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Abstract

Alpha-diversity indices are an essential tool for describing and comparing biodiversity. Microbial ecologists apply indices originally
intended for, or adopted by, macroecology to address questions relating to taxonomy (conserved marker) and function (metagenome-
based data). In this Perspective piece, I begin by discussing the nature and mathematical quirks important for interpreting routinely
employed alpha-diversity indices. Secondly, I propose a metagenomic alpha-diversity index (Mp) that measures the (dis)similarity
of protein-encoding genes within a community. Mp has defined limits, whereby a community comprised mostly of similar, poorly
diverse protein-encoding genes pulls the index to the lower limit, while a community rich in divergent homologs and unique genes
drives it toward the upper limit. With data acquired from an in silico and three in situ metagenome studies, I derive Mp and typical
alpha-diversity indices applied to taxonomic (ribosomal rRNA) and functional (all protein-encoding) genes, and discuss their relation-
ships with each other. Not all alpha-diversity indices detect biological trends, and taxonomic does not necessarily follow functional
biodiversity. Throughout, I explain that protein Richness and Mp provide complementary and easily interpreted information, while
probability-based indices do not. Finally, considerations regarding the unique nature of microbial metagenomic data and its relevance

for describing functional biodiversity are discussed.
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Introduction

As microbial ecologists, we are interested in how microorgan-
isms shape the world around us. No taxon single-handedly drives
any given biochemical process in isolation, and so when we
wish to understand how a process functions, we must con-
sider taxa at the scale of the communities they exist in. Ulti-
mately, we seek to explain how each respective taxon within a
community contributes toward (or hinders) a given process of
interest, succinctly termed as the biodiversity-ecosystem func-
tion (BEF) relationship (Manning et al. 2018). Typically, success-
ful enquiries consider three avenues of investigation in combi-
nation: (i) the biodiversity of a community (alpha-diversity); (ii)
the composition of that community (beta-diversity); and (iii) what
makes them differ (determined via differential abundances, bio-
chemical analyses etc). For example, we may be interested in
how antibiotics can inadvertently disrupt the typical function
of the gut microbiome. After seven days of clindamycin appli-
cation, many commensal Bacteroidota within an individual’s gut
are driven to extinction (decreased alpha-diversity), a small num-
ber of Bacteroidota taxa fill the newly unoccupied niches (shifted
beta-diversity), because they are antibiotic-resistant (increased
abundance of antibiotic-resistance genes) (Jernberg et al. 2007).
Thus, we can describe the impact of antibiotics on the gut mi-
crobiome, understand the consequences of local extinction (i.e.
severely reduced alpha-diversity), and even make some predic-
tions. For example, we could expect that the long-term persis-
tence (over two years) of relatively poorly diverse communities

that host elevated antibiotic-resistance genes may increase the
risk of resistant pathogens becoming established (Macfarlane
2014).

This Perspective piece will focus on the first avenue of investi-
gation, i.e. alpha-diversity, specifically within the context of deriv-
ing measures of functional biodiversity from metagenomic data.
Issues regarding the application of historical alpha-diversity in-
dices from macroecology will be discussed. Finally, a simple index
to derive the biodiversity of a set of protein-encoding genes is pro-
posed and its application demonstrated. The examples here show
how alpha-diversity indices are an essential tool for explaining
how communities respond to environmental stressors, changing
conditions or develop over time. The value of these indices goes
beyond acting as explanatory tools, though, and ultimately have
the potential to act as quantitative predictors of (un)desirable
ecosystem functions (Petchey and Gaston 2006), e.g. an x increase
in rhizosphere functional biodiversity is associated with a y in-
crease in plant growth.

An abridged discussion of alpha-diversity indices
Most alpha-diversity indices are univariate metrics that measure
specific qualities of the ranked Species Abundance Distribution
(SAD), which represents one of the fundamental means by which
ecologists consider a community (McGill et al. 2007). Each index
has its own nuances and quirks that must be taken into consider-
ation when comparing between communities.
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The simplest and most intuitive is the Richness of taxa present
(Tr), which represents the sum of unique taxa within a commu-
nity. It is expressed as the length of the SAD. This metric is un-
bounded and can, theoretically, vary from one to an infinite num-
ber of taxa. However, T is the metric most sensitive to sampling
depth (i.e. total number of observations per sample) and sampling
scale (Gotelli and Colwell 2001). Care must therefore be taken
when defining what is meant by a ‘community’ in the context of
the experiment, e.g. the community of Prokaryotes living within a
2 mg soil aggregate versus all Prokaryotes present within 500 mg
of a composite soil (Szoboszlay and Tebbe 2021). Clearly Tx will
be higher in the latter. In the same fashion, it makes little sense
to compare Ty between environmental samples of similar proper-
ties where sampling depth differs greatly, e.g. a sample with 103
amplicon sequences versus a sample with 10°.

Evenness is a measure of equality between taxon abundances,
and is reflective of the slope of the SAD. Take, for example, Simp-
son’s Diversity index as a measure of Evenness, as:

D=1-3p

Where p; is the proportional abundance of the it" taxon. (Please
note that this is a simplified expression of Simpson’s original in-
dex (Simpson 1949)). Specifically, D asks ‘If I choose two individu-
als from a community at random, whatis the likelihood that these
belong to different taxa?’ D is bound between 0 and 1-1/Tg, with
a value approaching 0 indicating an uneven community where
there is a high chance that the two selected individuals share the
same taxonomy. It follows logically that a high probability of se-
lecting individuals from the same taxon means the community
has a low biodiversity. As D approaches 1-1/Tg, this represents a
perfectly even community where all taxa are equally abundant
and there is a high probability of randomly selecting individuals
from distinct taxa. In microbial ecology, we could expect nutrient-
rich environments dominated by a small number of fast-growing,
copiotrophic taxa or environments subject to extremes in tem-
perature, pH etc. to have a D approaching 0. Unlike Tg, D is a pro-
portional metric, and is therefore less biased by sampling depth
than Tg. Although D was conceived to handle communities of in-
finite population sizes (Simpson 1949) in practice, the Tg of mi-
crobial communities is much greater than for plants or animals,
and ‘large’ numbers can render D difficult to interpret (described
further below).

A third example that is widespread in microbial ecology is the
Shannon diversity index, as:

H'= = In(p)p;

Where, as above, p; is the proportional abundance of the i
taxon. H' was not originally intended for ecological applications,
yet somewhat like D, it asks a probability-based question: ‘How
likely is it that the next individual in a sequence belongs to the
same taxon as the current individual?’ As H' increases, it is less
likely that these two individuals belong to the same taxon. Un-
like D, H' is not strictly proportional, and so it is relatively more
sensitive to sampling constraints. Furthermore, H’ acts in a highly
non-linear fashion, meaning that it increases rapidly in poorly di-
verse communities and slowly in more complex communities. In
regard to the SAD, H’ functions as an intermediary between Rich-
ness and Evenness. As they measure different, but unified, aspects
of the SAD, itis possible to derive them as extensions of each other
(Hill 1973).

With the advent of metagenomics, alpha-diversity indices were
quickly applied to discrete counts of protein-encoding genes in
order to quantify the functional biodiversity of communities. The
Richness of protein-encoding genes (Pg) can correlate strongly and
positively with Ty across temperature gradients (Ruhl et al. 2022),
aridity gradients (Song et al. 2019), and with seasonality (Galand
et al. 2018). Similarly, the H' of protein-encoding genes can corre-
late positively with taxonomic-based H’' (Fierer et al. 2013). Alpha-
diversity measures of protein-encoding genes have also been used
as one of our three pillars of investigating ecosystem processes.
Such studies support general concepts such as: functional po-
tential of host-associated microbiomes change over host develop-
mental life-stages (e.g. early versus late growth stages of Arabidop-
sis rhizosphere (Chaparro et al. 2014)); greater functional poten-
tial conveys benefits for host physiology (e.g. corals become more
resistant to bleaching (Cardenas et al. 2022)); and increased func-
tional potential is linked to higher rates of certain ecosystem pro-
cesses (e.g. increased greenhouse gas emissions from peatlands
(Pavia et al. 2023)). Tracking alpha-diversity changes also shows
that it is possible to restore lost functional potential in disturbed
ecosystems, e.g. re-vegetation of deforested landscapes (Guo et al.
2018). These are fundamentally important basic questions to-
ward understanding BEF relationships. However, sequencing data
also allows us to consider underlying genetic relationships be-
tween taxa, e.g. alpha- and beta-diversity metrics that compare
(dis)similarity between taxa that share a single conserved genetic
marker (Faith 1992, Lozupone et al. 2007), and we should therefore
not feel limited to treating genes simply as discrete countsin a se-
ries, nor to only employ indices that ask fairly abstract probability-
based questions.

Imagine a forest

Where every tree represents a unique protein-encoding gene, e.g.
pyruvate kinase, ammonia mono-oxygenase, predicted but func-
tionally unknown proteins, and so on. Some of these trees will
have long branches that spread far from the trunk, ending in
many individual leaves. These branch lengths represent the dis-
similarity in the gene between taxa (the leaves of the branch) that
encode for the same gene (at the end of different, but connected,
branches). We could speculate that these are the most interest-
ing trees in this forest as they represent homologous genes that
share a common ancestor, yet have diverged over time, and while
the protein’s key function is shared, they may perform optimally
under different niches, e.g. low-affinity versus high-affinity partic-
ulate methane mono-oxygenase. Other trees may be very large,
yet ‘stumpy’ in terms of their branch lengths. These would repre-
sent highly-conserved homologous genes that are unlikely sub-
ject to (or direct contributors toward) niche differentiation be-
tween taxa, e.g. glutamate synthase. Some short trees are more
akin to shrubs—these have relatively few leaves (i.e. fewer taxa in
the community encode for these proteins), yet may still carry out
key functions, e.g. nitrogenase. In this analogy, the genetic diver-
sity inherent within certain communities will give rise to dense,
broad-branched leafy forests whereas others will be more like an
arid shrubland. This is not to say that the genetic diversity in the
imaginary arid shrubland is unimportant for that given ecosystem
(Shade 2017), but one can reasonably expect a greater potential for
unique functionality under more variable conditions in the forest.
Our aim is to quantify this in a meaningful manner.

Let us ask ‘What is the biodiversity amongst a set of ob-
served protein-encoding genes?’ We have a set number of ob-
servations (N) that could be entire coding sequences from a



collection of genomes, or predicted protein-encoding genes from
a metagenome, depending on what is being analysed. These are
the leaves in our forest. There are also a set number of unique
protein-encoding genes, the protein Richness (P), to which N are
distributed amongst, acting as the trees that support each leaf.
Each protein-encoding gene (leaf) that belongs to a P (tree) also dif-
fers from the other leaves, calculated as a % of dissimilarity in se-
quence identity (d) (pair-wise branch length). Therefore, the biodi-
versity within the i Pis simply a ratio of the sum of pair-wise dis-
similarities (d;) to the number of pair-wise combinations amongst
the protein-encoding genes in the i P (c;). This is summed to give
the biodiversity across all P:

di
<
It should be noted that this ratio is compatible with gene clus-
tering algorithms that report pair-wise (dis)similarities between a
representative gene and all others within the homolog, including
a self-comparison, and therefore in these cases ¢; will always be
at least 1 (see Supplementary Fig. S1 for a conceptual visualiza-
tion of this). This simplistic ratio will, however, lose information
from so-called Orphan proteins that are only detected once (i.e.
singletons). The d; of a protein-encoding gene observed only once
will be 0, and so it will not contribute to the biodiversity sum. As
these Orphans are protein-encoding genes that may be rare (yet
potentially interesting!) within the community, or our sequencing
depth may simply not be deep enough to observe its homologs, we
still wish to retain information from their detection. To save the
Orphans, we adjust the biodiversity ratio as so:

b
Gi

Such a value is inherently tied to Pr, however, and as de-
scribed above, such alpha-diversity indices are sensitive to sam-
pling depth and scale. To improve comparability between samples
(i.e. communities) we weight the overall value by our total obser-
vations N. This has the added benefit of creating upper and lower
boundaries on the index. Our metagenomic alpha-diversity index
(Mp) is thus:

1 d;
Mp= & Z(1+ CT)

Mp increases for communities with diverse functional gene ho-
mologs associated with either completely unique and/or dissim-
ilar protein-encoding genes. Conversely, communities dominated
by protein-encoding genes that are highly similar will yield a low
Mp. Somewhat similar to D, Mp is bound between a theoretical
lower limit of no biodiversity among protein-encoding genes, 1/N,
and a theoretical upper limit of ‘perfect’ biodiversity where each
protein-encoding gene is absolutely unique, 1 (please consult the
supplementary material for a simplified mathematical proof).

Let us consider a simple example. Imagine three in silico ‘com-
munities’ as: (i) varying Escherichia coli strains; (ii) commensal host-
associated human gut taxa (Bacteroides thetaiotaomicron, Bacteroides
fragilis, Faecalibacterium prausnitzii, Clostridium butyricum, Lactobacil-
lus acidophilus, Bifidobacterium lactis) (Newton et al. 2013); and (iii)
a phototrophic biological soil crust (BSC) of free-living taxa (Mi-
crocoleus vaginatus, Stenotrophomonas maltophila, Pelomonas saccha-
rophila, Azotobacter beijerinckii, Lactiplantibacillus plantarum, Methy-
lobacterium aerolatum) (Couradeau et al. 2019) (Table 1; Table S1
for genome source information). Each community has six distinct
taxa (Tg). Amino acid sequences of protein-encoding genes among
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genomes, N, were clustered dependent on shared kmers, and pair-
wise dissimilarity between clustered homologs calculated, with
MMSeqs?2 (Steinegger and Soding 2017) (although other pairwise
comparative methods could be employed, such as all-vs-all BLAST
(Price et al. 2008) or mapping predicted protein-encoding genes
back to custom databases (Galand et al. 2018)). The lower cut-off
E value of homologs clustered by MMSeqs2 was ca. 10~#, which
equates to a false discovery rate of incorrectly assigning a protein-
encoding gene to a group of homologs as roughly 10~* (Steinegger
and Soding 2017). A minimum sequence identity cut-off was not
imposed. Py, H and D were calculated from the proportional sizes
of clustered homologs. The logyo P dissimilarity and Mp are also
reported. The indices Pg, H' and Mp show expected trends of E.
coli < Human Gut < BSC. As mentioned above, D suffers from the
‘large’ numbers of Py here.

While Pg, H and Mp all indicate that BSC has the greatest
functional potential, I argue that the value of Mp lies in its in-
terpretability. Rather than asking an abstract, probability-based
question, it specifically asks how much diversity exists amongst
the observed protein-encoding genes. It is immediately apparent
from the Mp approaching 0 that the protein-encoding genes in the
E. coli group (0.21) are highly similar to each other relative to the
gutand BSC groups, i.e. there is high redundancy, poor biodiversity
and ultimately lower potential for varied functionality.

As the theoretical upper limit of 1 indicates that every protein-
encoding gene is absolutely unique, and the lower limit is effec-
tively 0, the BSC Mp of 0.62 indicates that most of the protein-
encoding genes in this group are either divergent within/between,
or are completely unique to, these six taxa. Py is also quite sim-
ple to interpret, e.g. there are 3 x more unique protein-encoding
genes in the BSC group than the E. coli group. Indeed, while Pg
and Mp provide distinct information, they have a complementary
interpretation—the ca. 3 x more unique protein-encoding genes in
BSC versus E. coli also equates to ca. 3 x more genetic dissimilarity
amongst these genes. In isolation, though, Pz cannot provide in-
formation regarding genetic dissimilarity and/or potential func-
tional redundancy among the six taxa. For example, while the Py
of the BSC group is ca. 50% greater than the gut taxa, Mp is only
marginally higher in the BSC group, and this implies a relatively
greater overlap in general functionality amongst these six free-
living taxa.

In contrast, H' seems to suggest that the functional biodiversity
among six E. coli strains (8.25) is not that dissimilar from the two
groups comprised of distinct prokaryotes (8.87 and 9.29). Due to
the highly non-linear nature of H’, one cannot interpret this dif-
ference as ca. 10% greater diversity in the BSC versus E. coli groups.
H' can only tell us that diversity in BSC is higher than E. coli.

But what about metagenomes?

The following three examples of measuring functional biodiver-
sity are from metagenomes. For specific methods of how metage-
nomic data was processed, please refer to the Supplementary
Methods.

The first example considers changes in taxonomic and func-
tional biodiversity across a steep temperature gradient within a
geothermal hotspring (Ruhl et al. 2022). The original study found
that both Ty (as operational taxonomic units) and Pr (as Pfam
annotated protein-encoding genes) decreased as temperature in-
creased. The bioinformatic approaches used here differed, e.g. all
protein-encoding genes were analysed and not only those that
could be assigned a functional annotation. Even so, the same
strong trends unifying both taxonomic and functional biodiver-
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Table 1. Alpha-diversity index comparisons within three simplistic, in silico communities. Tz = taxonomic Richness; N = total number
of protein-encoding genes compared within the in silico community; Pg, H', D, Logio P dissimilarity and Mp = respectively as Richness,
Shannon, Simpson Evenness, protein dissimilarity and metagenomic diversity indices derived from protein-encoding genes within the

community.

LOglO P
Community Tr N H D dissimilarity Mp
E. coli 6 28 029 5485 8.25 0.999 3.77 0.21
Human Gut 6 20 007 10 456 8.87 0.999 4.06 0.57
Biological Soil Crust 6 26 814 15318 9.29 0.999 4.22 0.62

sity are clear (Fig. 1). Ruhl et al., concluded that the rapid decrease
in taxonomic and functional biodiversity across the gradient was
a consequence of heat-stress selecting for relatively simple com-
munities of thermophilic taxa. Additionally, the thermophilic taxa
were also predicted to have on average smaller genomes than
mesophiles, further contributing to the decreased functional bio-
diversity. From the analyses performed here (Fig. 1), this strong
temperature-dependent trend was apparent regardless of how
taxonomic biodiversity (Tg, H’, D) or functional biodiversity (Pg, H’,
Mp) was considered. Regardless, comparing P between the coldest
and hottest communities, we see that the mesophilic community
has ca. 10 000 more unique protein-encoding genes, equivalent to
a ca. 20% increase in Richness. Similarly, Mp shows that there is
a ca. 15% increase in the genetic diversity with these additional
10 000 unique protein-encoding genes present. However, as above
with the E. coli example, an increase in H’ from 10.77 (hottest) to
10.98 (coldest), or roughly a 1% increase, does not tell us anything
about the underlying relationship between temperature and func-
tional diversity here, other than that mesophilic communities are
more diverse than thermophilic.

Example number two comes from observations during a natu-
ral, annual event: how a dramatic increase in summer daylight
hours gives rise to a bloom of life in the pelagic Arctic Ocean
(Puente-Sanchez et al. 2022). Samples were taken in March, April,
May and June. In early spring a 2 m thick ice-sheet covered the
sea, no photosynthetically active radiation (PAR) could reach the
pelagic communities and integrated chlorophyll a was < 2 mg
m~2. Over time as the season transitioned into summer, ice-
melt was prolific, sea ice was breaking apart and sufficient PAR
had led to > 200 mg m~? integrated chlorophyll a. Neither taxo-
nomic nor functional alpha-diversity indices were reported in this
study, however the seasonal change was marked by strong com-
positional shifts, with photosynthetic Pro- and Eukaryotes, het-
erotrophic Bacteroidota and Pseudomonadota (formerly Proteobacte-
ria) blooming in summer, and a concurrent relative decrease in
Thermoproteota (formerly Thaumarchaeota), Planctomycetota and Ver-
rucomicrobiota (Puente-Sanchez et al. 2022). Derivation of alpha-
diversity indices here showed that overall taxonomic biodiver-
sity decreased in June photosynthetic communities (Fig. 2). De-
spite a lower taxonomic biodiversity, the June communities had
a greater functional biodiversity, likely driven by an enrichment
in functional potential (and the great repertoire of associated ge-
netic machinery) of photosynthetic microorganisms, e.g. Photo-
system I, Photosystem II, carboxysome, Calvin-Benson-Bassham
cycle etc. (Rubin et al. 2015). Previous studies of ecological suc-
cession in oceanic diatom blooms have also demonstrated that,
while a relatively small subset of Bacteroidota and Pseudomon-
adota heterotrophs are enriched alongside photoautotrophs, these
taxa possess diverse carbohydrate active enzymes and broad
oligomer and monomer substrate preferences that target diatom

and cyanobacterial exopolysaccharides (Teeling et al. 2012, Zheng
et al. 2019). It is therefore worth emphasising that trends in tax-
onomic and functional biodiversity are not necessarily linked—
having more unique heterotrophs in March and April, as per the
16S rRNA gene, does not necessarily mean that their genomes
host a greater diversity, or functional potential, of homologous
protein-encoding genes relative to the photosynthetically-active
community and its associated specialist heterotrophs. As with
previous examples, Pz and Mp give complementary information—
June communities have ca. 6 000 more unique protein-encoding
genes with a ca. 7% greater genetic diversity amongst them. H’,
of course, can only tell us that the June communities are more
functionally biodiverse than those in March.

The third and final example involves the successional de-
velopment of soil microbial (and plant) communities after vol-
canic eruptions at the Llaima volcano in Chile (Hernandez et al.
2020a,b). Lava flow had essentially created new substrate for
colonisation at distinct geographical sites around the volcano, al-
lowing for a successional time gradient for comparisons across ca.
50, 250 and 350 years. At the time of sampling, the ‘early’ succes-
sional stage was colonised by lichen-prokaryote symbiotic com-
munities, while the intermediate and latter stages were colonised
by understory plants. Hernandez et al. 2020a,b show that as soils
developed, overall Tr (as operational taxonomic units) increased,
with the early stage strongly dominated by ‘simplistic’ commu-
nities of autotrophic archaeal ammonia oxidisers, Cyanobacteri-
ota, nitrogen, hydrogen and carbon monoxide-fixing Chloroflexota
that transitioned to the more ‘typical’ soil communities domi-
nated by highly diverse heterotrophic Pseudomonadota, Acidobac-
teriota and Actinobacteriota. Here, a significant increase in Tz was
noted at the intermediate successional stage, however commu-
nity Evenness (D) actually decreased by the late successional
stage, as communities shifted from primarily autotrophic to
heterotroph-dominated soil assemblages (Fig. 3). In terms of func-
tional biodiversity, both Pr and Mp identified a decreased func-
tional potential after 371 years of ecological succession. There-
fore, while taxonomic alpha-diversity indices gave somewhat in-
consistent results for overall biodiversity (increased Richness yet
decreased Evenness) the functional genetic information showed
a consistent trend in that functional biodiversity decreased
as the niche-differentiated autotrophic communities were re-
placed by heterotrophs that shared relatively similar functions
for nutrient acquisition and metabolism of plant-derived organic
substrates.

Some technical considerations

While Mp seeks to measure the functional biodiversity of a com-
munity from a different angle (i.e. genetic dissimilarity) than
pre-existing alpha-diversity indices, it remains constrained by
data quality and processing. Larger contigs will improve gene
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Figure 1. Example one, geothermal hotspring temperature biodiversity gradient. Both taxonomic (ribosomal rRNA gene) and functional (all
protein-encoding genes) biodiversity decreases with increasing temperature as stress selects for few heat-adapted taxa with relatively limited
functionality. Linear regression slopes for each index are shown (n = 1 per temperature point). T = taxonomic-marker derived Richness, H' = Shannon,
D = Simpson Evenness, P = protein Richness, Mp = metagenomic diversity derived from genetic (dis)similarity of all protein-encoding genes.
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Figure 2. Example two, seasonal comparison of Arctic Ocean communities as they transition from spring into summer. Increased daylight during the
summer month of June drives a decrease in taxonomic (ribosomal rRNA gene) biodiversity as communities become dominated by photosynthetic
organisms and a subset of specialist heterotrophs. However, functional (all protein-encoding genes) biodiversity is greater in the photosynthetic
communities. Results of significance testing with gamma-distributed general linear models are shown where April, May or June differed from March. n
= 3 for March, n = 1 for April, n = 2 for May and n = 2 for June. (*) P < 0.05 (**) P = 0.001 (***) P < 0.001. Tr = taxonomic-marker derived Richness, H' =
Shannon, D = Simpson Evenness, Px = protein Richness, Mp = metagenomic diversity derived from genetic (dis)similarity of all protein-encoding genes.
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communities are replaced by soil organoheterotrophs after 371 years. Results of significance testing with gaussian-distributed general linear models
are shown where mid or late successional stages differed from the earliest sampled stage. (*) P < 0.05 (**) P = 0.001 (**) P < 0.001. n = 3 per
successional stage. Tg = taxonomic-marker derived Richness, H' = Shannon, D = Simpson Evenness, Pr = protein Richness, Mp = metagenomic

diversity derived from genetic (dis)similarity of all protein-encoding genes.

prediction and clustering, potentially yielding ‘more accurate’
alpha-diversity indices, and so direct comparisons between Mp
values should share assembly software, parameters etc. Similarly,
the parameters used to cluster protein-encoding genes as ho-
mologs must also be consistent (who should be considered as be-
longing to a leaf on the same tree?) as these cutoffs are essential to
how the pair-wise genetic dissimilarities are calculated. Secondly,
due to redundancy in the genetic code, amino acid sequences are
better reflective of actual protein function than nucleic acid se-
quences (Wang et al. 2013). Therefore, I suggest that amino acid
sequences should preferentially be analysed when the overall goal
is to investigate meaningful relationships in how functional bio-
diversity may inform actual BEF relationships. Thirdly, while Mp
is less sensitive to N (i.e. total observations) than Py or H', it is
not a perfectly proportional metric bounded between 0 and 1, and
so rarefying or randomly subsampling to a shared N will improve
comparability between samples within similar ecosystems. Inter-
estingly, unlike Pz and H', Mp actually has a negative relationship
with increasing N, which shows that it is redundancy/high simi-
larity between genes that primarily drives Mp downwards. Thus, a
sample with N = 2 M may be resequencing/re-observing the same
genes over and over, which will lower Mp relative to the same sam-
ple with N = 1 M. Finally, deriving Mp from host-associated com-
munities may prove tricky—any ‘contaminant’ host genetic ma-
terial that is sequenced alongside its microbiota will affect how
Mp is calculated. While pre-existing pipelines remove human-
associated genetic material (Uritskiy et al. 2018) this would not
be sufficient for deriving Mp from, for example, a root endophyte
community.

A future for microbial diversity metrics

The suggested Mp is by no means meant to replace pre-existing
alpha-diversity metrics, nor will it be the last proposed metric.
However, going into the future, the following points are worth
considering. As most protein-encoding genes from environmental
sources cannot currently be annotated (Nayfach et al. 2021), func-
tional biodiversity studies should not be limited to only analysing
the relatively small fraction of genes that can currently be anno-
tated. Galand et al. (2018) demonstrate this point very well. There
are many ways one can compare the (dis)similarity of protein-
encoding genes without resorting to annotation, for example lo-
cal alignment-based (Schloss and Handelsman 2008) or kmer-
based techniques (Steinegger and Soding 2017). Furthermore, the
leap between determining a relationship between functional bio-
diversity and measurable ecosystem function is vast (Petchey and
Gaston 2006) and fraught with many conflicting concepts. When
only a subset of taxa are active at any one time (Shi et al. 2011),
and indeed a lot of environmental DNA comes from necromass
(Carini et al. 2017) and a non-negligible amount of genetic mate-
rial may represent ‘pseudo-genes’ (Goodhead and Darby 2015), it
is understandable to question the usefulness of deriving an alpha-
diversity index for functional biodiversity. Care must also be taken
not to conflate concepts of ‘functional biodiversity’, i.e. as de-
scribed throughout this Perspective piece, with ‘functional traits’
(Escalas et al. 2019), which are an emergent property from col-
lections of specific genes and/or gene variants, e.g. methanogen-
esis, maximum growth rate, copiotrophic or stress tolerant life-
strategies etc. (Krause et al. 2014, Malik et al. 2020, Westoby et al.
2021). Once again, alpha-diversity indices provide information on



only one piece of our biological puzzles, and must be considered
within a greater context and systems-based understanding when
investigating why communities ‘are as they are and do what they
do’. Here they serve a useful explanatory purpose as a quantifi-
able summary of functional potential, with the benefit of Mp lying
in its simple interpretability, comparability between communities
as a bounded metric, and that it tries to more directly address the
gap between microbial metagenomic information and the overall
BEF. Despite the abovementioned hurdles that must be considered
and/or overcome, sensible, quantitative metrics that explain BEF
relationships are a worthy goal to strive toward as they have the
potential to model and predict (un)desirable ecosystem functions
in the world around us.
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