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Abstract

Background: Cell clustering is a pivotal aspect of spatial transcriptomics (ST) data analysis as it forms the foundation for subsequent
data mining. Recent advances in spatial domain identification have leveraged graph neural network (GNN) approaches in conjunc-
tion with spatial transcriptomics data. However, such GNN-based methods suffer from representation collapse, wherein all spatial
spots are projected onto a singular representation. Consequently, the discriminative capability of individual representation feature is
limited, leading to suboptimal clustering performance.

Results: To address this issue, we proposed SGAE, a novel framework for spatial domain identification, incorporating the power of
the Siamese graph autoencoder. SGAE mitigates the information correlation at both sample and feature levels, thus improving the
representation discrimination. We adapted this framework to ST analysis by constructing a graph based on both gene expression and
spatial information. SGAE outperformed alternative methods by its effectiveness in capturing spatial patterns and generating high-
quality clusters, as evaluated by the Adjusted Rand Index, Normalized Mutual Information, and Fowlkes-Mallows Index. Moreover, the
clustering results derived from SGAE can be further utilized in the identification of 3-dimensional (3D) Drosophila embryonic structure
with enhanced accuracy.

Conclusions: Benchmarking results from various ST datasets generated by diverse platforms demonstrate compelling evidence for
the effectiveness of SGAE against other ST clustering methods. Specifically, SGAE exhibits potential for extension and application on
multislice 3D reconstruction and tissue structure investigation. The source code and a collection of spatial clustering results can be

accessed at https://github.com/STOmics/SGAE/.
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Background

Spatial transcriptomics (ST) represents a newly emerging tech-
nology that revolutionizes the comprehensive characterization of
tissue organization and architecture [1, 2]. By profiling the spa-
tially resolved gene expression patterns, ST technologies allow
scientists to delve into the intricate cellular dynamics within tis-
sues. Based on the underlying methodology, these techniques can
be categorized into 2 main categories: (i) imaging-based methods
(MERFISH [3] and seqFISH [4]) and (ii) sequencing-based meth-
ods (Slide-seq [5] and 10X Visium [6]). As the need for higher-
resolution analysis to unravel cellular diversity becomes impera-
tive, advancements such as Stereo-seq [7] have been developed to
provide improved resolution over the years. The advent of ST tech-
nologies holds immense potential to drive biological discoveries in
development, physiology, and a broad range of diseases [8, 9].

In parallel with single-cell RNA sequencing (scRNA-seq) analy-
sis, clustering serves as the initial step in ST data analysis, group-

ing individual cells based on their gene expression patterns. Sim-
ilarly, the primary objective for ST data analysis revolves around
dissecting tissue into distinct spatial domains. While traditional
machine learning approaches have been applied to tackle this
task, recent studies have sought to apply deep learning frame-
works to learn how to classify spatial spots into specific re-
gions [10-13]. For instance, SpaGCN [12] identifies spatial do-
mains through a graph convolutional network (GCN) framework,
while STAGATE [13] deploys a graph attention autoencoder to de-
fine spatial clusters. However, such graph neural network-based
methods usually suffer from representation collapse, which tends
to map spatial spots into the same representation [14]. Conse-
quently, the discriminative capability of spot representation is
limited, leading to inaccurate identification of spatial domains.
To tackle the aforementioned challenge, we proposed SGAE,
which aims to learn discriminative spot representation and accu-
rately decipher spatial domains. This framework is derived from
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Figure 1: An overview of the SGAE framework. The SGAE algorithm consists of 3 key modules. First, the graph distortion module generates 2 distorted
graphs by introducing both attribute and graph disturbances. Second, the encoder module generates 2 sets of representations for each sample. Third,
the redundant reduction module ensures that the same sample within the 2 distorted graphs has identical representations at both the feature and
sample levels. Last, the discriminative representations are applied to clustering algorithms such as K-means to decipher spatial domains.

the dual correlation reduction network [14], which effectively
reduces information correlation at the dual level. SGAE adapts
this architecture to ST data analysis by constructing a graph that
incorporates both gene expression and spatial information. Ac-
cording to benchmarking assessments, SGAE outperforms exist-
ing algorithms in the task of domain identification with superior
performance. Moreover, SGAE can be extended in the realm of 3-
dimensional (3D) tissue structure identification.

Results
Overview of SGAE framework

SGAE is an unsupervised algorithm for ST clustering that lever-
ages a variational graph autoencoder [15] within a Siamese graph
neural network to combine gene expression and spatial informa-
tion (Fig. 1). To implement SGAE, the gene expression matrix (X)
and adjacency matrix (A) are fed into the encoder, which maps
the gene expression data into a lower-dimensional latent space,
generating embedding vectors (Z) for individual cells. Pseudo-
label is first generated by preclustering based on gene expression
patterns. SGAE adaptively learns the edge weights of the spatial
neighbor network (SNN) to capture the similarity between neigh-
boring spots and update the spot representation by aggregating
information from neighbors. Finally, the latent embeddings can
be visualized using Uniform Manifold Approximation and Projec-
tion (UMAP), and various clustering algorithms such as K-means
and Louvain can be employed to identify spatial domains for sub-
sequent analysis.

By calculating K-nearest neighbors based on the relative spa-
tial positioning of spots, SGAE can effectively capture the spatial
relationships between cells. This is especially essential for ST data
with low spatial resolutions, such as 10X Visium, where discerning
fine-grained spatial details can be challenging. Besides, SGAE in-
troduces the concept of a cell type-aware SNN by pruning the SNN
based on the preclustering of gene expressions. This preliminary
clustering step aids in identifying regions that contain distinct cell

types. Through the incorporation of cell-type information during
the graph construction process, SGAE adeptly captures data het-
erogeneity and improves the accuracy of the graph representa-
tion.

SGAE uses graph distortion to acquire diverse and informative
node representations. This is achieved through the application of
2 types of perturbation: feature perturbation and graph pertur-
bation. For feature perturbation, a random noise matrix is intro-
duced to the feature matrix using the Hadamard product. On the
other hand, graph perturbation involves edge removal and graph
diffusion within the Siamese architecture. To implement edge re-
moval, a mask matrix is generated based on the cosine similar-
ity matrix computed through pairwise comparisons in the latent
space. The 10% of edges with the lowest values are then removed.
Graph diffusion is facilitated using a random walk-based Person-
alized PageRank algorithm [16], allowing for the passage of mes-
sages through higher-order neighborhoods. To optimize the learn-
ing process, SGAE employs an objective function inspired by the
Barlow Twins approach [17], aiming to minimize the deviation of
the cross-correlation matrix from the ideal identity matrix and
reduce redundant information among nodes in the latent space,
therefore improving the overall accuracy of the learned embed-
ding.

SGAE exhibited remarkable effectiveness and
robustness in spatial domain exploration

ST datasets generated by different technology platforms pos-
sess distinct resolutions and features, making it essential to vali-
date the clustering robustness of SGAE across these platforms. To
achieve this, we included ST datasets generated by 10X Visium, se-
qFISH [18], MERFISH (3], SLIDE-seq v2 [19], and Stereo-seq [7]. For
10X Visium datasets, samples of human dorsolateral prefrontal
cortex were collected, which comprised 12 continuous slides, and
each slide has been labeled into 7 layers based on the anatomical
structure [20]. For seqFISH, we acquired a sample of mouse gas-
trulation [21]. In total, 351 genes have been detected and 19,416



cells were labeled into 22 groups. Similar to seqFISH, a mouse pri-
mary motor cortex dataset that includes 254 genes and 3,106 cells
was detected by MERFISH [22]. As for the SLIDE-seq v2, a mouse
olfactory bulb dataset that contains 20,139 cells and 21,220 genes
was included to test the performance of SGAE [19]. To test the
performance in tissue without a clear structure, the liver cancer
dataset from Stereo-seq [23] was utilized. The dataset contains
14,288 spots, and a margin area between cancer and healthy tis-
sue can be seen according to hematoxylin and eosin (H&E) stain-
ing. Then we comprehensively compared the clustering perfor-
mance of SGAE against other state-of-the-art spatial clustering
methods, including SpaGCN [12], GraphST [10], STAGATE [13], and
Leiden [24]. Clustering performance was assessed by spatial visu-
alization combined with the Adjusted Rand Index (ARI), Normal-
ized Mutual Information (NMI), and Fowlkes-Mallows Index (FMI).

Human dorsolateral prefrontal cortex 10X
Visium dataset

We applied SGAE to analyze the 10X Visium ST dataset obtained
from the human dorsolateral prefrontal cortex (DLPFC) [20]. The
visualization of cell clustering confirmed that SGAE was able
to discern the intricate stratified cortex structures with remark-
able clarity, surpassing the capabilities of other existing methods
(Fig. 2A). Furthermore, our benchmarking results revealed that
SGAE outperformed other algorithms in analyzing all 12 DLPFC
slices (Fig. 2E).

Mouse gastrulation seqFISH dataset

The evaluation of SGAE’s performance extends to the mouse
gastrulation dataset, which was generated through the imaging-
based technology seqFISH [21]. The visualization of mouse gastru-
lation structures derived from different methods demonstrates
higher effectiveness of SGAE in accurately discriminating em-
bryo tissue sections (Fig. 2B). In contrast, STAGATE failed to deci-
pher the spatial domain with precision, as it tended to divide the
spatial domain into numerous disorder patches. Notably, SGAE
reaffirmed its superiority in all benchmark metrics against other
methods (Fig. 2F).

Mouse cortex MERFISH dataset

Based on the MERFISH dataset of the mouse primary motor cortex
[22], we further compared the clustering results obtained by dif-
ferent methods. While all 5 methods successfully extracted the
stratified structure of the cortex, SGAE demonstrated a remark-
able ability to capture the layered organization of the glutamater-
gic structures more accurately when compared to the original an-
notation (Fig. 2C). Furthermore, SGAE achieved the highest per-
formance among all 5 methods, underscoring its effectiveness in
precisely clustering cells and capturing the spatial arrangement
of the primary motor cortex (Fig. 2G).

Mouse olfactory bulb SLIDE-seq v2 dataset

The evaluation also encompassed the SLIDE-seq V2 dataset of
the mouse olfactory bulb [19]. The spatial domains identified by
SGAE exhibited remarkable consistency with the annotation pro-
vided by the Allen Reference Atlas, strengthening the confidence
inits accuracy and reliability (Fig. 2D). Conversely, the Leiden clus-
tering approach failed to provide a cohesive tissue structure in
this dataset, while SpaGCN, GraphST, and STAGATE partially de-
ciphered certain structures within the olfactory bulb.

An algorithm for spatial domain detection | 3

Liver cancer Stereo-seq dataset

SGAE and alternative clustering methods were tested on a liver
cancer sample obtained from Stereo-seq. The application of SGAE
resulted in a clearer and more accurate identification of the mar-
gin border based on H&E staining (Supplementary Fig. S1A, B).
Notably, SGAE also detected clusters consisting of discrete spots
located in different positions, reflecting the heterogeneous nature
of the tumor tissue. To assess the spatial correlation of the cluster-
ing results, we computed Moran’s index. Moran’s index revealed
that alternative methods tended to overutilize spatial informa-
tion and identify clusters in blocks (Supplementary Fig. S1C). To
further evaluate the accuracy of the clustering results obtained by
these tools, we focused on the rare cell-type fibroblast and used
VIM as a marker gene for fibroblasts. We visualized the spatial dis-
tribution of VIM and compared it with the most probable cluster
identified by each of the methods. The results showed that cluster
6 in SGAE exhibited a higher similarity to the spatial expression
of VIM compared to other methods (Supplementary Fig. S1D, E).

Overall, our results unequivocally establish SGAE as a powerful
method for analyzing ST data, surpassing other state-of-the-art
methods in terms of cell clustering performance and structure
exploration of complex tissues.

SGAE deciphers spatial domains and provides
discriminative representations

Stereo-seq is a novel ST technology that offers subcellular reso-
lution and has opened up new avenues for investigating the intri-
cate structures within complex tissues [7]. However, the exploita-
tion of its high-resolution capabilities necessitates the utilization
of advanced clustering and spatial analysis methods. Therefore,
we conducted a meticulous evaluation of SGAE's clustering per-
formance using a Stereo-seq dataset of the mouse adult brain
dataset [25]. It comprises a total of 38,811 cells and 20,062 genes
and has been labeled into 38 subclasses through manual anno-
tation. Intriguingly, SGAE showcased exceptional discriminative
power in accurately distinguishing mouse brain sections within
this dataset, outperforming other methods such as SpaGCN, STA-
GATE, CCST, and GraphST (Fig. 3A). Subcluster analysis further
demonstrated the superior performance of SGAE (Fig. 3B). SGAE
accurately delineated distinct subpopulations within the tissue,
whereas STAGATE inaccurately divided the DGGRC2 and TEGLU24
regions into 2 separate clusters, and SpaGCN assigned a larger re-
gion for TEGLU24 and HBGLU.

To provide a systematic comparison, we conducted an ex-
tensive evaluation of SGAE’s clustering results using multiple
benchmark metrics, including ARI, NMI, and FMI. Remarkably,
SGAE outperformed all other existing methods across all bench-
mark metrics (Fig. 3C). Besides, we utilized Moran’s index (MI)
to assess the spatial autocorrelation of each cluster. Although
SpaGCN and STAGATE achieved higher MI scores, SGAE exhib-
ited a distribution most closely aligned with the ground truth in
terms of MI (Fig. 3D). It is suggested that SGAE effectively uti-
lizes spatial information in a more reasonable and appropriate
manner.

Furthermore, we evaluated the representative embedding pro-
vided by SGAE, CCST [11], STAGATE, and GraphST through UMAP
visualization (Fig. 3E). The results showed that SGAE exhibited a
high level of proficiency in extracting the embedding of the mouse
brain Stereo-seq data, while GraphST struggled to distinguish dif-
ferent cell groups. To further evaluate the capability of SGAE
to characterize biological representation, we performed pseudo-
time analysis and calculated the analysis of variance (ANOVA) F-
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Figure 2: SGAE exhibited high effectiveness and robustness in spatial domain exploration. (A-D) Visualization of clustering results from SGAE, SpaGCN,
GraphST, STAGATE, Leiden, and annotation. (A) Human DLPFC 10X Visium dataset. (B) Mouse gastrulation seqFISH dataset. (C) Mouse cortex MERFISH
dataset. (D) Mouse olfactory bulb SLIDE-seq v2 dataset. (E-G) Benchmark metrics comparison of SGAE against SpaGCN, GraphST, STAGATE, and

Leiden. (E) Boxplot of ARI, FMI, and NMI for 12 DLPFC 10X Visium datasets. (F)

score for each cell type (Fig. 3F). Surprisingly, SGAE achieved the
highest ANOVA F-score, highlighting the discriminative capability
of SGAE’s embedding in accurately distinguishing between differ-
ent cell types.

Taken together, these findings provide compelling evidence
that SGAE not only surpasses other methods in terms of clustering
accuracy but also excels in providing superior embedding repre-
sentation for the datasets.

Mouse gastrulation seqFISH dataset. (G) Mouse cortex MERFISH dataset.

SGAE enhanced complex spatial domain
dissection in 3D Drosophila

The advanced use of ST clustering involves integrating 3D re-
construction technology to gain a comprehensive understanding
of the spatial organization and gene expression patterns within
complex tissues. The fundamental topic of 3D tissue structure dis-
section is to identify shared and specific spatial domains across
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Figure 3: SGAE unraveled spatial domains and provided discriminative representations. (A) Visualization of human adult brain clustering results from
SGAE, SpaGCN, STAGATE, CCST, and GraphST. (B) Subclustering results of DGGRC2, TEGLU?24, and HBGLU from SGAE, SpaGCN, STAGATE, CCST, and
GraphST. (C) Benchmark metrics comparison of SGAE against SpaGCN, STAGATE, CCST, and GraphST. (D) Boxplot of Moran’s index comparison of
SGAE against SpaGCN, STAGATE, CCST, and GraphST. (E) UMAP visualization of embedding from SGAE, SpaGCN, STAGATE, and GraphST. (F) Boxplot of
ANOVA F-score of pseudo-time calculated from embedding provided by PCA, CCST, STAGATE, and GraphST.
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multiple slices of ST datasets. Our investigation sought to deter-
mine whether SGAE could effectively accomplish this challeng-
ing multislice clustering task, especially for the datasets with less
batch effect (Supplementary Fig. S2). Notably, we found that SGAE
surpassed Leiden and STAligner [26] in accurately dissecting the
spatial domains of Drosophila embryos at different stages (E14-
16, E16-18, and L1) [27], as evidenced by its higher similarity to
the ground truth (Fig. 4A, B). These findings highlighted the effec-
tiveness of SGAE in achieving reliable multislice clustering for ST
analysis.

After obtaining the clustering results from SGAE, STAligner, and
Leiden, we proceeded with the crucial step of stack slice regis-
tration to enable 3D tissue reconstruction. This involved aligning
consecutive tissue slices to generate a complete and accurate 3D
representation of the tissue. We observed that the 3D meshes gen-
erated from SGAE results exhibited exceptional accuracy in divid-
ing the tissue into correct structures, aligning perfectly with the
corresponding marker genes (Fig. 4C). It indicated that the spa-
tial domains generated by SGAE are highly effective in achiev-
ing promising 3D tissue reconstruction. In contrast, STAligner and
Leiden faltered in accurately dividing the tissue into correct struc-
tures in certain cases. This suggests the robustness and reliability
of the spatial domains generated by SGAE.

Discussion

Spatial transcriptomics is a cutting-edge technology that allows
us to simultaneously capture gene expression while retaining spa-
tial information of the tissue. The emergence of large-scale ST
data hasincreased the demand for effective algorithms capable of
dissecting spatial domains. To achieve this, we proposed SGAE, a
framework composed of 2 identical encoders based on a Siamese
network, which enabled us to encode cell features. Additionally,
SGAE employs a graph neural network that facilitates the learning
of informative representations of both gene expression and spa-
tial locations. To fully leverage the spatial information provided
by ST, we constructed a graph based on the spatial information of
each cell and preclustered gene expression. We then used a linear
combination operation to merge the decorrelated latent embed-
dings, enhancing the discriminative power of the resulting em-
bedding and clustering accuracy, thus facilitating comprehensive
analysis to provide profound insights into complex biological sys-
tems.

Our study demonstrates the effectiveness and robustness of
SGAE in capturing tissue structures across different ST technol-
ogy platforms. This superiority over other methods indicates the
immense potential of SGAE as a reliable tool for analyzing ST
datasets. Another notable strength of SGAE lies in its ability to
accurately capture the heterogeneity present within ST datasets.
The complexity and diversity of cell types within tissues pose sig-
nificant challenges in accurately characterizing gene expression
patterns. Notably, SGAE’'s embedding successfully captures the
heterogenic information, enabling a more comprehensive under-
standing of the spatial organization of gene expression patterns
within tissues. While SGAE has demonstrated its advantages in ST
clustering, further validation across a wider range of ST datasets
and biological systems is necessary to fully assess the generaliz-
ability of SGAE’s performance.

In this study, we also applied SGAE to analyze the Drosophila 3D
dataset and unravel the spatial domains during the E14-16, E16-
18, and larva L1 stages. We further compared the performance
of SGAE with that of STAligner, a commonly used method devel-
oped for multislice ST analysis. By evaluating benchmark met-

rics, we consistently observed that SGAE outperformed STAligner
in effectively grouping cells into biologically meaningful clusters.
The superior clustering results of SGAE carry significant impli-
cations for the analysis of 3D tissue structure reconstruction.
In conclusion, SGAE demonstrates its proficiency in spatial do-
main identification on spatial transcriptomics with a moderate
batch effect. For datasets with a high batch effect, it is recom-
mended to integrate batch removal methods upstream of SGAE
to effectively mitigate this issue. By accurately categorizing cells
into reasonable groups, SGAE could contribute to a more pre-
cise characterization of the spatial organization of gene expres-
sion patterns. This is particularly important for understanding
the complex processes underlying biological development and
differentiation.

Methods

Notations and problem definition

An undirected graph is usually represented by G = {V, E}, where
V ={vi, vo, ---, vy} and E are the node and edge, respectively.
Each node v; is characterized by a vector x; € RP, where D is the
dimension of the attribute. Then the graph can be characterized
by the feature matrix X € RN*P. The relation between each node is
characterized by the adjacency matrix A = (aj),,,, Where a; =1
if v and v; are connected by an edge; otherwise, a;; = 0. A degree
matrix describes the number of edges connected to each node and
can be expressed in a diagonal matrix D = diag(di,dp, -+, dn) €
RN*N"and d; is the degree of node v; and calculated by d; =

> a;. We normalized the adjacency matrixas A = D™'(A + I),

(vi, vj)eE
where I € RNV is the identity matrix.

In this article, we aimed to train a Siamese graph encoder that
embeds all nodes into the low-dimension latent space in an un-
supervised manner. The resultant latent embedding can then be
directly utilized to perform node clustering by clustering metrics
such as K-means and Leiden.

The overall architecture of SGAE

The overall architecture of SGAE consists of graph distortion,
Siamese encoders, Siamese decoders, and a reconstruction loss
function.

Graph distortion
We utilized 2 types of graph distortion, including feature corrup-
tion and edge perturbation.

For feature corruption, which is the feature-level distortion,
we applied a Hadamard product to feature matrix and a ran-
dom noise matrix generated from a Gaussian distribution, that
is, X=X ©®N, where ® means the Hadamard product and
N~ N(1, 0.1).

For edge perturbation, which is the structure-level distortion,
we adopted 2 types of distortion (i.e., edge removal and graph
diffusion). For the edge removal, we generated a mask matrix
M according to the similarity matrix by calculating the pairwise
cosine similarity in the latent space, where 10% of the lowest
edges would be removed. The final adjacency matrix after edge
removal is

A" =D"7 (AOM)+I)D"?

In the graph diffusion treatment, we used Personalized PageR-
ank to calculate the normalized adjacency matrix into a graph
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Figure 4: SGAE enhanced complex spatial domain dissection in a 3D Drosophila embryo. (A) A 2-dimensional visualization of Drosophila embryo
clustering results at different stages (E14-16, E16-18, and L1) from SGAE and STAligner. (B) Benchmark metrics comparison of SGAE, Leiden, and
STAligner. (C) The 3D visualization of a Drosophila embryo. The first row shows the marker genes of the Drosophila embryo at different stages, while the
last 3 rows display the meshes generated by SGAE, STAligner, and Leiden, respectively.
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diffusion matrix by following the MVGRL method [28]:

1 1 -1
Al = (x(I —(1-a) (D*f (A+1) D’f))
where « = 0.2 as the teleport probability in a random walk.

Siamese encoders

In order to reduce the utilization of space while learning richer
cell representations, we constructed the 2 same encoders based
on the Siamese network structure to encode cell features.

The inputs of the Siamese encoders are graph G; = (X1, An)
and graph G, = (X5, Ag). The output is the embedding matrix H.
First, we used 2 parameter-shared encoders to encode graph G;
and graph G,, respectively, and generate embedding matrices H;
and H,. The encoder in the [th layer can be formulated as:

HY = o (Bni{ W) + o (HITWY +50)
HY = o (A W) +o (B TW) 450
—_— 1 e 1 _1

where Ap =Dy (Am +1)Dy’, Ag=D,?(As +1)D;?, D and Dy
are degree matrices of A, and Ay, I is the identity matrix, W1(])
and W, are weight matrices of encoders in the Ith layer, b®) is the
bias vector of the encoder in the Ith layer, and o is the nonlin-
ear activate function, such as ReLU and Tanh. When layer [ =1,
HITY = x,.

Ultimately, the decorrelated latent embeddings derived from 2
different views—namely, H; and Hy—are merged using a linear
combination operation. This amalgamation produces clustering-
focused latent embeddings that can be effectively employed for
clustering purposes, particularly through the utilization of the K-
means algorithm.

Siamese decoders

For SGAE, we constructed a decoder based on graph convolutional
neural networks while reconstructing feature embeddings and
adjacency matrices. The input is the embedding matrix H, and
the output is the original feature matrix X and the adjacency ma-
trix A. First, we used the graph convolutional neural network to
decode the embedding H to generate a feature matrix H, and the
calculation formula of the k layer decoder is as follows:

HK = & (D’% (A+1) D’%H(k’l)w(k))

where D is the degree matrix of the matrix A, and W® is the pa-
rameter matrix of the kth layer of the decoder. Then, we took an
inner product computation between the embedding matrix H and
its transpose to generate the adjacency matrix A.

Reconstruction loss function

Finally, we calculated the feature matrix reconstruction loss Lrec_r¢
as follows:

12
Lrec—F = ’AX —-H :

o
2N
We also calculated the adjacency matrix reconstruction loss
Lrec_a as follows:

2

Lrec-a = ‘A - A

1
aw |14l

The reconstruction loss Lgec is the sum of the feature matrix
reconstruction loss and the adjacency matrix reconstruction loss,
and the calculation formula is as follows:

Lrec = Lrec—F + Lrec-a

Redundant reduction module

In order to eliminate redundant information in node embed-
ding and generate distinguishable embeddings for each node, the
present invention designed a de-redundancy module, which elim-
inated redundant information from 2 levels: node level and fea-
ture level:

o H,HT
[1H1 [l IITHQII
7.7
Sp= 172
NZ1 I T1Za]l

Lrr = Lrr—N + Lrr-F

Clustering guidance module

In order to effectively learn the feature embedding related to the
clustering task, the present invention designed a clustering guid-
ance module. First, we pretrained the model and used K-means to
cluster the generated node embeddings. Second, we constructed
a clustering guidance loss L¢ according to the node embedding
matrix and the clustering result of the previous step: (i) Compute
the soft assignment matrix Q for all nodes and pretrained cluster
centers using the Student’s t distribution. (i) Generate the target
distribution matrix P according to the soft allocation matrix Q, and
the element p;; of the i row j column is calculated by the following
formula:

_ a5/ X G
2 (qizj'/ 2 Chj’)

Then, we computed the clustering guidance loss Lc using the
Kullback-Leibler (KL) divergence from the soft assignment, the tar-
get distribution, and the pretrained soft assignment.

During training, the model was optimized by minimizing the
loss function:

bij

L =Lgec + Lc + Lrr

After the model training was completed, the main flow of data
in the model inference process was as follows: first, the model was
used to obtain the low-dimensional feature embedding H of cells,
and then based on the learned embedding, K-means was used for
clustering, and finally the cluster labels of all cells were obtained.

Clustering refinement

SGAE also incorporates an optional clustering refinement step.
During this step, SGAE analyzes the domain assignment of each
spot and its neighboring spots. Specifically, for a given spot, the
label that appears most frequently among its surrounding spots
is assigned to that spot. The clustering refinement step was exclu-
sively performed for the human DLPFC 10X Visium data.

Performance evaluation

We used 5 indices to evaluate the quality of the clustering re-
sults: ARI, NMI, FMI, Adjusted Mutual_Infomation (AMI), and MI.
These indices provide different perspectives on the clustering per-
formance. ARI measures the similarity of predicted types in the
clusters, with a range from —1 to 1. NMI measures the relation-
ship between variables and is normalized to a range of [0,1]. FMI
calculates the geometric mean of pairwise precision and recall,
also ranging from 0 to 1. AMI measures the similarity between
the cluster assignments obtained from a clustering algorithm and
the ground-truth cluster assignments. MI is used to assess spatial
autocorrelation in the clustering results. Together, these indices
offer a comprehensive evaluation of the clustering quality across
various aspects.



Here are formulas and function Application Programming In-
terfaces (APIs) used to implement the indices.
ARI: sklearn.metrics.adjusted_rand_score

(TP+TN)

ARI =
&

(N = samples)

NMI: sklearn.metrics.normalized_mutual_info_score

IX| 1| i, j
MI(X.Y)=3" 3 P(ij)log (;Slif()j))

i1 j=1

1X] Yl
H(X)= =) P@M)log(P{):H(Y)= - P(j)log(P(j))
i=1 j=1
2MI (X, Y)
M=

FMI: sklearn.metrics.fowlkes_mallows_score
FMI = TP /sqrt (TP + FP) = (TP + FN))
AMI: sklearn.metrics.adjusted_mutual_info_score

MI (X, Y) - E {MI(X,Y)}

AMI(X,Y) = 1/2(HX)+H(Y)) -E {MI (X, Y)}

MI: scanpy.metrics.morans_i
1
Ell= - —=:VIl=E[P]-E[Pz = (-EM) AV
=23,

i=1 j=1
n n
MY 2 @1jZiE

I
So X iy 21'2

Data preprocessing

SGAE utilizes transcriptome-wide gene expression profiles with
spatial coordinates as input. The raw gene counts per spot are first
normalized to the total counts per cell and then scaled through
log-transformation. In the case of 3D Drosophila datasets, we did
not employ any multislice integration method as there was little
batch effect observed from the UMAP result. Principal component
analysis was then conducted on the gene expression data using
the sc.pp.pca() function, and the top 50 principal components per
spot were subsequently utilized as the default expression feature.

Identifying differentially expressed genes

The Wilcoxon test implemented in SCANPY [29] was used
to calculate differentially expressed genes for each spa-
tial domain Benjamin-Hochberg adjustment correlation via
sc.tl.rank_genes_groups().

Spatial trajectory inference

We employed the PAGA algorithm [30] implemented in the
SCANPY package to depict spatial trajectory. The PAGA trajectory
and PAGA tree were inferred by the scanpy.tl.paga() function based
on cell embedding generated by SGAE. Furthermore, scanpy.tl.dpt()
was applied to estimate the pseudo-time as well. To compare the
performance of each clustering method with embedding, we cal-
culated trajectory and pseudo-time using methods above with the
same parameter settings.

Availability of Supporting Source Code and
Requirements

Project name: SGAE
Project homepage: https://github.com/STOmics/SGAE/
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Operating system: Linux
Programming language: Python
License: MIT license

RRID: SCR_024803

Additional Files

Supplementary Fig. S1. SGAE reached good performance on a
complex and heterogeneous liver cancer sample. (A) H&E stain-
ing of a liver cancer sample. Manually added line indicates the
border of tumor and healthy tissue. (B) Clustering result of SGAE
and other methods. (C) Moran’s index of the clustering results of
SGAE and other methods. (D) Spatial map of the expression of VIM.
(E) The most likely clusters associated with fibroblasts identified
using SGAE and other methods, determined by the expression of
VIM.

Supplementary Fig. S2. Less batch effect detected in 3D
Drosophila embryos. UMAP visualization of 3D Drosophila embryos.
Left: color in cell type annotation. Right: color in slices of sample.
(A) E14-16. (B) E16-18. (C) L1.

Data Availability

Supporting datasets for this article are available via the fol-
lowing databases: human dorsolateral prefrontal cortex 10X
Visium dataset from spatialLIBD [31], mouse cortex MERFISH
dataset from Brain Image Library [32], mouse gastrulation seg-
FISH dataset from SpatialMouseAtlas [21], mouse olfactory bulb
SLIDE-seq v2 dataset from Single Cell PORTAL [33], liver cancer
Stereo-seq dataset and 3D Drosophila Stereo-seq dataset from
CNGBdb [34], and adult mouse brain Stereo-seq dataset from Zen-
odo [35]. An archival version of SGAE can also be accessed in Soft-
ware Heritage [36].

Abbreviations

ANOVA: analysis of variance; ARI: Adjusted Rand Index; DLPFC:
dorsolateral prefrontal cortex; FMI: Fowlkes-Mallows Index; GCN:
graph convolution network; GNN: graph neural network; H&E:
hematoxylin and eosin; MERFISH: multiplexed error-robust fluo-
rescence in situ hybridization; MI: Moran’s index; NMI: Normal-
ized Mutual Information; scRNA-seq: single-cell RNA sequenc-
ing; seqFISH: sequential fluorescence in situ hybridization; SNN:
spatial neighbor network; ST: spatial transcriptomics; UMAP: Uni-
form Manifold Approximation and Projection.
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