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SUMMARY

For randomized clinical trials where a single, primary, binary endpoint would require unfeasibly large
sample sizes, composite endpoints (CEs) are widely chosen as the primary endpoint. Despite being com-
monly used, CEs entail challenges in designing and interpreting results. Given that the components may
be of different relevance and have different effect sizes, the choice of components must be made carefully.
Especially, sample size calculations for composite binary endpoints depend not only on the anticipated
effect sizes and event probabilities of the composite components but also on the correlation between
them. However, information on the correlation between endpoints is usually not reported in the literature
which can be an obstacle for designing future sound trials. We consider two-arm randomized controlled
trials with a primary composite binary endpoint and an endpoint that consists only of the clinically more
important component of the CE. We propose a trial design that allows an adaptive modification of the
primary endpoint based on blinded information obtained at an interim analysis. Especially, we consider a
decision rule to select between a CE and its most relevant component as primary endpoint. The decision
rule chooses the endpoint with the lower estimated required sample size. Additionally, the sample size
is reassessed using the estimated event probabilities and correlation, and the expected effect sizes of the
composite components. We investigate the statistical power and significance level under the proposed
design through simulations. We show that the adaptive design is equally or more powerful than designs
without adaptive modification on the primary endpoint. Besides, the targeted power is achieved even if the
correlation is misspecified at the planning stage while maintaining the type 1 error. All the computations
are implemented in R and illustrated by means of a peritoneal dialysis trial.
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1. INTRODUCTION

Composite endpoints (CEs) are frequently used in randomized controlled trials (RCTs) to provide a
more comprehensive characterization of patients’ response than when using a single endpoint. For exam-
ple, major adverse cardiovascular events in cardiovascular disease, where the CE includes death, stroke,
myocardial infarction, or revascularization is commonly used for time-to-event endpoints (Gerstein and
others, 2021) and binary endpoints (Cordoba and others, 2010). The use of CEs can also improve the power
in situations where the incidence rates of the individual components are too low to achieve adequate power
with feasible sample sizes and trial durations. The combination of several components into a CE provides
then a solution by increasing the incidence rate of the primary endpoint. However, using CEs comes with
a cost. The interpretation becomes more complex, especially when components have different effect sizes
and different event probabilities. Moreover, if the treatment has only an effect in some components, the
effect size of the composite will be diluted. When a CE is used as primary endpoint, regulatory agencies
require to analyze in addition all components separately as secondary endpoints (FDA, 2017; EMA, 2017;
Mao and Kim, 2021). In particular, it is necessary to assess the effects of the most relevant component
under study. When designing a trial with a CE, sample size calculation is especially challenging since it
requires the anticipation of event probabilities and effect sizes of the components of the CE as well as
the correlation between them. While the marginal effect size of each component is usually known, the
correlation is often not reported.

In the context of peritoneal dialysis, the binary CE major adverse peritoneal events (MAPE) has
been recently proposed (Boehm and others, 2019). This endpoint combines three individual components:
(i) peritonitis, (ii) peritoneal membrane deterioration, and (iii) technical failure; where peritonitis and
peritonitis membrane deterioration endpoints are considered clinically more relevant. Given that this CE
is relatively new, there is only limited data as basis for sample size calculations available. So, under
which circumstances is it best to consider the CE MAPE in terms of power of the trial? Or how could we
design the trial robustly to possible deviations from the anticipated correlation? In this work, we aim at
addressing both questions. We propose a design in which the decision of whether it is better to consider
the CE or its most relevant component as the primary endpoint is reevaluated by choosing the endpoint
with the smaller required sample size. Based on this choice, the sample size is recalculated, incorporating
correlation information estimated at an interim analysis if necessary. Adaptations to endpoint selection
and, in particular, designs that allow adaptive modification of the primary endpoint based on interim
results are discussed in the Food and Drug Administration guidance on adaptive designs (FDA, 2017,
2019). Regulatory agencies require the adaptation rule to be planned before the data become available
and the use of appropriate statistical methods to ensure that the type 1 error is controlled.

In trials with multiple endpoints of interest, the testing strategy can either be based on a single endpoint
(and thus consider the rest as secondary endpoints), combining all the endpoints in a CE, or considering
a multiple test using all the endpoints. The choice of the primary CE based on the trial’s efficiency has
been addressed by several authors. Lefkopoulou and Ryan (1993) compared the use of multiple primary
endpoints to a CE by means of the Asymptotic Relative Efficiency (ARE) between the corresponding
hypothesis tests. Gómez and Lagakos (2013) and Bofill Roig and Gómez Melis (2018) proposed the ARE
as a method to choose between a CE or one of its components as primary endpoint for comparing the
efficacy of a treatment against a control in trials with survival data and binary data, respectively. Sozu and
others (2016) evaluated the efficiency of the trial depending on the number of endpoints considered.

Several authors have proposed different approaches to size trials with several endpoints as primary.
Sozu and others (2010) discussed sample size formulae for multiple binary endpoints. As it is known,
a major difficulty in the sample size calculation is that sometimes the required information depends on
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nuisance parameters or highly variable parameters. In trials with multiple endpoints, the required sample
size depends on the correlation among the considered endpoints and needs to be taken into account
in sample size calculations (FDA, 2017; EMA, 2017). However, the correlation between endpoints is
usually unknown and often not reported in the literature which can be an obstacle for sound trial design.
Several authors showed, that the correlation has a large impact on the required sample size when using
multiple coprimary and composite binary endpoints (Sozu and others, 2010; Bofill Roig and Gómez Melis,
2019). One way to address this problem may be to consider an interim analysis to estimate unknown
parameters, in particular, the correlation. Existing work in this context has mainly focused on trials with
multiple endpoints. Kunz and others (2017) approached the sample size calculation of trials with multiple,
correlated endpoints. They proposed estimators for the covariance and the correlation based on blinded
data obtained at an interim analysis. Sander and others (2017) considered trials in which the CE and its
most relevant component are two primary endpoints. They proposed an internal pilot study design where
the correlation between the statistics for the CE and the most relevant component is estimated in a blinded
way at an interim stage and where the sample size is then revised accordingly. Surprisingly, less attention
has been given to the estimation of the correlation between the components of CEs per se and sample size
reassessment in trials with primary CEs.

In this article, we propose a trial design that allows an adaptive modification of the primary endpoint
based on blinded information obtained at an interim analysis and recalculates the sample size accordingly.
If the primary endpoint is decided to be the CE, then the sample size reassessment incorporates the
information of the estimated correlation. We focus on a two-arm RCT with a primary composite binary
endpoint defined by two components, of which one is considered clinically more relevant. In Section 2,
we present the problem setting and our main objectives. In Section 3, we propose the adaptive design with
endpoint modification. We first introduce the decision rule used to adaptively select the primary endpoint.
Then, we discuss how this decision rule is computed based on blinded data and the subsequent sample
size recalculation. In Section 4, we extend the proposed design for trials with CEs of more than two
components and more than two arms. In Section 5, we apply our methods to Peritoneal Dialysis trials.
Furthermore, in the Supplementary material available at Biostatistics online, we present an R package
in which the methodology has been implemented and include an additional example in the context of
cardiology trials in which the R code is provided as a tutorial. We performed a blinded selection of the
primary endpoint using the observed data from a conducted trial. In Section 6, we evaluate the operating
characteristics of the adaptive design. We finish with a short discussion.

The R code to implement the proposed methods and reproduce the results of this article is available at
https://github.com/MartaBofillRoig/eselect.

2. NOTATION, HYPOTHESES, AND TRIAL DESIGNS

Consider an RCT designed to compare two treatment groups, a control group (i = 0) and an intervention
group (i = 1), each composed of n(i) individuals, and denoting by n = n(0) + n(1) the total sample size and
by π = n(0)/n the allocation proportion to the control group. Assume two events of interest, say ε1 and
ε2, and assume that there is one event (say ε1) which is more relevant for the scientific question than the
other. Let Xijk denote the response of the kth binary endpoint for the jth patient in the ith group (i = 0, 1,
j = 1, ..., n(i), k = 1, 2). The response Xijk is 1 if the event εk has occurred during the follow-up and 0
otherwise. Let p(i)

k represent the probability that εk occurs for a patient belonging to the ith group. Let

ORk = p(1)
k /q(1)

k

p(0)
k /q(0)

k

denote the odds ratio for the kth endpoint, where q(i)
k = 1 − p(i)

k (i = 0, 1, k = 1, 2).

Define the binary CE as the event that occurs whenever one of the endpoints ε1 and ε2 is observed, that
is, ε∗ = ε1 ∪ ε2. Denote by Xij∗ the composite response defined as:

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac040#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac040#supplementary-data
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Xij∗ =
{

1, if Xij1 + Xij2 ≥ 1

0, otherwise.

Let p(i)
∗ be the event probability of the CE, p(i)

∗ = P(Xij∗ = 1), and OR∗ be the odds ratio for the CE ε∗.
We denote by p̂(i)

k the estimated probability of response for the kth binary endpoint in group i, that is,

p̂(i)
k = 1

n(i)

∑n(i)

j=1 Xijk = 1 − q̂(i)
k .

2.1. Trial design using the composite endpoint

Assume that initially the trial is planned with the CE ε∗ = ε1 ∪ ε2 as the primary endpoint. The hypothesis
to be tested is the null hypothesis of no treatment difference in the CE H∗ : OR∗ = 1 against the alternative
hypothesis of a risk reduction in the treatment group, K∗ : OR∗ < 1. We test H∗ using the test statistic
T∗,n, given by:

T∗,n = log(ÔR∗)√
1

n(0) p̂(0)∗ q̂(0)∗
+ 1

n(1) p̂(1)∗ q̂(1)∗

. (2.1)

This statistic is asymptotically N (0, 1) under H∗ and we reject the null hypothesis if T∗,n < zα , where zx

denotes the quantile of the standard normal distribution (Chow and others, 2017). Then the sample size
needed to achieve a power of 1 − β given a significance level α is

N∗(p(0)
∗ , OR∗) =

(
zα + zβ

log(OR∗)

)2
(

1

p(0)∗ (1 − p(0)∗ )
+ 1(

1−π

π

)
p(1)∗ (1 − p(1)∗ )

)
. (2.2)

Thus, to size a trial with a CE as primary endpoint, we need to specify the probability of an event in the
CE in the control group and the odds ratio. If information on the parameters of the joint distribution of the
components is available, the distribution of the CE can be derived (Bofill Roig and Gómez Melis, 2019).
Specifically, the event probability of the CE in the ith group, p(i)

∗ , is determined by the probabilities of the
components, p(i)

1 and p(i)
2 , and Pearson’s correlation coefficient between the components, ρ, as follows:

p(i)
∗ = 1 − q(i)

1 q(i)
2 − ρ

√
p(i)

1 p(i)
2 q(i)

1 q(i)
2 (2.3)

The odds ratio for the CE, OR∗ = OR∗(p
(0)

1 , p(0)

2 , OR1, OR2, ρ), can be expressed as function of the
odds ratios OR1, OR2, the event probabilities in the control group, p(0)

1 , p(0)

2 , and the correlation ρ

(see the Supplementary material). Note, however, that in both cases, to compute p(i)
∗ (in (2.3)) and

OR∗(p
(0)

1 , p(0)

2 , OR1, OR2, ρ), we make the underlying assumption that the correlation between the compo-
nents is the same in the treatment and control groups. Although we focus on the correlation in this work,
other association measures can be used instead. In the Supplementary material, we present different asso-
ciation measures, such as the relative overlap and conditional probability, and establish the relationship
between them and the correlation so that one can move from one to the other depending on what is easier
to anticipate. More details regarding the assumption of equal correlations across arms are given in the
Supplementary material.

As a consequence, the required sample size N∗(p(0)
∗ , OR∗) can be computed based on p(0)

∗ , given in (2.3),
and OR∗, given in equation (1) in the Supplementary material. With a slight abuse of notation, we refer
to the sample size computed by means of the components’ parameters as N∗(p

(0)

1 , p(0)

2 , OR1, OR2, ρ).

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac040#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac040#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac040#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac040#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac040#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac040#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac040#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac040#supplementary-data
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2.2. Trial design using the most relevant endpoint only

The null and alternative hypotheses related to the most relevant endpoint (RE) of the composite compo-
nents, ε1, are H1 : OR1 = 1 and K1 : OR1 < 1. Similar to the composite design, let T1,n be the statistic to
test H1, defined by

T1,n = log(ÔR1)√
1

n(0) p̂(0)
1 q̂(0)

1

+ 1

n(1) p̂(1)
1 q̂(1)

1

. (2.4)

As above, T1,n is asymptotically N (0, 1) under H1, and the null hypothesis H1 is rejected if T1,n < zα . The
sample size N1(p

(0)

1 , OR1) required to achieve a power of 1 − β at a one-sided significance level of α is
given by (2.2) replacing p(0)

1 and OR1 by p(0)
∗ and OR∗, respectively.

3. Adaptive design WITH ENDPOINT MODIFICATION

3.1. Decision rule based on the ratio of sample sizes

We propose a trial design that allows modifying adaptively the primary endpoint based on blinded infor-
mation obtained at an interim analysis or at the end of the trial. The decision rule to select the endpoint to
be used as the primary endpoint chooses the endpoint with the lower estimated required sample size. Let
d(·) denote the ratio of the required sample size for each of the designs, given by

d(p(0)

1 , p(0)

2 , OR1, OR2, ρ) = N1(p
(0)

1 , OR1)

N∗(p
(0)

1 , p(0)

2 , OR1, OR2, ρ)
, (3.5)

where N1(·) and N∗(·) are the sample sizes for the RE and CE introduced in Sections 2.1 and 2.2, respec-
tively. Note that this ratio depends also on α and β. Now, the decision rule to select the primary endpoint
is as follows: If d(·) < 1, use the most RE as the primary endpoint; if d(·) ≥ 1 the CE is chosen.

3.2. Estimation of the sample size ratio based on blinded data

In order to estimate the sample size ratio of the designs with the most RE and the CE, we use the blinded
data obtained either at the interim analysis or the end of the trial. Specifically, we derive estimates of
the event probabilities of the components in the control group and their correlation. Besides the blinded
(interim) data, the estimates are based on the a priori assumptions on the effect sizes.

Suppose that the blinded analysis, using the pooled sample, is based on a sample of size ñ, where ñ
could be the total sample size initially planned (ñ = n) or a proportion of it used at an interim stage
(ñ = ω · n, with 0 < ω < 1). Also, suppose that the proportion of patients assigned to the control group
based on this sample is the same as the one expected at the end of the trial, that is, π = n(0)/n = ñ(0)/ñ,
where ñ(0) is the sample size in the control group in the blinded data. Based on the observed responses
in the pooled sample, we estimate the probabilities p1, p2, and p∗, where pk = πp(0)

k + (1 − π)p(1)

k for
k = 1, 2, ∗ and π = n(0)/n. Assuming that the expected effects for the components (OR1 and OR2) have
been prespecified in advance, we obtain estimates of the probabilities of each composite component under
the control group p(0)

1 , p(0)

2 and subsequently the estimates of the probabilities under the treatment group
p(1)

1 , p(1)

2 . Taking into account expression (2.3) and using the estimated probabilities for each composite
component in each group (p̂(0)

1 , p̂(0)

2 , p̂(1)

1 , p̂(1)

2 ) and the estimated pooled event probability of the CE (p̂∗),
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Fig. 1. Flow diagram of the adaptive design (AD). The steps involved in adaptive design (AD). are illustrated in grey
boxes. In the white boxes, there are the necessary inputs, and explanations and outputs are in dotted white boxes. The
R functions to compute the corresponding steps are on the right side (see Section 5 of the Supplementary material
available at Biostatistics online). Here p(0)

1 , p(0)
2 , OR1, OR2 denote the design parameters for the endpoints ε1 and

ε2 and ρ is the correlation between ε1 and ε2 used for the calculation of the initial sample size, n; p̂(0)
1 , p̂(0)

2 denote
the estimated event probabilities in control group for ε1, ε2 and ε∗ = ε1 ∪ ε2 and p̂k is the estimated pooled event
probability of εk (k = 1, 2, ∗) based on the blinded sample n; N1 and N∗ denote the sample sizes for endpoint ε1 and
ε∗ (see Sections 2.1 and 2.2), respectively; and d(·) is the decision function (see Section 3).

the correlation is estimated by

ρ̂ = p̂∗ − ñ(0)

ñ (1 − q̂(0)

1 q̂(0)

2 ) − ñ(1)

ñ (1 − q̂(1)

1 q̂(1)

2 )

− ñ(0)

ñ

√
p̂(0)

1 p̂(0)

2 q̂(0)

1 q̂(0)

2 − ñ(1)

n

√
p̂(1)

1 p̂(1)

2 q̂(1)

1 q̂(1)

2

,

where q̂(i)
k = 1 − p̂(i)

k , and ñ(i) is the sample size in group i in the blinded data. Based on these estimates
we then compute the sample size ratio d(p̂(0)

1 , p̂(0)

2 , OR1, OR2, ρ̂) to select the endpoint.
The diagram in Figure 1 exemplifies the adaptive design if initially the CE is chosen as the primary

endpoint. Note that in order to calculate the initial sample size for the CE, assumptions regarding the
parameters’ values determining the sample size have to be made.

3.3. Sample size reassessment

After the endpoint has been selected based on the estimates p̂(0)

1 , p̂(0)

2 , ρ̂, evaluated from the blinded
data, in addition the sample size can be recalculated. When the CE is selected, the target sample size,
computed from the above estimates and based on the prespecified effect sizes OR1, OR2, is given by

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac040#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac040#supplementary-data
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N∗(p̂
(0)

1 , p̂(0)

2 , OR1, OR2, ρ̂). Because the overall sample size cannot be smaller than the number of already
recruited patients, the sample size reassessment rule is given by

na = max{ñ, N∗(p̂
(0)

1 , p̂(0)

2 , OR1, OR2, ρ̂)},
where ñ denotes the number of patients recruited so far.

If, in contrast, the most RE component is chosen as primary endpoint, the sample size can be reassessed
to aim at a power of 1−β for this endpoint. The sample size calculation is based on the prespecified effect
size OR1 and the estimated event probability p̂(0)

1 . Thus, in this case the sample size reassessment rule is
given by na = max{ñ, N1(p̂

(0)

1 , OR1)}.
If the selection is made at the interim analysis, ñ < n and therefore the recalculation could result in a

reduction of the initially planned sample size. In contrast, if the selection is made at the planned end of
the trial, ñ = n, the sample size can either remain unchanged or can be increased if required.

3.4. Considerations for choosing the timing of the interim analysis

As usual in adaptive trials, the timing of the interim analysis has to be fixed independently of the observed
data and described in the trial protocol. For the proposed design, a reasonable strategy is to consider as
initial sample size the minimum between the sample size for the RE and the CE assuming a correlation
of 0, that is,

ñ = min{N1(p
(0)

1 , OR1), N∗(p
(0)

1 , p(0)

2 , OR1, OR2, ρ = 0)}.

For correlation equals zero, the required sample size for the CE is the smallest (assuming that only
non-negatively correlated components are possible) (Bofill Roig and Gómez Melis, 2019). Therefore, a
reasonable strategy would be to fix the design as follows. First, conduct the selection of the endpoint based
on blinded data after ñ subjects. Then, reassess the sample size according to the rule defined in Section
3.3. If the reassessed sample size is smaller than ñ, stop the trial and conduct the final (unblinded) analysis
of the data. Otherwise, expand the trial with further subjects as needed and conduct the final (unblinded)
analysis of the selected endpoint na. The maximum sample size is bounded by the maximum sample size
coming from the sample size calculation for the RE and CE assuming the largest possible correlation.

4. EXTENSION TO MORE THAN TWO COMPONENTS AND MORE THAN TWO ARMS

In this section, we address the recursive selection of the primary endpoint for more than two components
and discuss the extension to more than two arms.

4.1. CEs with more than two components

Consider now a trial with K potential endpoints of interest. We assume that they differ in importance and
can be ordered according to their importance. Let ε1, . . . , εK denote the endpoints ordered by decreasing
importance. Let p(0)

k and ORk denote the event probabilities in the control group and the effect size for
the endpoint εk (k = 1, ..., K). In the planning phase of the RCT, assumptions on the event probabilities,
effect sizes, and correlation values are made to obtain an initial sample size estimate.

The procedure to select the primary endpoint and recalculate the sample size accordingly for K
components is based on the following algorithm:

Step 1: Compare the required sample size for the endpoint ε1 and the composite of the first
and second endpoints, ε∗,2 = ε1 ∪ ε2 and compute the sample size ratio based on the estimated
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probabilities and assumed effect sizes, p̂(0)

1 , p̂(0)

2 , OR1, OR2 and the estimated correlation between
ε1 and ε2, denoted by ρ̂∗,2. If d(p̂(0)

1 , OR1, p̂(0)

2 , OR2, ρ̂∗,2) ≥ 1, then compute the event probability
and effect size of the CE, ε∗,2, denoted by p̂(0)

∗,2 and OR∗,2 and continue with the next step. Otherwise,
select ε1 and go to Step K .

Steps i = 2, ..., K − 1: Compare the efficiency of using ε∗,i over ε∗,i+1 = ε∗,i ∪ εi+1.
Compute the sample size ratio based on p̂(0)

∗,i , OR∗,i, computed in the previous step, and p̂(0)

i+1, ORi+1,
and the estimated correlation between ε∗,i and εi+1, here denoted by ρ̂∗,i+1.
If d(p̂(0)

∗,i , p̂(0)

i+1, OR∗,i, ORi+1, ρ∗,i+1) ≥ 1, then compute the parameters of the CE ε∗,i+1 and go to
Step i + 1. Otherwise, select ε∗,i and go to Step K .

Step K: Reassess the sample size based on the selected endpoint.

Using this recursive method, we only need the anticipated values of event probabilities in the control and
effect sizes of the components (ε1, . . . , εK ). If the CE is selected in the step i, this endpoint is considered as
a component for the composite considered in the next step. For this reason, the corresponding parameters
are recalculated and considered as anticipated values of the components in the next iteration.

4.2. Trials with more than two arms

Consider a multiarmed RCT comparing the efficacy of M treatments to a shared control treatment using
the binary CE ε∗ = ε1 ∪ ε2. We test the M individual null hypotheses H (m)

∗ : OR(m)
∗ = 1 against the

alternative K (m)
∗ : OR(m)

∗ < 1 for each arm m (m = 1, . . . , M ), where OR(m)
∗ denotes the odds ratio for the

CE in the mth treatment arm.
Denoting the test statistics (2.1) to compare treatment m against control by T (m)

∗,n , as before we have that
asymptotically T (m)

∗,n ∼ N (0, 1). We reject the null hypothesis if T (m)
∗,n < zα/M , adjusting the threshold to

account for the multiplicity of treatment arms. To size the trial, suppose that the expected effect size for
the components is the same in all treatment arms, that is, ORk = OR(m)

k for all m (k = 1, 2). Additionally,
as we did before, assume that the correlation between the components is equal across arms, ρ = ρ(m) for
all m. Note that this implies that OR∗ = OR(m)

∗ for all m. For each individual comparison, the sample size
is N∗(p(0)

∗ , OR∗) as described in Section 2, and as the trial considers a shared control the total sample size
for the trial is:

N∗,M (p(0)
∗ , OR∗) = N∗(p(0)

∗ , OR∗) · (M − (M − 1) · π),

where π is the allocation proportion to the control group. The sample size for the multiarmed RCT can
then be determined by means of the same set of parameters (p(0)

1 , p(0)

2 , OR1, OR2, ρ).
For the most RE, the null and alternative hypotheses for treatment m are H (m)

1 : OR(m)

1 = 1 and
K (m)

1 : OR(m)

1 < 1. Consider the test statistics T (m)

1,n to compare treatment m against control, which
is asymptotically N (0, 1) under H (m)

1 and reject H (m)

1 if T (m)

1,n < zα/M . Assuming the effect sizes to
be equal across arms, OR1 = OR(m)

1 , the total sample size for the trial would be N1,M (p(0)

1 , OR1) =
N1(p

(0)

1 , OR1) · (M − (M − 1) · π), where N1(p
(0)

1 , OR1) is the required sample size for each individual
comparison.

The sample size ratio d(·) is then reduced to the same as used in (3.5), and the adaptive design proposed
in Section 3 can then be applied analogously as for the case of a two-armed trial. Hence, if d(·) > 1, the
design for testing the efficacy using the most RE(s) is chosen, otherwise the CE is, and in either case, we
recalculate the sample size using the event probability and the correlation estimates. As the same effects
are assumed for all arms, the same procedure can also be used to estimate the probabilities under the
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treatment group and the correlation. This assumption allows the estimates to be blinded and permits the
selection of the primary endpoint to be the same for all arms. However, if we relax these assumptions,
it could result in different selection strategies, e.g., maximizing the minimum power across all arms or
partly unblinding the data (blind pooling treatment data if arms are not finishing at the same time like in
multi-arm platform trials).

5. MOTIVATING EXAMPLE IN PERITONEAL DIALYSIS TRIALS

Consider a trial in peritoneal dialysis with the primary endpoint MAPE, defined as the CE of peritonitis
and peritoneal membrane deterioration (ε1) and technical failure (ε2). MAPE initially consists of three
components, but we grouped peritonitis and peritoneal events together for the sake of illustration. Also,
the endpoint of peritonitis and peritoneal membrane deterioration is considered as the most RE that could
serve as sole primary endpoint. Table 1 summarizes the considered endpoints.

Boehm and others (2019) reported event probabilities of the individual endpoints and combinations
thereof. We use these estimated event probabilities as estimates for the event probabilities in the con-
trol group at the design stage of the trial (see Table 1). We discuss the efficiency of using MAPE
(ε∗ = ε1 ∪ ε2) over the endpoint of peritonitis and peritoneal membrane deterioration (ε1) alone and
illustrate the design with adaptive selection of the primary endpoint at the interim analysis and sample size
reassessment.

In Figure 2(a), we depict the sample size required for MAPE with respect to the correlation between
ε1 and ε2, and the sample size if only using ε1, both based on the parameters assumed at the design stage
(Table 1). We can observe that the sample size increases with respect to the correlation. In Figure 2(b), we
show the power of the trial when using a fixed design with the endpoint MAPE, ε∗, as primary endpoint,
assuming that the correlation equals 0, a fixed design with the most RE ε1, and when using the proposed
adaptive design. We notice that the adaptive design allows to maintain the power of the trial at 0.80 and
is superior to the power obtained when using the fixed design. The decision rule of the adaptive design
is such that it selects the endpoint that requires the smallest estimated sample size. Furthermore, if this
sample size does not result in the desired power, it is readjusted based on information from the interim
analysis. So when the estimated correlation is lower than 0.2, the adaptive design typically selects the CE
as primary endpoint and recomputes the sample size using the estimated correlation. When the estimated
correlation is larger or equal than 0.2, then the most RE is selected and the sample size is reassessed
accordingly.

6. SIMULATION STUDY

6.1. Design and main assumptions

We simulate the statistical power and significance level under different scenarios and consider two-arm
RCTs with two binary endpoints and parameters as given in Table 2. The correlation between the end-
points is assumed to be equal for both groups. Since the range of possible correlations depends on
(p(0)

1 , p(0)

2 , OR1, OR2), scenarios in which the correlation is not within the valid range are discarded.
We compare the actual type 1 error rate and power of the proposed adaptive design with fixed designs

using the RE or CE as primary endpoint. Specifically, we consider the following designs:

• Adaptive design: trial design whose primary endpoint is adaptively selected between the CE and
the most RE based on blinded data.

• Composite endpoint (CE) design: trial design without adaptive modification of the primary
endpoint. The primary endpoint is the CE of ε1 and ε2.
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Table 1. Endpoints in peritoneal dialysis. Event probability and odds ratios for peritonities and
peritoneal membrane deterioration and Technical failure endpoints. The event probabilities of the
individual endpoints are based on results in Boehm and others (2019). The odds ratio for ε1 and the
event probability and odds ratio for the MAPE endpoint were computed assuming zero-correlations
between the components of the composite endpoint

Endpoint Event probability Odds ratio

Individual Peritonities and peritoneal membrane deterioration (ε1) 0.615 0.52
endpoints: Technical failure (ε2) 0.15 0.66

Composite Major adverse peritoneal events (MAPE) 0.703 0.50
endpoint: (ε1 ∪ ε2)
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Fig. 2. Sample size and power depending on the design and the correlation between the endpoint of peritonitis and
peritoneal membrane deterioration (ε1) and technical failure (ε2). (a) Initial sample size when using the trial design
with the most relevant endpoint of peritonitis and peritoneal membrane deterioration (RD), or with the composite
endpoint Major Adverse Peritoneal Events (CD). (b) Power when using the fixed design with the most relevant
endpoint of peritonitis and peritoneal membrane deterioration (RD), fixed design with the Major Adverse Peritoneal
Events (CD), and the AD.

• Relevant endpoint (RE) design: trial design without adaptive modification of the primary endpoint.
The primary endpoint is the most RE (ε1).

We differentiate between two types of designs: those with selection of the components of the CE at the end
of the study and those with selection at interim analysis. In the first, the selection is based on blinded data
at the preplanned end of the trial, using the total sample size planned at the design stage. In the second,
we select the primary endpoint based on blinded information obtained at an interim analysis after 50% of
the observations are available. We consider designs with and without sample size recalculation after the
interim analysis.
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Table 2. Settings and trial designs for the simulation. Left side of the table: Parameters values used in
the simulation, where (p(0)

1 , p(0)

2 , OR1, OR2) denote the parameters for the endpoints ε1 and ε2, ρ is the
correlation between the endpoints, ω is the percentage of initial sample size used for the estimation
and decision rule computation, and α and 1 − β refer to the significance level and power. Right side
of the table: Trial designs considered for the simulation, including: the sample size specification for the
initial calculation, whether it was based on relevant endpoint (RE) or composite endpoint (CE); and, in
the case of the adaptive design, at which point in the trial the endpoint selection is made and whether
sample size recalculation is considered

Parameter settings Trial designs
Parameter Values All designs Adaptive design

Initial Endpoint selection Sample size
sample size reassessment

p(0)
1 0.1, 0.2 RE At the end of the study No

OR1 0.6, 0.8, 1 CE At the interim analysis Yes
p(0)

2 0.1, 0.25 RE At the interim analysis No
OR2 0.75, 0.8, 1
ρ 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8
ω 0.5, 1.0
α 0.05
1 − β 0.80

In trials with endpoint selection at the end of the study or at interim but without recalculation of sample
size, the planned sample size n is calculated to have 0.80 power to detect an effect of OR1 on the most RE
at significance level α = 0.05. We use this sample size for the three designs being compared. Therefore,
the CE in this case is intended to be used only if it leads to an increase in power to the study. On the
other hand, the (initial) sample size n for those trials with sample size reassessment is calculated to have
0.80 power to detect an effect of OR∗ on the CE at significance level α = 0.05, where p(0)

∗ , OR∗ used
for the sample size calculations are computed based on the components’ parameters (p(0)

1 , p(0)

2 , OR1, OR2)
and assuming correlation equal 0. Therefore, in this case, the adaptive design serves to readjust the values
anticipated in the design for the CE if the components are correlated, and to compare the efficiency of
the design compared to its most relevant component, and thus to change the primary endpoint if the CE
is less efficient. We summarize in Table 2 the trial designs considered for the simulation study.

For each combination (p(0)

1 , p(0)

2 , OR1, OR2, ρ), we simulated 1 00 000 trials of size n according to each
design (AD, CE design, and RE design). To evaluate the power, we considered the alternative hypothesis
H1 in which OR1, OR2 < 1 (and therefore OR∗ < 1). We simulated based on the values assumed in the
design for OR1, OR2 and the resulting OR∗ computed based on the parameters (p(0)

1 , p(0)

2 , OR1, OR2, ρ).
To evaluate the type 1 error rate, the same set of scenarios were considered as for the power in terms of
the values used for the sample size calculation but we simulated under the global null hypothesis H0 so
OR1 = OR2 = 1 (and therefore OR∗ = 1). The total number of scenarios is 1166.

6.2. Selection at the end of the trial

As expected, for the scenarios under the alternative hypotheses the powers when using the RE design
have mean 0.80, as the sample sizes were calculated for this endpoint. The powers when using the CE
design range from 0.60 to 1.00 with mean 0.85. With the adaptive design, the powers take values between
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0.80 and 1.00, and have mean 0.88. Results are summarized in Figure 2 in the Supplementary material
available at Biostatistics online.

To illustrate the properties of the adaptive design, consider a specific scenario (see Figure 3). For a
given combination of (p(0)

1 , p(0)

2 , OR1, OR2), we plot the empirical power for each design (adaptive design,
CE design, and RE design) for different correlations ρ. The colors in the power plots indicate which
endpoint is optimal for the given parameters p(0)

1 , p(0)

2 , OR1, OR2, ρ. From there, we observe that when
the power for the CE design is greater than 0.80 regardless of the correlation value, the decision in the
adaptive design is to use the CE. Likewise, if the CE design’s power is less than 0.80, the RE design will
be chosen. Also note that the decision rule, i.e., the ratio of sample sizes in (3.5), decreases with respect to
the correlation. This is due to the sample size for CEs increasing as the components are more correlated.
Indeed, for a given set of marginal parameters (p(0)

1 , p(0)

2 , OR1, OR2), the CE design is more efficient the
lower the correlation. Therefore, when using the adaptive design, the decision rule chooses the CE when
the estimated correlation between the components is small and chooses the most RE when the estimated
power using the composite falls below 0.80. Thus, the power of the adaptive design is always greater
than 0.80. In the Supplementary material, we plot the empirical power for each design as function of the
correlation ρ for all scenarios considered in the simulation. For the scenarios simulated under the global
null hypothesis (i.e., OR∗ = OR1 = OR2 = 1), all designs control the type 1 error rate at the nominal
level α = 0.05.

6.3. Selection at the interim analysis

6.3.1. With sample size reassessment The initial sample size in these settings was computed to detect an
effect on the CE, assuming uncorrelated components (ρ = 0). For the RE design, the powers in this case
range from 0.33 to 0.85 with mean 0.64; and when using the CE design range from 0.60 to 0.80 with mean
0.72. For the AD, in contrast, the powers have mean 0.80 (see Figure 2 in the Supplementary material).
The proposed adaptive design, therefore, ensures that the target power is achieved, either by keeping the
CE as primary but correcting the correlation value assumed in the design and recalculating the sample
size accordingly in the interim analysis, or by modifying the endpoint to the most RE and adjusting the
corresponding sample size. To illustrate the properties of the adaptive design, we again focus on a selected
scenario (see Figure 3). For the other considered cases, see the Supplementary material. We observe that
when using the adaptive design, the power is always maintained at 0.80, while for the CE design it depends
on the true value of the correlation and the extent to which it deviates from the correlation assumed at the
design stage (which is, in our case, ρ = 0). On the other hand, the type I error rate is as well maintained
at 0.05.

6.3.2. Without sample size reassessment When using the adaptive design with endpoint selection at an
interim analysis without sample size reassessment, the observed results are slightly worse to those obtained
when selecting the endpoint at the end of the study as the estimates have a higher variability. The type 1
error rate under the null scenarios investigated is again well controlled (data not shown).

6.4. Additional considerations

6.4.1. Comparison between blinded and unblinded estimators In this work, we proposed an adaptive
modification of the primary endpoint and sample size reassessment based on parameter estimates, esti-
mated from the blinded (interim) data. Alternatively, the event probabilities in the control group and the
correlation between endpoints can be estimated using the unblinded data (but still using the a priori esti-
mates of the effect sizes). To assess the properties of this alternative approach, we simulated adaptive trials
for the above scenarios with selection at the interim analysis or at the end of the trial, and without sample

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac040#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac040#supplementary-data
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https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac040#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac040#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac040#supplementary-data
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size assessment. The power of the adaptive design using unblinded data is equal to or slightly higher than
when using blinded data (see the Supplementary material). However, when evaluating the type 1 error,
we observe that when unblinded information is used there is an inflation of type 1 error when using a
conventional frequentist test as defined in Section 1. For the unblinded, the observed type 1 error rates had
a maximum inflation of 0.0658 (first quartile Q1 = 0.0498, median = 0.0507, and Q3 = 0.0521), and, for
the blinded, the maximum was 0.0524 (Q1 = 0.0494, median = 0.0498, and Q3 = 0.0502). The maximum
type 1 error observed for the fixed designs using the CE and the RE was similar compared to the blinded
case, 0.0515 and 0.0516, respectively. See Figure 3 of the Supplementary material. If the selection should
be done on unblinded data in an interim analysis, more complex adaptive closed testing strategies (Bauer
and others, 2016) have to be used and the data cannot naively be pooled over stages.

6.4.2. Properties of the design if there is no treatment effect in some of the components We additionally
assessed the power of the designs in scenarios where (i) there is no effect in the most RE and (ii) there is
no effect in the additional endpoint. In these settings, the adaptive design is not the most powerful design:
the power of the adaptive design is between the power using only the RE and the CE designs (see the
Supplementary material).

7. DISCUSSION

In this article, we proposed an adaptive design that allows the modification of the primary endpoint based
on blinded interim data and recalculates the sample size accordingly. The design selects either a CE or
the endpoint with the most relevant component as the primary endpoint, based on the ratio of sample
sizes needed in the corresponding designs to achieve a certain power. This ratio depends on the event
probabilities in the control group and the effect sizes for each composite component, and the correlation
between them. We presented estimators for the event probabilities and correlation based on blinded data
obtained at an interim or the preplanned final analysis and proposed to use them to compute the sample
size ratio. The advantage of using blinded data is that the type 1 error rate is not inflated when performing
the conventional frequentist tests for the selected primary endpoint at the end of the trial. In all null
scenarios investigated no substantial inflation of the type 1 error could be observed (see Figure 3 in the
Supplementary material). This was expected as both the selection and sample size reassessment were
based on blinded data (Posch and others, 2018; Kieser and Friede, 2003) and not the observed treatment
effect directly. The results obtained from the proposed adaptive design are, therefore, in line with the
requirements of regulatory agencies for adaptive designs with endpoint selection (FDA, 2019), since the
adaptation rules for blinded endpoint selection are predefined in the design and the methods considered
keep the type 1 error control.

If the selection is done at the end, we showed that the proposed design is more powerful than the
fixed designs using the CE or its more relevant component as the primary endpoint in all scenarios
considered in the simulation study. The simulations have shown that as long as the marginal effect sizes
have been correctly specified, the power never falls below the nominal power. In addition, a reestimation
of the sample size has been proposed by adjusting the sample size at the interim stage to incorporate the
estimated correlation and estimated event probabilities in the control group based on the assumed effect
sizes. Since the correlation between the components is rarely known and therefore not usually taken into
account when sizing a trial with CEs, we want to emphasize that this sample size calculation could be
useful even without adaptive modification of the primary endpoint. As in trials with CEs, the required
sample size increases as the correlation increases, we proposed to start the trial assuming correlation equals
zero and recalculate the sample size accordingly based on the blinded data. If sample size reassessment
is not considered, then the best results are achieved when the selection of the primary endpoint is made at
the end of the study due to the smaller variability of the blind estimates. However, for consistency checks
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and to convince external parties such as regulators, it might be reassuring to have a second independent
sample, that has not been used before to determine the endpoint.

We focused on the estimation of the correlation based on blinded data but also considered estimators
based on unblinded data (see the Supplementary material). We compared the operating characteristics
of trial designs using blinded and unblinded correlation estimators. Power is slightly higher when using
the unblinded estimator. However, it may lead to a substantial type 1 error inflation (see Section 6.4).
Throughout this work, in both blinded and unblinded data cases, we assumed that correlations are equal
across treatment groups. This assumption, although common, may in some cases not be satisfied. We
discuss the implications of this assumption in terms of the design and interpretation, also an approach to
tailor the proposed design to cases where the correlations are not equal in the Supplementary material.
To allow for unequal correlations and blinded selection, one has to fix the effect size not only for the
components but also for the CE. There is a trade-off by having fewer assumptions but more fixed design
parameters. However, further empirical investigations are needed to evaluate how plausible it is that the
equal correlation across arms assumption will not be met and the impact of different correlations on
interpreting the effect of the CE.

In this article, we consider trials with large sample sizes, so derivations of sample size calculations are
based on asymptotic results. In the case of trials with small sample sizes, it should be noted that smaller
sizes would result in lower precision in event estimates, which could affect the variable decision and
sample size recalculation. Finally, we extended the proposed design for trials with more than two groups
and more than two components. Further extensions can be considered by giving greater flexibility in terms
of the selection of the primary endpoint (e.g., choosing different primary endpoints according to treatment
arm) and considering platform designs where the treatment arms enter and leave at different times during
the trial (and therefore interim analysis also at different times). Extensions to complex designs such as
those mentioned above and designs with time-to-event endpoints are open to future research.

SOFTWARE

The R code to reproduce the results of this article is available at https://github.com/MartaBofillRoig/eselect.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org. Supplementary
material includes further derivations, discussion on extensions for unequal correlations across arms, intro-
duction of other association measures, an overview of the R package, an additional example based on a
conducted cardiology trial including the R code, and other results from the simulation study.
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