br eaking a part and sufficient PAR

ad led to > 200 mg m 

−2 integrated chlorophyll a . Neither taxo-
omic nor functional alpha-diversity indices wer e r eported in this
tudy, ho w e v er the seasonal change was marked by strong com-
ositional shifts, with photosynthetic Pro- and Eukaryotes, het-
r otr ophic Bacteroidota and Pseudomonadota (formerly Proteobacte-
ia ) blooming in summer, and a concurrent relative decrease in
hermoproteota (formerl y Thaumarc haeota ), Planctom ycetota and V er -
ucomicrobiota (Puente-Sanchez et al. 2022 ). Derivation of alpha-
iv ersity indices her e sho w ed that ov er all taxonomic biodiv er-
ity decreased in June photosynthetic communities (Fig. 2 ). De-
pite a lo w er taxonomic biodiv ersity, the June comm unities had
 greater functional biodi versity, lik ely dri ven by an enrichment
n functional potential (and the great repertoire of associated ge-
etic machinery) of photosynthetic micr oor ganisms , e .g. Photo-
ystem I, Photosystem II, carboxysome, Calvin-Benson-Bassham
ycle etc . (Rubin et al. 2015 ). Pr e vious studies of ecological suc-
ession in oceanic diatom blooms have also demonstrated that,
hile a r elativ el y small subset of Bacteroidota and Pseudomon-

dota heter otr ophs ar e enric hed alongside photoautotr ophs, these
axa possess diverse carbohydrate active enzymes and broad
ligomer and monomer substr ate pr efer ences that tar get diatom
 d  
nd c y anobacterial exopol ysacc harides (Teeling et al. 2012 , Zheng
t al. 2019 ). It is ther efor e worth emphasising that tr ends in tax-
nomic and functional biodiv ersity ar e not necessarily linked—
aving more unique heterotrophs in March and April, as per the
6S rRNA gene, does not necessarily mean that their genomes
ost a greater diversity, or functional potential, of homologous
rotein-encoding genes relative to the photosynthetically-active
ommunity and its associated specialist heterotrophs. As with
r e vious examples, P R and M D give complementary information—

une communities have ca . 6 000 more unique protein-encoding
enes with a ca . 7% greater genetic diversity amongst them. H 

′ ,
f course, can only tell us that the June comm unities ar e mor e
unctionall y biodiv erse than those in Marc h. 

The third and final example involves the successional de-
elopment of soil microbial (and plant) communities after vol-
anic eruptions at the Llaima volcano in Chile (Hernández et al.
020a ,b ). Lava flow had essentially created new substrate for
olonisation at distinct geogr a phical sites ar ound the volcano, al-
owing for a successional time gradient for comparisons across ca .
0, 250 and 350 years. At the time of sampling, the ‘early’ succes-
ional stage was colonised by lic hen-pr okaryote symbiotic com-
unities, while the intermediate and latter stages were colonised

y understory plants. Hernández et al. 2020a ,b show that as soils
e v eloped, ov er all T R (as operational taxonomic units) increased,
ith the early stage strongly dominated by ‘simplistic’ commu-
ities of autotrophic archaeal ammonia oxidisers , Cy anobacteri-
ta , nitr ogen, hydr ogen and carbon monoxide-fixing Chloroflexota
hat transitioned to the more ‘typical’ soil communities domi-
ated by highl y div erse heter otr ophic Pseudomonadota , Acidobac-

eriota and Actinobacteriota . Here, a significant increase in T R was
oted at the intermediate successional stage, ho w ever commu-
ity Evenness ( D ) actually decreased by the late successional
ta ge, as comm unities shifted fr om primaril y autotr ophic to
eter otr oph-dominated soil assemblages (Fig. 3 ). In terms of func-
ional biodiversity, both P R and M D identified a decreased func-
ional potential after 371 years of ecological succession. There-
or e, while taxonomic alpha-div ersity indices gav e some what in-
onsistent results for overall biodiversity (increased Richness yet
ecr eased Ev enness) the functional genetic information sho w ed
 consistent trend in that functional biodiv ersity decr eased
s the nic he-differ entiated autotr ophic comm unities wer e r e-
laced by heter otr ophs that shar ed r elativ el y similar functions
or nutrient acquisition and metabolism of plant-derived organic
ubstrates. 

ome technical consider a tions 

hile M D seeks to measure the functional biodiversity of a com-
 unity fr om a differ ent angle (i.e . genetic dissimilarity) than

r e-existing alpha-div ersity indices, it r emains constr ained by
ata quality and pr ocessing. Lar ger contigs will impr ov e gene
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Figur e 1. Example one , geothermal hotspring temper atur e biodiv ersity gr adient. Both taxonomic (ribosomal rRNA gene) and functional (all 
protein-encoding genes) biodiversity decreases with increasing temperature as stress selects for few heat-adapted taxa with relatively limited 
functionality. Linear r egr ession slopes for eac h index ar e shown ( n = 1 per temper atur e point). T R = taxonomic-mark er deri v ed Ric hness, H 

′ = Shannon, 
D = Simpson Evenness, P R = protein Richness, M D = metagenomic diversity derived from genetic (dis)similarity of all protein-encoding genes. 

F igure 2. Example tw o, seasonal comparison of Arctic Ocean communities as they transition from spring into summer. Increased daylight during the 
summer month of June drives a decrease in taxonomic (ribosomal rRNA gene) biodiversity as communities become dominated by photosynthetic 
organisms and a subset of specialist heterotrophs. Ho w ever, functional (all protein-encoding genes) biodiversity is greater in the photosynthetic 
communities. Results of significance testing with gamma-distributed general linear models are shown where April, May or June differed from March. n 
= 3 for March, n = 1 for April, n = 2 for May and n = 2 for June. ( ∗) P < 0.05 ( ∗∗) P = 0.001 ( ∗∗∗) P < 0.001. T R = taxonomic-marker derived Richness, H 

′ = 

Shannon, D = Simpson Ev enness, P R = pr otein Ric hness, M D = meta genomic div ersity deriv ed fr om genetic (dis)similarity of all protein-encoding genes. 
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Figur e 3. Example three , successional de v elopment of soil comm unities after volcanic eruptions. Taxonomic Ric hness peaks at a mid-successional 
sta ge. Taxonomic Ev enness, pr otein Ric hness and genetic functional biodiv ersity as M D ultimatel y decr ease as nic he-differ entiated autotr ophic 
comm unities ar e r eplaced by soil or ganoheter otr ophs after 371 years. Results of significance testing with gaussian-distributed gener al linear models 
are shown where mid or late successional stages differed from the earliest sampled stage. ( ∗) P < 0.05 ( ∗∗) P = 0.001 ( ∗∗∗) P < 0.001. n = 3 per 
successional stage. T R = taxonomic-marker derived Richness, H 

′ = Shannon, D = Simpson Evenness, P R = protein Richness, M D = metagenomic 
di versity deri ved from genetic (dis)similarity of all protein-encoding genes. 
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r ediction and clustering, potentiall y yielding ‘mor e accur ate’
lpha-diversity indices, and so direct comparisons between M D 

 alues should shar e assembl y softwar e, par ameters etc . Similarl y,
he parameters used to cluster protein-encoding genes as ho-

ologs must also be consistent (who should be considered as be-
onging to a leaf on the same tree?) as these cutoffs are essential to
ow the pair-wise genetic dissimilarities are calculated. Secondly,
ue to redundancy in the genetic code, amino acid sequences are
etter r eflectiv e of actual pr otein function than nucleic acid se-
uences (Wang et al. 2013 ). Ther efor e, I suggest that amino acid
equences should pr efer entiall y be analysed when the overall goal
s to investigate meaningful relationships in how functional bio-
iversity may inform actual BEF relationships . T hirdly, while M D 

s less sensitive to N (i.e. total observations) than P R or H 

′ , it is
ot a perfectly proportional metric bounded between 0 and 1, and
o r ar efying or r andoml y subsampling to a shar ed N will impr ov e
omparability between samples within similar ecosystems. Inter-
stingly, unlike P R and H 

′ , M D actually has a negative relationship
ith increasing N , which shows that it is redundancy/high simi-

arity between genes that primarily drives M D do wnw ar ds . T hus , a
ample with N = 2 M may be r esequencing/r e-observing the same
enes over and ov er, whic h will lo w er M D r elativ e to the same sam-
le with N = 1 M. Finally, deriving M D from host-associated com-
 unities may pr ov e tric ky—an y ‘contaminant’ host genetic ma-

erial that is sequenced alongside its microbiota will affect how
 D is calculated. While pre-existing pipelines remove human-

ssociated genetic material (Uritskiy et al. 2018 ) this would not
e sufficient for deriving M D from, for example, a root endophyte
ommunity. 
2  
 future for microbial di v ersity metrics 

he suggested M D is by no means meant to replace pre-existing
lpha-diversity metrics, nor will it be the last proposed metric.
o w e v er, going into the future, the following points are worth
onsidering. As most protein-encoding genes from environmental
ources cannot curr entl y be annotated (Nayfac h et al. 2021 ), func-
ional biodiversity studies should not be limited to only analysing
he r elativ el y small fr action of genes that can curr entl y be anno-
ated. Galand et al. ( 2018 ) demonstr ate this point v ery well. Ther e
r e man y ways one can compare the (dis)similarity of protein-
ncoding genes without resorting to annotation, for example lo-
al alignment-based (Schloss and Handelsman 2008 ) or kmer-
ased techniques (Steinegger and Söding 2017 ). Furthermore, the
eap between determining a relationship between functional bio-
iv ersity and measur able ecosystem function is v ast (Petc hey and
aston 2006 ) and fraught with many conflicting concepts. When
nly a subset of taxa are active at any one time (Shi et al. 2011 ),
nd indeed a lot of environmental DNA comes from necromass
Carini et al. 2017 ) and a non-negligible amount of genetic mate-
ial may r epr esent ‘pseudo-genes’ (Goodhead and Darby 2015 ), it
s understandable to question the usefulness of deriving an alpha-
iversity index for functional biodiv ersity. Car e m ust also be taken
ot to conflate concepts of ‘functional biodiversity’, i.e. as de-
cribed throughout this Perspective piece, with ‘functional traits’
Escalas et al. 2019 ), which are an emergent property from col-
ections of specific genes and/or gene variants , e .g. methanogen-
sis, maxim um gr owth r ate, copiotr ophic or str ess toler ant life-
tr ategies etc . (Kr ause et al. 2014 , Malik et al. 2020 , Westoby et al.
021 ). Once a gain, alpha-div ersity indices pr ovide information on
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only one piece of our biological puzzles, and must be considered 

within a greater context and systems-based understanding when 

investigating why communities ‘are as they are and do what they 
do’. Her e they serv e a useful explanatory purpose as a quantifi- 
able summary of functional potential, with the benefit of M D lying 
in its simple inter pr etability, compar ability between communities 
as a bounded metric, and that it tries to more directly address the 
gap between microbial metagenomic information and the overall 
BEF. Despite the abovementioned hurdles that must be considered 

and/or o vercome , sensible , quantitative metrics that explain BEF 
r elationships ar e a worthy goal to striv e to w ar d as they have the 
potential to model and predict (un)desirable ecosystem functions 
in the world around us. 
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Da ta av ailability 

All (meta)genomes analysed in this study are publically avail- 
able ( Tables S1 , S2 , S3 and S4 for details). Python code 
to a ppl y MMseqs2 and to derive M D from clustered amino- 
acid sequences of protein-encoding genes is available at: 
github.com/DamienFinn/MD/blob/main/MD.py. This code also in- 
cludes se v er al par ameters that can be adjusted by users, including 
changing E value and sequence identity thresholds, and setting a 
user defined N for random sampling without replacement from 

cluster ed pr otein-encoding genes. Please note that this code be- 
gins to run quite slowly where observations are greater than 0.5 M.
I do not have a computer science background, and interpretation- 
based computing languages are the best I can do—more clever 
individuals will be needed to write these functions in a faster lan- 
guage. 
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