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Abstract 

Bac kgr ound: Cell clustering is a pi v otal aspect of spatial transcriptomics (ST) data analysis as it forms the foundation for subsequent 
data mining. Recent advances in spatial domain identification have lever aged gr aph neur al netw ork (GNN) approac hes in conjunc- 
tion with spatial transcriptomics data. However, such GNN-based methods suffer from representation collapse, wherein all spatial 
spots are projected onto a singular representation. Consequently, the discriminative capability of individual representation feature is 
limited, leading to suboptimal clustering performance. 

Results: To address this issue , w e proposed SGAE, a novel fr amew ork for spatial domain identification, incorporating the power of 
the Siamese graph autoencoder. SGAE mitigates the information correlation at both sample and feature levels, thus improving the 
r e pr esentation discrimination. We adapted this fr amew ork to ST analysis by constructing a graph based on both gene expression and 

spatial information. SGAE outperformed alternati v e methods by its effecti v eness in capturing spatial patterns and generating high- 
quality clusters, as evaluated by the Adjusted Rand Index, Normalized Mutual Information, and Fo wlkes–Mallo ws Index. Moreo ver, the 
clustering results derived from SGAE can be further utilized in the identification of 3-dimensional (3D) Drosophila embryonic structure 
with enhanced accuracy. 

Conclusions: Benchmarking r esults fr om v arious ST datasets generated by di v erse platforms demonstrate compelling evidence for 
the effecti v eness of SGAE a gainst other ST clustering methods. Specificall y, SGAE e xhibits potential for e xtension and application on 

m ultislice 3D r econstruction and tissue structur e inv estigation. The source code and a collection of spatial clustering r esults can be 
accessed at https://github.com/STOmics/SGAE/ . 

Ke yw ords: spatial transcriptomics, spatial clustering, graph neural networks 
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Bac kgr ound 

Spatial transcriptomics (ST) represents a newly emerging tech- 
nology that r e volutionizes the compr ehensiv e c har acterization of 
tissue organization and architecture [ 1 , 2 ]. By profiling the spa- 
tiall y r esolv ed gene expr ession patterns, ST tec hnologies allow 

scientists to delve into the intricate cellular dynamics within tis- 
sues. Based on the underlying methodology, these techniques can 

be categorized into 2 main categories: (i) imaging-based methods 
(MERFISH [ 3 ] and seqFISH [ 4 ]) and (ii) sequencing-based meth- 
ods (Slide-seq [ 5 ] and 10X Visium [ 6 ]). As the need for higher- 
r esolution anal ysis to unr av el cellular div ersity becomes imper a- 
ti ve, ad vancements such as Stereo-seq [ 7 ] have been developed to 
pr ovide impr ov ed r esolution ov er the years. The advent of ST tech- 
nologies holds immense potential to drive biological discoveries in 

de v elopment, physiology, and a broad range of diseases [ 8 , 9 ]. 
In parallel with single-cell RN A sequencing (scRN A-seq) analy- 

sis, clustering serves as the initial step in ST data analysis, group- 
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ng individual cells based on their gene expression patterns. Sim-
larl y, the primary objectiv e for ST data anal ysis r e volv es ar ound
issecting tissue into distinct spatial domains. While traditional 
achine learning approaches have been applied to tackle this 

ask, r ecent studies hav e sought to a ppl y deep learning fr ame-
orks to learn how to classify spatial spots into specific re-
ions [ 10–13 ]. For instance, SpaGCN [ 12 ] identifies spatial do-
ains through a graph convolutional network (GCN) fr ame work,
hile ST AGA TE [ 13 ] deploys a gr a ph attention autoencoder to de-
ne spatial clusters. Ho w e v er, suc h gr a ph neur al network–based
ethods usually suffer from representation collapse, which tends 

o map spatial spots into the same r epr esentation [ 14 ]. Conse-
uentl y, the discriminativ e ca pability of spot r epr esentation is

imited, leading to inaccurate identification of spatial domains. 
To tackle the aforementioned challenge, we proposed SGAE,

hich aims to learn discriminative spot representation and accu- 
 atel y decipher spatial domains . T his fr ame work is deriv ed fr om
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Figure 1: An ov ervie w of the SGAE fr ame work. The SGAE algorithm consists of 3 k e y modules. First, the gr a ph distortion module gener ates 2 distorted 
gr a phs by introducing both attribute and graph disturbances. Second, the encoder module generates 2 sets of representations for each sample . T hird, 
the redundant reduction module ensures that the same sample within the 2 distorted graphs has identical representations at both the feature and 
sample le v els. Last, the discriminativ e r epr esentations ar e a pplied to clustering algorithms suc h as K-means to decipher spatial domains. 
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he dual correlation reduction network [ 14 ], which effectively
educes information correlation at the dual level. SGAE adapts
his arc hitectur e to ST data anal ysis by constructing a gr a ph that
ncor por ates both gene expression and spatial information. Ac-
ording to benchmarking assessments, SGAE outperforms exist-
ng algorithms in the task of domain identification with superior
erformance . Moreo ver, SGAE can be extended in the realm of 3-
imensional (3D) tissue structure identification. 

esults 

verview of SGAE framework 

GAE is an unsupervised algorithm for ST clustering that le v er-
ges a variational graph autoencoder [ 15 ] within a Siamese graph
eural network to combine gene expression and spatial informa-
ion (Fig. 1 ). To implement SGAE, the gene expression matrix (X)
nd adjacency matrix (A) are fed into the encoder, which maps
he gene expression data into a lo w er-dimensional latent space,
enerating embedding vectors (Z) for individual cells. Pseudo-
abel is first generated by preclustering based on gene expression
atterns. SGAE ada ptiv el y learns the edge weights of the spatial
eighbor network (SNN) to ca ptur e the similarity between neigh-
oring spots and update the spot r epr esentation by a ggr egating

nformation fr om neighbors. Finall y, the latent embeddings can
e visualized using Uniform Manifold Approximation and Projec-
ion (UMAP), and various clustering algorithms such as K-means
nd Louvain can be emplo y ed to identify spatial domains for sub-
equent analysis. 

By calculating K-nearest neighbors based on the r elativ e spa-
ial positioning of spots, SGAE can effectiv el y ca ptur e the spatial
elationships between cells . T his is especially essential for ST data
ith low spatial r esolutions, suc h as 10X Visium, where discerning
ne-grained spatial details can be challenging. Besides, SGAE in-
roduces the concept of a cell type–aw are SNN b y pruning the SNN
ased on the preclustering of gene expressions . T his preliminary
lustering step aids in identifying regions that contain distinct cell
ypes . T hr ough the incor por ation of cell-type information during
he gr a ph construction pr ocess, SGAE adeptl y ca ptur es data het-
rogeneity and improves the accuracy of the graph representa-
ion. 

SGAE uses gr a ph distortion to acquir e div erse and informativ e
ode r epr esentations . T his is ac hie v ed thr ough the a pplication of
 types of perturbation: feature perturbation and gr a ph pertur-
ation. For feature perturbation, a random noise matrix is intro-
uced to the feature matrix using the Hadamard product. On the
ther hand, gr a ph perturbation involv es edge r emov al and gr a ph
iffusion within the Siamese arc hitectur e. To implement edge re-
oval, a mask matrix is generated based on the cosine similar-

ty matrix computed through pairwise comparisons in the latent
pace . T he 10% of edges with the lo w est v alues ar e then r emov ed.
r a ph diffusion is facilitated using a random walk–based Person-
lized P a geRank algorithm [ 16 ], allowing for the passage of mes-
a ges thr ough higher-order neighborhoods. To optimize the learn-
ng process, SGAE employs an objective function inspired by the
arlow Twins a ppr oac h [ 17 ], aiming to minimize the deviation of
he cr oss-corr elation matrix fr om the ideal identity matrix and
 educe r edundant information among nodes in the latent space,
her efor e impr o ving the o v er all accur acy of the learned embed-
ing. 

GAE exhibited remarkable effectiveness and 

obustness in spatial domain exploration 

T datasets generated by different technology platforms pos-
ess distinct resolutions and features, making it essential to vali-
ate the clustering robustness of SGAE across these platforms. To
c hie v e this, we included ST datasets generated by 10X Visium, se-
FISH [ 18 ], MERFISH [ 3 ], SLIDE-seq v2 [ 19 ], and Stereo-seq [ 7 ]. For
0X Visium datasets, samples of human dorsolateral prefrontal
ortex wer e collected, whic h comprised 12 continuous slides, and
ach slide has been labeled into 7 layers based on the anatomical
tructure [ 20 ]. For seqFISH, we acquired a sample of mouse gas-
rulation [ 21 ]. In total, 351 genes have been detected and 19,416
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cells were labeled into 22 groups. Similar to seqFISH, a mouse pri- 
mary motor cortex dataset that includes 254 genes and 3,106 cells 
was detected by MERFISH [ 22 ]. As for the SLIDE-seq v2, a mouse 
olfactory bulb dataset that contains 20,139 cells and 21,220 genes 
was included to test the performance of SGAE [ 19 ]. To test the 
performance in tissue without a clear structur e, the liv er cancer 
dataset from Stereo-seq [ 23 ] was utilized. The dataset contains 
14,288 spots, and a margin area between cancer and healthy tis- 
sue can be seen according to hematoxylin and eosin (H&E) stain- 
ing. Then we compr ehensiv el y compar ed the clustering perfor- 
mance of SGAE against other state-of-the-art spatial clustering 
methods, including SpaGCN [ 12 ], Gr a phST [ 10 ], ST AGA TE [ 13 ], and 

Leiden [ 24 ]. Clustering performance was assessed by spatial visu- 
alization combined with the Adjusted Rand Index (ARI), Normal- 
ized Mutual Information (NMI), and Fo wlkes–Mallo ws Index (FMI).

Human dorsola ter al prefrontal cortex 10X 

Visium dataset 
We applied SGAE to analyze the 10X Visium ST dataset obtained 

from the human dorsolateral prefrontal cortex (DLPFC) [ 20 ]. The 
visualization of cell clustering confirmed that SGAE was able 
to discern the intricate stratified cortex structures with remark- 
able clarity, surpassing the capabilities of other existing methods 
(Fig. 2 A). Furthermor e, our benc hmarking r esults r e v ealed that 
SGAE outperformed other algorithms in analyzing all 12 DLPFC 

slices (Fig. 2 E). 

Mouse gastrulation seqFISH dataset 
The e v aluation of SGAE’s performance extends to the mouse 
gastrulation dataset, which was generated through the imaging- 
based technology seqFISH [ 21 ]. The visualization of mouse gastru- 
lation structures derived from different methods demonstrates 
higher effectiveness of SGAE in accurately discriminating em- 
bryo tissue sections (Fig. 2 B). In contrast, ST AGA TE failed to deci- 
pher the spatial domain with precision, as it tended to divide the 
spatial domain into numerous disorder patc hes. Notabl y, SGAE 
reaffirmed its superiority in all benchmark metrics against other 
methods (Fig. 2 F). 

Mouse cortex MERFISH dataset 
Based on the MERFISH dataset of the mouse primary motor cortex 
[ 22 ], we further compared the clustering results obtained by dif- 
ferent methods. While all 5 methods successfully extracted the 
str atified structur e of the cortex, SGAE demonstr ated a r emark- 
able ability to ca ptur e the layered organization of the glutamater- 
gic structures more accurately when compared to the original an- 
notation (Fig. 2 C). Furthermor e, SGAE ac hie v ed the highest per- 
formance among all 5 methods, underscoring its effectiveness in 

pr ecisel y clustering cells and capturing the spatial arrangement 
of the primary motor cortex (Fig. 2 G). 

Mouse olfactory bulb SLIDE-seq v2 dataset 
The e v aluation also encompassed the SLIDE-seq V2 dataset of 
the mouse olfactory bulb [ 19 ]. The spatial domains identified by 
SGAE exhibited remarkable consistency with the annotation pro- 
vided by the Allen Refer ence Atlas, str engthening the confidence 
in its accuracy and reliability (Fig. 2 D). Conversely, the Leiden clus- 
tering a ppr oac h failed to pr ovide a cohesiv e tissue structur e in 

this dataset, while SpaGCN, Gr a phST, and ST AGA TE partially de- 
ciphered certain structures within the olfactory bulb. 
i v er cancer Stereo-seq dataset 
GAE and alternative clustering methods were tested on a liver
ancer sample obtained from Stereo-seq. The application of SGAE 
esulted in a clearer and more accurate identification of the mar-
in border based on H&E staining ( Supplementary Fig. S1A, B ).
otably, SGAE also detected clusters consisting of discrete spots 

ocated in differ ent positions, r eflecting the heter ogeneous natur e
f the tumor tissue. To assess the spatial correlation of the cluster-
ng results, we computed Moran’ s index. Moran’ s index revealed
hat alternative methods tended to overutilize spatial informa- 
ion and identify clusters in blocks ( Supplementary Fig. S1C ). To
urther e v aluate the accur acy of the clustering r esults obtained by
hese tools, we focused on the r ar e cell-type fibr oblast and used
IM as a marker gene for fibroblasts. We visualized the spatial dis-

ribution of VIM and compared it with the most probable cluster
dentified by each of the methods . T he results sho w ed that cluster
 in SGAE exhibited a higher similarity to the spatial expression
f VIM compared to other methods ( Supplementary Fig. S1D, E ). 

Ov er all, our r esults unequivocall y establish SGAE as a po w erful
ethod for analyzing ST data, surpassing other state-of-the-art 
ethods in terms of cell clustering performance and structure 

xploration of complex tissues. 

GAE deciphers spatial domains and provides 

iscriminati v e representations 

tereo-seq is a novel ST technology that offers subcellular reso-
ution and has opened up new avenues for investigating the intri-
ate structures within complex tissues [ 7 ]. Ho w ever, the exploita-
ion of its high-resolution capabilities necessitates the utilization 

f advanced clustering and spatial analysis methods . T herefore ,
e conducted a meticulous e v aluation of SGAE’s clustering per-

ormance using a Stereo-seq dataset of the mouse adult brain
ataset [ 25 ]. It comprises a total of 38,811 cells and 20,062 genes
nd has been labeled into 38 subclasses through manual anno-
ation. Intriguingly, SGAE showcased exceptional discriminative 
o w er in accur atel y distinguishing mouse brain sections within
his dataset, outperforming other methods such as SpaGCN, STA- 
ATE, CCST, and Gr a phST (Fig. 3 A). Subcluster analysis further
emonstrated the superior performance of SGAE (Fig. 3 B). SGAE
ccur atel y delineated distinct subpopulations within the tissue,
hereas ST AGA TE inaccurately divided the DGGRC2 and TEGLU24

egions into 2 separate clusters, and SpaGCN assigned a larger re-
ion for TEGLU24 and HBGLU. 

To provide a systematic comparison, we conducted an ex- 
ensiv e e v aluation of SGAE’s clustering r esults using m ultiple
enchmark metrics, including ARI, NMI, and FMI. Remarkably,
GAE outperformed all other existing methods across all bench- 
ark metrics (Fig. 3 C). Besides, we utilized Moran’s index (MI)

o assess the spatial autocorrelation of each cluster. Although 

paGCN and ST AGA TE ac hie v ed higher MI scor es, SGAE exhib-
ted a distribution most closely aligned with the ground truth in
erms of MI (Fig. 3 D). It is suggested that SGAE effectiv el y uti-
izes spatial information in a mor e r easonable and a ppr opriate

anner. 
Furthermor e, we e v aluated the r epr esentativ e embedding pr o-

ided by SGAE, CCST [ 11 ], ST AGA TE, and Gr a phST thr ough UMAP
isualization (Fig. 3 E). The results sho w ed that SGAE exhibited a
igh le v el of pr oficiency in extr acting the embedding of the mouse
r ain Ster eo-seq data, while Gr a phST struggled to distinguish dif-
er ent cell gr oups. To further e v aluate the ca pability of SGAE
o c har acterize biological r epr esentation, we performed pseudo-
ime analysis and calculated the analysis of variance (ANOVA) F-

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae003#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae003#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae003#supplementary-data
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Figure 2: SGAE exhibited high effectiveness and robustness in spatial domain exploration. (A–D) Visualization of clustering results from SGAE, SpaGCN, 
Gr a phST, ST AGA TE, Leiden, and annotation. (A) Human DLPFC 10X Visium dataset. (B) Mouse gastrulation seqFISH dataset. (C) Mouse cortex MERFISH 

dataset. (D) Mouse olfactory bulb SLIDE-seq v2 dataset. (E–G) Benchmark metrics comparison of SGAE against SpaGCN, GraphST, ST AGA TE, and 
Leiden. (E) Boxplot of ARI, FMI, and NMI for 12 DLPFC 10X Visium datasets. (F) Mouse gastrulation seqFISH dataset. (G) Mouse cortex MERFISH dataset. 
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cor e for eac h cell type (Fig. 3 F). Sur prisingl y, SGAE ac hie v ed the
ighest ANOVA F-score, highlighting the discriminative capability
f SGAE’s embedding in accur atel y distinguishing between differ-
nt cell types. 

Taken together, these findings provide compelling evidence
hat SGAE not onl y sur passes other methods in terms of clustering
ccuracy but also excels in providing superior embedding r epr e-
entation for the datasets. 
GAE enhanced complex spatial domain 

issection in 3D Drosophila 

he advanced use of ST clustering involv es integr ating 3D r e-
onstruction technology to gain a compr ehensiv e understanding
f the spatial organization and gene expression patterns within
omplex tissues . T he fundamental topic of 3D tissue structure dis-
ection is to identify shared and specific spatial domains across



An algorithm for spatial domain detection | 5 

Figure 3: SGAE unr av eled spatial domains and provided discriminative representations. (A) Visualization of human adult brain clustering results from 

SGAE, SpaGCN, ST AGA TE, CCST, and Gr a phST. (B) Subclustering results of DGGRC2, TEGLU24, and HBGLU from SGAE, SpaGCN, ST AGA TE, CCST, and 
Gr a phST. (C) Benc hmark metrics comparison of SGAE a gainst SpaGCN, ST AGA TE, CCST, and Gr a phST. (D) Boxplot of Moran’s index comparison of 
SGAE against SpaGCN, ST AGA TE, CCST, and Gr a phST. (E) UMAP visualization of embedding from SGAE, SpaGCN, ST AGA TE, and Gr a phST. (F) Boxplot of 
ANOVA F-score of pseudo-time calculated from embedding provided by PCA, CCST, ST AGA TE, and Gr a phST. 
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ultiple slices of ST datasets. Our investigation sought to deter-
ine whether SGAE could effectiv el y accomplish this challeng-

ng multislice clustering task, especially for the datasets with less
atch effect ( Supplementary Fig. S2 ). Notably, we found that SGAE
urpassed Leiden and STAligner [ 26 ] in accur atel y dissecting the
patial domains of Drosophila embryos at different stages (E14–
6, E16–18, and L1) [ 27 ], as evidenced by its higher similarity to
he ground truth (Fig. 4 A, B). These findings highlighted the effec-
iveness of SGAE in achieving reliable multislice clustering for ST
nalysis. 

After obtaining the clustering results from SGAE, ST Aligner , and
eiden, we proceeded with the crucial step of stack slice regis-
ration to enable 3D tissue reconstruction. This involved aligning
onsecutive tissue slices to generate a complete and accurate 3D
 epr esentation of the tissue. We observed that the 3D meshes gen-
r ated fr om SGAE r esults exhibited exceptional accuracy in divid-
ng the tissue into correct structures, aligning perfectly with the
orresponding marker genes (Fig. 4 C). It indicated that the spa-
ial domains generated by SGAE are highly effective in achiev-
ng promising 3D tissue reconstruction. In contrast, STAligner and
eiden faltered in accurately dividing the tissue into correct struc-
ures in certain cases . T his suggests the robustness and reliability
f the spatial domains generated by SGAE. 

iscussion 

patial transcriptomics is a cutting-edge technology that allows
s to sim ultaneousl y ca ptur e gene expr ession while r etaining spa-
ial information of the tissue . T he emer gence of lar ge-scale ST
ata has increased the demand for effective algorithms capable of
issecting spatial domains. To ac hie v e this, we pr oposed SGAE, a
r ame work composed of 2 identical encoders based on a Siamese
etwork, which enabled us to encode cell featur es. Additionall y,
GAE employs a gr a ph neur al network that facilitates the learning
f informativ e r epr esentations of both gene expression and spa-
ial locations. To fully leverage the spatial information provided
 y ST, w e constructed a gr a ph based on the spatial information of
ach cell and preclustered gene expression. We then used a linear
ombination operation to merge the decorrelated latent embed-
ings, enhancing the discriminative po w er of the resulting em-
edding and clustering accuracy, thus facilitating compr ehensiv e
nal ysis to pr ovide pr ofound insights into complex biological sys-
ems. 

Our study demonstrates the effectiveness and robustness of
GAE in capturing tissue structures across different ST technol-
gy platforms . T his superiority o ver other methods indicates the
mmense potential of SGAE as a reliable tool for analyzing ST
atasets. Another notable strength of SGAE lies in its ability to
ccur atel y ca ptur e the heter ogeneity pr esent within ST datasets.
he complexity and diversity of cell types within tissues pose sig-
ificant challenges in accurately characterizing gene expression
atterns. Notabl y, SGAE’s embedding successfull y ca ptur es the
eterogenic information, enabling a more comprehensive under-
tanding of the spatial organization of gene expression patterns
ithin tissues. While SGAE has demonstrated its advantages in ST

lustering, further validation across a wider range of ST datasets
nd biological systems is necessary to fully assess the generaliz-
bility of SGAE’s performance. 

In this study, we also applied SGAE to analyze the Drosophila 3D
ataset and unr av el the spatial domains during the E14–16, E16–
8, and larva L1 stages. We further compared the performance
f SGAE with that of ST Aligner , a commonly used method de v el-
ped for m ultislice ST anal ysis. By e v aluating benc hmark met-
ics, we consistentl y observ ed that SGAE outperformed STAligner
n effectiv el y gr ouping cells into biologicall y meaningful clusters.
he superior clustering results of SGAE carry significant impli-
ations for the analysis of 3D tissue structure reconstruction.
n conclusion, SGAE demonstrates its proficiency in spatial do-

ain identification on spatial transcriptomics with a moderate
atch effect. For datasets with a high batch effect, it is recom-
ended to integrate batch removal methods upstream of SGAE

o effectiv el y mitigate this issue. By accur atel y categorizing cells
nto r easonable gr oups, SGAE could contribute to a mor e pr e-
ise c har acterization of the spatial organization of gene expres-
ion patterns . T his is particularly important for understanding
he complex processes underlying biological development and
ifferentiation. 

ethods 

otations and problem definition 

n undir ected gr a ph is usuall y r epr esented by G = { V , E } , wher e
 = { v 1 , v 2 , · · · , v N } and E are the node and edge, respectively.
ach node v i is characterized by a vector x i ∈ R 

D , where D is the
imension of the attribute . T hen the gr a ph can be c har acterized
y the feature matrix X ∈ R 

N ×D . The relation between each node is
 har acterized by the adjacency matrix A = ( a ij ) N ×N 

, where a ij = 1
f v i and v j are connected by an edge; otherwise, a i j = 0 . A degree

atrix describes the number of edges connected to each node and
an be expressed in a diagonal matrix D = diag ( d 1 , d 2 , · · · , d N ) ∈
 

N ×N , and d i is the degree of node v i and calculated by d i =∑ 

(v i , v j ) ∈ E 
a ij . We normalized the adjacency matrix as ˜ A = D 

−1 ( A + I ) ,

here I ∈ R 

N ×N is the identity matrix. 
In this article, we aimed to train a Siamese gr a ph encoder that

mbeds all nodes into the low-dimension latent space in an un-
upervised manner. The resultant latent embedding can then be
ir ectl y utilized to perform node clustering by clustering metrics
uch as K-means and Leiden. 

 he o ver all architecture of SGAE 

 he o v er all arc hitectur e of SGAE consists of gr a ph distortion,
iamese encoders, Siamese decoders, and a reconstruction loss
unction. 

raph distortion 

e utilized 2 types of gr a ph distortion, including featur e corrup-
ion and edge perturbation. 

For feature corruption, which is the feature-level distortion,
e applied a Hadamard product to feature matrix and a ran-
om noise matrix generated from a Gaussian distribution, that

s, ˜ X = X � N, where � means the Hadamard product and
 ∼ N( 1 , 0 . 1 ) . 
For edge perturbation, which is the structur e-le v el distortion,

e adopted 2 types of distortion (i.e., edge r emov al and gr a ph
iffusion). For the edge r emov al, we gener ated a mask matrix
 according to the similarity matrix by calculating the pairwise

osine similarity in the latent space, where 10% of the lo w est
dges would be r emov ed. The final adjacency matrix after edge
 emov al is 

A 

m = D 

− 1 
2 ( ( A � M ) + I ) D 

− 1 
2 

In the gr a ph diffusion tr eatment, w e used P ersonalized P a geR-
nk to calculate the normalized adjacency matrix into a gr a ph

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae003#supplementary-data
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Figure 4: SGAE enhanced complex spatial domain dissection in a 3D Drosophila embryo. (A) A 2-dimensional visualization of Drosophila embryo 
clustering results at different stages (E14–16, E16–18, and L1) from SGAE and ST Aligner . (B) Benchmark metrics comparison of SGAE, Leiden, and 
ST Aligner . (C) The 3D visualization of a Drosophila embryo. The first row shows the marker genes of the Drosophila embryo at different stages, while the 
last 3 rows display the meshes generated by SGAE, ST Aligner , and Leiden, r espectiv el y. 
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iffusion matrix by following the MVGRL method [ 28 ]: 

A 

d = α
(
I − ( 1 − α) 

(
D 

− 1 
2 ( A + I ) D 

− 1 
2 

))−1 

here α = 0 . 2 as the teleport probability in a random walk. 

iamese encoders 
n order to reduce the utilization of space while learning richer
ell r epr esentations, we constructed the 2 same encoders based
n the Siamese network structure to encode cell features. 

The inputs of the Siamese encoders ar e gr a ph G 1 = ( X 1 , A m 

)
nd gr a ph G 2 = ( X 2 , A d ) . The output is the embedding matrix H.
irst, we used 2 par ameter-shar ed encoders to encode gr a ph G 1 

nd gr a ph G 2 , r espectiv el y, and gener ate embedding matrices H 1 

nd H 2 . The encoder in the lth layer can be formulated as: 

H 

( l ) 
1 = σ

(̂ A m 

H 

( l −1 ) 
1 W 

( l ) 
1 

)
+ σ

(
H 

( l −1 ) 
1 W 

( l ) 
2 + b ( l ) 

)
H 

( l ) 
2 = σ

(̂ A d H 

( l −1 ) 
2 W 

( l ) 
1 

)
+ σ

(
H 

( l −1 ) 
2 W 

( l ) 
2 + b ( l ) 

)

here ̂ A m 

= D 

− 1 
2 

m 

( A m 

+ I )D 

− 1 
2 

m 

, ̂ A d = D 

− 1 
2 

d ( A d + I )D 

− 1 
2 

d , D m 

and D d 

r e degr ee matrices of A m 

and A d , I is the identity matrix, W 

(l) 
1 

nd W 

(l) 
2 are weight matrices of encoders in the lth layer, b (l) is the

ias vector of the encoder in the lth layer, and σ is the nonlin-
ar activate function, such as ReLU and Tanh. When layer l = 1 ,
 

( l−1 ) 
1 = X 1 . 

Ultimatel y, the decorr elated latent embeddings deriv ed fr om 2
iffer ent vie ws—namel y, H 1 and H 2 —ar e mer ged using a linear
ombination operation. This amalgamation produces clustering-
ocused latent embeddings that can be effectiv el y emplo y ed for
lustering pur poses, particularl y thr ough the utilization of the K-
eans algorithm. 

iamese decoders 
or SGAE, we constructed a decoder based on gr a ph convolutional
eural networks while reconstructing feature embeddings and
djacency matrices . T he input is the embedding matrix H, and
he output is the original feature matrix X and the adjacency ma-
rix A . First, we used the gr a ph convolutional neural network to
ecode the embedding H to generate a feature matrix ˆ H , and the
alculation formula of the k layer decoder is as follows: 

H 

( k ) = σ
(
D 

− 1 
2 ( A + I ) D 

− 1 
2 H 

( k −1 ) W 

( k ) 
)

here D is the degree matrix of the matrix A , and W 

(k ) is the pa-
ameter matrix of the k th layer of the decoder. Then, we took an
nner product computation between the embedding matrix H and
ts transpose to generate the adjacency matrix ˆ A . 

econstruction loss function 

inally, we calculated the feature matrix reconstruction loss L REC−F 

s follows: 

L REC −F = 

1 
2N 

∣∣∣∣∣∣AX − ˆ H 

∣∣∣∣∣∣2 
F 

We also calculated the adjacency matrix reconstruction loss
 REC −A as follows: 

L REC −A = 

1 
2N 

∣∣∣∣∣∣A − ˆ A 

∣∣∣∣∣∣2 
F 

The reconstruction loss L REC is the sum of the feature matrix
econstruction loss and the adjacency matrix reconstruction loss,
nd the calculation formula is as follows: 

L = L + L 
REC REC−F REC−A 
edundant reduction module 
n order to eliminate redundant information in node embed-
ing and generate distinguishable embeddings for each node, the
r esent inv ention designed a de-r edundancy module, whic h elim-

nated redundant information from 2 levels: node level and fea-
ur e le v el: 

S N = 

H 1 H 

T 
2 

|| H 1 | | | | H 2 | | 
S F = 

Z 1 Z 

T 
2 

|| Z 1 | | | | Z 2 | | 
L RR = L RR −N + L RR −F 

lustering guidance module 
n order to effectiv el y learn the feature embedding related to the
lustering task, the present invention designed a clustering guid-
nce module. First, we pr etr ained the model and used K-means to
luster the generated node embeddings. Second, we constructed
 clustering guidance loss L C according to the node embedding
atrix and the clustering result of the previous step: (i) Compute

he soft assignment matrix Q for all nodes and pr etr ained cluster
enters using the Student’s t distribution. (ii) Generate the target
istribution matrix P according to the soft allocation matrix Q, and
he element p i j of the i row j column is calculated by the following
ormula: 

p ij = 

q 

2 
ij / 

∑ 

i q ij ∑ 

j ′ 

(
q 

2 
ij ′ / 

∑ 

i q ij ′ 

)
Then, we computed the clustering guidance loss L C using the

ullbac k-Leibler (KL) div er gence fr om the soft assignment, the tar-
et distribution, and the pr etr ained soft assignment. 

During training, the model was optimized by minimizing the
oss function: 

L = L REC + L C + L RR 

After the model training was completed, the main flow of data
n the model inference process was as follows: first, the model was
sed to obtain the low-dimensional feature embedding H of cells,
nd then based on the learned embedding, K-means was used for
lustering, and finally the cluster labels of all cells were obtained.

lustering refinement 
GAE also incor por ates an optional clustering r efinement step.
uring this step, SGAE analyzes the domain assignment of each

pot and its neighboring spots. Specifically, for a given spot, the
abel that appears most frequently among its surrounding spots
s assigned to that spot. The clustering refinement step was exclu-
iv el y performed for the human DLPFC 10X Visium data. 

erformance e v alua tion 

e used 5 indices to e v aluate the quality of the clustering re-
ults: ARI, NMI, FMI, Adjusted Mutual_Infomation (AMI), and MI.
hese indices provide differ ent perspectiv es on the clustering per-
ormance. ARI measures the similarity of predicted types in the
lusters, with a range from −1 to 1. NMI measures the relation-
hip between variables and is normalized to a range of [0,1]. FMI
alculates the geometric mean of pairwise precision and recall,
lso ranging from 0 to 1. AMI measures the similarity between
he cluster assignments obtained from a clustering algorithm and
he ground-truth cluster assignments. MI is used to assess spatial
utocorrelation in the clustering results. Together, these indices
ffer a compr ehensiv e e v aluation of the clustering quality acr oss
arious aspects. 
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Her e ar e form ulas and function Application Pr ogr amming In- 
terfaces (APIs) used to implement the indices. 

ARI: sklearn.metrics.adjusted_r and_scor e 

ARI = 

( T P + T N ) 
C 

2 
N 

( N = samples ) 

NMI: sklearn.metrics.normalized_m utual_info_scor e 

MI ( X, Y ) = 

| X | ∑ 

i =1 

| Y | ∑ 

j=1 

P ( i, j ) log 
(

P ( i, j ) 
P ( i ) P ( j ) 

)

H ( X ) = −
| X | ∑ 

i =1 

P ( i ) log ( P ( i ) ) ; H ( Y ) = −
| Y | ∑ 

j=1 

P ( j ) log ( P ( j ) ) 

NMI ( X, Y ) = 

2 MI ( X, Y ) 
H ( X ) + H ( Y ) 

FMI: sklearn.metrics.fo wlkes_mallo ws_score 

F MI = T P / sqrt ( ( T P + F P ) ∗ ( T P + F N ) ) 

AMI: sklearn.metrics.adjusted_m utual_info_scor e 

AMI ( X, Y ) = 

MI ( X, Y ) − E 
{
MI ( X, Y ) 

}
1 / 2 ( H ( X ) + H ( Y ) ) − E 

{
MI ( X, Y ) 

}
MI: scanpy.metrics.morans_i 

E [ I ] = − 1 
n − 1 

;V [ I ] = E 
[
I 2 

] − E 
[
I 2 

]
z I = ( I − E [ I ] ) / 

√ 

V [ I ] 

S 0 = 

n ∑ 

i =1 

n ∑ 

j=1 

ω i, j 

I = 

n 
∑ n 

i =1 

∑ n 
j=1 ω i, j z i z j 

S 0 
∑ n 

i =1 z 
2 
i 

Data preprocessing 

SGAE utilizes transcriptome-wide gene expression profiles with 

spatial coordinates as input. The raw gene counts per spot are first 
normalized to the total counts per cell and then scaled through 

log-transformation. In the case of 3D Drosophila datasets, we did 

not employ any multislice integration method as there was little 
batc h effect observ ed fr om the UMAP r esult. Principal component 
analysis was then conducted on the gene expression data using 
the sc.pp.pca() function, and the top 50 principal components per 
spot wer e subsequentl y utilized as the default expr ession featur e.

Identifying differentially expressed genes 
The Wilcoxon test implemented in SCANPY [ 29 ] was used 

to calculate differ entiall y expr essed genes for eac h spa- 
tial domain Benjamin–Hoc hber g adjustment corr elation via 
sc.tl.rank_genes_groups() . 

Spa tial tr ajectory inference 

We emplo y ed the PAGA algorithm [ 30 ] implemented in the 
SCANPY pac ka ge to depict spatial tr ajectory. The PAGA tr ajectory 
and PAGA tree were inferred by the scanpy.tl.paga() function based 

on cell embedding generated by SGAE. Furthermore , scanp y.tl.dpt() 
was applied to estimate the pseudo-time as well. To compare the 
performance of each clustering method with embedding, we cal- 
culated trajectory and pseudo-time using methods above with the 
same parameter settings. 

Availability of Supporting Source Code and 

Requirements 

Project name: SGAE 
Pr oject homepa ge: https:// github.com/ STOmics/ SGAE/ 
Operating system: Linux 
Pr ogr amming langua ge: Python 

License: MIT license 
RRID: SCR_024803 

dditional Files 

upplementary Fig. S1. SGAE r eac hed good performance on a
omplex and heterogeneous liver cancer sample. (A) H&E stain- 
ng of a liver cancer sample. Manually added line indicates the
order of tumor and healthy tissue. (B) Clustering result of SGAE
nd other methods. (C) Moran’s index of the clustering results of
GAE and other methods. (D) Spatial map of the expression of VIM.
E) The most likely clusters associated with fibroblasts identified 

sing SGAE and other methods, determined by the expression of
IM. 
Supplementary Fig. S2. Less batch effect detected in 3D 

rosophila embryos. UMAP visualization of 3D Drosophila embryos.
eft: color in cell type annotation. Right: color in slices of sample.
A) E14–16. (B) E16–18. (C) L1. 

a ta Av ailability 

upporting datasets for this article are available via the fol-
owing databases: human dorsolateral prefrontal cortex 10X 

isium dataset from spatialLIBD [ 31 ], mouse cortex MERFISH 

ataset from Brain Image Library [ 32 ], mouse gastrulation seq-
ISH dataset from SpatialMouseAtlas [ 21 ], mouse olfactory bulb
LIDE-seq v2 dataset from Single Cell PORTAL [ 33 ], liver cancer
tereo-seq dataset and 3D Drosophila Stereo-seq dataset from 

NGBdb [ 34 ], and adult mouse br ain Ster eo-seq dataset fr om Zen-
do [ 35 ]. An arc hiv al v ersion of SGAE can also be accessed in Soft-
ar e Herita ge [ 36 ]. 

bbreviations 

NOVA: analysis of variance; ARI: Adjusted Rand Index; DLPFC: 
orsolater al pr efr ontal cortex; FMI: Fo wlkes–Mallo ws Index; GCN:
r a ph conv olution netw ork; GNN: gr a ph neur al network; H&E:
ematoxylin and eosin; MERFISH: multiplexed error-robust fluo- 
escence in situ hybridization; MI: Moran’s index; NMI: Normal- 
zed Mutual Information; scRNA-seq: single-cell RNA sequenc- 
ng; seqFISH: sequential fluorescence in situ hybridization; SNN: 
patial neighbor network; ST: spatial transcriptomics; UMAP: Uni- 
orm Manifold Approximation and Projection. 
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