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Abstract Genome-wide association studies (GWAS) identified thousands of genetic variants 
linked to phenotypic traits and disease risk. However, mechanistic understanding of how GWAS 
variants influence complex morphological traits and can, in certain cases, simultaneously confer 
normal-range phenotypic variation and disease predisposition, is still largely lacking. Here, we focus 
on rs6740960, a single nucleotide polymorphism (SNP) at the 2p21 locus, which in GWAS studies 
has been associated both with normal-range variation in jaw shape and with an increased risk of 
non-syndromic orofacial clefting. Using in vitro derived embryonic cell types relevant for human 
facial morphogenesis, we show that this SNP resides in an enhancer that regulates chondrocytic 
expression of PKDCC - a gene encoding a tyrosine kinase involved in chondrogenesis and skel-
etal development. In agreement, we demonstrate that the rs6740960 SNP is sufficient to confer 
chondrocyte-specific differences in PKDCC expression. By deploying dense landmark morphometric 
analysis of skull elements in mice, we show that changes in Pkdcc dosage are associated with quanti-
tative changes in the maxilla, mandible, and palatine bone shape that are concordant with the facial 
phenotypes and disease predisposition seen in humans. We further demonstrate that the frequency 
of the rs6740960 variant strongly deviated among different human populations, and that the activity 
of its cognate enhancer diverged in hominids. Our study provides a mechanistic explanation of how 
a common SNP can mediate normal-range and disease-associated morphological variation, with 
implications for the evolution of human facial features.
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Editor's evaluation
This provides an important exemplar of a coordinated body of work (using differentiated human 
induced pluripotent stem cells [iPSCs] and phenotyping of a mouse mutant) to dissect the mecha-
nism by which a candidate human single nucleotide variant (SNV) may influence both shape variation 
in the oro-mandibular region, and susceptibility to cleft lip/palate. The extensive use of genome 
editing to introduce both targeted deletions and single nucleotide variants, taking into account 
that each allele has a different natural haplotype background associated with a differing functional 
readout, is especially compelling. As well as being of general interest to craniofacial biologists, the 
iPSC targeting approach is more broadly applicable, provided that a relevant functional readout can 
be identified.

Introduction
The face is one of the most complex structures of the human body and has changed dramatically over 
the course of human evolution (Mitteroecker et al., 2004). In addition to facilitating the coordina-
tion of multiple sensory organs, protection of the brain, and a number of biological adaptations, the 
human craniofacial complex is a target of sexual selection and plays key roles in communication and 
other social interactions (Guo et al., 2014; Sheehan and Nachman, 2014). The human face shape 
varies tremendously across individuals, much of which is genetically encoded, as manifested by the 
high similarity of facial features in monozygotic twins and by familial resemblances [reviewed in Naqvi 
et al., 2022]. Recently, much progress has been made in understanding the genetic underpinnings of 
the normal-range facial variation in human populations through GWAS [reviewed in Weinberg et al., 
2019; Naqvi et al., 2022]. Collectively, these studies have uncovered over 300 loci associated with 
different aspects of facial shape, indicating that - perhaps not surprisingly - facial shape is a highly 
polygenic trait [reviewed in Naqvi et al., 2022.] Furthermore, as has been seen for many other human 
phenotypic traits, facial shape GWAS variants map to the non-coding parts of the genome and are 
especially enriched within cis-regulatory elements, such as enhancers (Claes et al., 2018). Enhancers 
are modular genetic elements that activate the expression of their target genes over long genomic 
distances and in a tissue-specific manner [reviewed in Shlyueva et al., 2014; Heinz et al., 2015; Long 
et al., 2016; Furlong and Levine, 2018]. As would be expected, enrichment of facial GWAS signals 
in enhancers is specific to cell types relevant for facial morphogenesis during development, including 
early fetal facial tissue, in vitro derived embryonic facial progenitors called cranial neural crest cells 
(CNCCs), and their more differentiated descendants, such as cranial chondrocytes (Claes et al., 2018; 
Naqvi et  al., 2021; White et  al., 2021). These observations support the cis-regulatory origins of 
normal-range human facial diversity, whereby non-coding genetic variants affect enhancer function 
and lead to quantitative changes in gene expression in cell types contributing to facial morphogenesis 
during development.

In addition to the genetic underpinnings of normal-range facial variation, GWAS of non-syndromic 
cleft lip/palate (nsCL/P) has revealed the polygenic architecture of this common birth defect, with risk 
variants again mapping mostly to the non-coding parts of the genome (Leslie, 2022; Naqvi et al., 
2022; Weinberg, 2022). While CL/P co-occurs with several Mendelian craniofacial syndromes, the 
majority of cases (~70%) are non-syndromic (meaning, occurring in the absence of other manifesta-
tions) and characterized by complex inheritance. We and others previously noted an overlap between 
sequence variants associated with nsCL/P risk and normal-range face shape variation (Boehringer 
et al., 2011; Indencleef et al., 2018; Indencleef et al., 2021). For example, the rs6740960 variant 
at the 2p21 locus affects the normal-range jaw shape and confers nsCL/P risk in Europeans (Ludwig 
et al., 2017; Claes et al., 2018). Interestingly, such SNPs at the intersection of normal and dysmorphic 
facial features show high heterozygosity in the analyzed populations and affect diverse aspects of the 
normal-range facial morphology, such as the shape of the jaw, philtrum, or nose (Indencleef et al., 
2018). These observations raise a question of how such common genetic variants simultaneously 
confer disease predisposition and normal-range phenotypic variation of distinct facial regions.

Despite the enormous progress in understanding the genetics of the normal-range and disease-
associated phenotypic variation of facial features and other human traits, functional follow-up studies 
have lagged behind. Such studies may involve the discovery of functional variants directly relevant 
for gene expression, identifying the specific cell types and spatiotemporal contexts they act in, and 
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pinpointing the genes they regulate [for example: Sekar et al., 2016; Small et al., 2018; Caliskan 
et al., 2021; Sinnott-Armstrong et al., 2021]. Even more rudimentary is our understanding of mech-
anisms by which changes in gene dosage associated with common genetic variation translate into 
complex human phenotypes. This scarcity of mechanistic discernment is not unique to the face, but 
emerges as a general bottleneck in translating GWAS results to genuine insights into molecular and 
cellular processes underlying complex traits and diseases, and utilizing them for new therapeutic strat-
egies (Cano-Gamez and Trynka, 2020).

Here, we deploy an integrated ‘SNP-to-phenotype’ approach, combining trait-relevant in vitro 
human stem cell models with in vivo studies in mice to probe the mechanism by which a specific 
GWAS-identified variant, rs6740960, affects both normal-range facial shape and confers nsCL/P risk. 
We identify a craniofacial enhancer harboring the rs6740960 SNP, characterize its cell-type specific 
and facial-domain restricted activity pattern, and describe changes in activity during hominid evolu-
tion. Using in situ chromatin conformation capture experiments, we link the rs6740960 cognate 
enhancer to its target gene, PKDCC. Through genome editing, we then uncover the chondrocyte-
specific impact of this enhancer and of the rs6740960 SNP itself on the PKDCC dosage. Finally, using 
micro-computed tomography (micro-CT) coupled with dense landmark morphometric analysis of skull 
elements, we demonstrate the phenotypic impact of Pkdcc dosage on mouse craniofacial develop-
ment and reveal its striking concordance with the lower jaw phenotypes and clefting predisposition 
associated with the rs6740960 SNP in humans.

Results
Common genetic variant at 2p21 associated with lower jaw shape 
variation and susceptibility to clefting shows large frequency shifts in 
human populations
Our recent multivariate GWAS studies of normal-range facial variation in two independent Euro-
pean ancestry populations revealed an association of non-coding genetic variants at the 2p21 locus 
with lower jaw and chin shape (Claes et al., 2018; White et al., 2021). The lead SNP at this locus, 
rs6740960 (A/T) (lowest meta-analysis p-value = 3.39 × 10–36), was significantly associated with shape 
variation over the entire face, however, the most pronounced effects were seen in the lower face, 
especially in the jaw region (Figure 1A, Figure 1—figure supplement 1). Specifically, the ‘T’ allele 
(Allele Frequency = 0.497 Claes et al., 2018) is associated with an outward protrusion of the lower jaw 
and zygomatic region, coupled with a retrusion of the entire central midface. Interestingly, this same 
lead SNP was significantly associated with non-syndromic cleft-lip and palate (nsCL/P) in a separate 
GWAS from an independent cohort of European ancestry individuals (Ludwig et al., 2017). The risk 
allele for nsCL/P was the ‘T’ allele (P-value = 5.71 × 10–13) (Figure 1A).

In the facial GWAS analysis, rs6740960 is in high linkage-disequilibrium with one other genome-
wide significant SNP, rs4952552 (r2=0.81 using a European cohort), located ~16 kb away (Figure 1—
figure supplement 2A). We have prioritized rs6740960 for functional follow-up because we observed 
that rs6740960 but not rs4952552 resides within a genomic region marked by an active enhancer 
chromatin signature in in vitro derived human CNCCs (Figure  1—figure supplement 2B). None-
theless, we note that other SNPs in linkage with rs6740960 may contribute to the observed genetic 
association of the 2p21 locus with the lower jaw shape.

We were intrigued that a common genetic variant – indeed rs6740960 is approaching 50% allele 
frequency in European ancestry populations – simultaneously affects normal-range jaw shape and 
predisposes to clefting. To understand the prevalence of this SNP across diverse human populations, 
we examined allele frequencies for rs6740960 within the 1000 Genomes Project populations (Auton 
et al., 2015). We observed a large range of ‘A’ vs ‘T’ allele frequencies, with the ‘A’ allele occurring at 
roughly 50% frequency in Europeans and South Asians (i.e. Europeans = 52%, South Asians = 58%), 
but at much lower frequencies in other populations (i.e. 21% in Africans and to its lowest frequency of 
2% in East Asians) (Figure 1B). These allele frequencies were also consistent within a second human 
population dataset, namely the Human Genome Diversity Project (HGDP) (Bergström et al., 2020). 
Furthermore, we found that the fixation index metric, FST, between East-Asians and either Europeans 
or South-Asians was 0.48 and 0.52, respectively, indicative of high genetic differentiation between East 
Asians and these two populations for this specific SNP. FST values range from 0 to 1 with 0 indicative 
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Figure 1. Association of rs6740960 (A/T) with normal-range facial shape variation and its allele frequency among 
world populations. (A) Genome-wide association studies (GWAS) of normal-range facial variation in Europeans 
identified rs6740960 as a lead single nucleotide polymorphism (SNP) at the 2p21 locus (Claes et al., 2018). 3D 
facial morphs and facial effects of the rs6740960 are shown, with blue and red indicating a local shape depression 
and protrusion, respectively, due to the ‘T’ allele. Note the protrusion of the lower jaw and zygomatic regions 
and retrusion of the entire central midface associated with the ‘T’ allele. An independent GWAS linked rs6740960 
with susceptibility to non-syndromic cleft lip with or without palate in Europeans (Ludwig et al., 2017). (B) Allele 
frequency distribution for rs6740960 across populations of the 1000 Genomes Project. (see also Figure 1—figure 
supplements 1–2).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Facial effects for the rs6740960 (A/T) single nucleotide polymorphism (SNP) implicated in 
normal-range facial variation within the United Kingdom and the United States of America European study cohorts 
of White et al., 2021.

Figure supplement 2. Linkage Disequilibrium (LD) calculation, and epigenetic features, at the 2p21 locus 
associated with normal-range lower jaw variation (see White et al., 2021).

https://doi.org/10.7554/eLife.82564
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of identical allelic content whereas 1 indicates that alternate alleles are fixed in each sub-population. 
Large shifts in rs6740960 allele frequency within human populations, and high FST values between 
populations, suggest that this GWAS variant may have a distinct impact on facial shape variation and 
disease predisposition in different populations, with potential population-specific selection events.

rs6740960 resides in a craniofacial enhancer with evolutionarily 
modulated activity
To investigate the evolutionary history of the rs6740960 variant, we constructed sequence alignments 
of extant and archaic reconstructed hominin and hominid species, centered at the SNP (Figure 2A). 
These multi-species alignments revealed that the ‘T’ allele (associated with a more protruding jaw 
morphology and predisposition to clefting) is the ancestral allele, shared with the Neanderthal and 
the chimpanzee, whereas the ‘A’ variant at this position is a derived allele unique to humans. Inter-
estingly, the T to A substitution at this site is associated with the gain of a putative DLX binding site 
(Figure 2A), with the DLX family transcription factors playing important roles in jaw patterning and 
development [reviewed in Minoux and Rijli, 2010]. Additionally, we observed three chimp-specific 
mutations in the vicinity of rs6740960, one of which is predicted to confer gain of the ETS transcription 
factor family binding site (Figure 2A).

These observations suggest that rs6740960 may influence facial shape by affecting the activity 
of a cis-regulatory element, and that the same element may also be modulated in a chimp-specific 
manner. Consistent with this hypothesis, we have previously noted that rs6740960 resides within a 
putative CNCC enhancer (Claes et al., 2018). Furthermore, enrichment of the coactivator p300 and 
of the active chromatin mark H3K27ac at this region is higher in the chimpanzee CNCCs as compared 
to humans, suggesting that this non-coding element may have higher regulatory activity in the chimp 
(Figure 2B).

To test whether the genomic region spanning rs6740960 is a bona fide craniofacial enhancer, we 
cloned orthologous human (with an ancestral T variant at rs6740960) and chimpanzee regions into 
a LacZ reporter vector and assayed them by conventional transgenic mouse reporter assays. The 
resulting activity patterns were analyzed by LacZ staining of E11.5 mouse embryos. We observed 
that the human element displayed specific craniofacial activity in the developing upper and lower jaw 
primordia (mandibular and maxillary prominences), and in the lateral nasal prominence, but had little 
activity in the medial nasal prominence or in other tissues of the embryo (Figure 2C). This pattern 
confirms that the genomic region overlapping rs6740960 is a bona fide enhancer active during cranio-
facial development. For simplicity, we will hereafter refer to this element as the ‘rs6740960 cognate 
enhancer.’ The chimp ortholog of the rs6740960 cognate enhancer was also active in the developing 
face, but relative to the human element, showed both stronger and broader activity, especially within 
the medial nasal prominence (Figure 2C). Although one caveat to this analysis is that the transgenic 
reporter was integrated randomly, and thus a subject of positional effects, we have observed weaker 
activity of the human enhancer across multiple embryos (see Figure 2—figure supplement 1 for all 
LacZ positive embryos). Together, our data demonstrate that rs6740960 resides within a bona fide 
craniofacial enhancer whose activity diverged in hominids.

The rs6740960 cognate enhancer regulates the expression of PKDCC
To begin probing the mechanism by which the rs6740960 cognate enhancer can influence face shape 
and affect susceptibility to clefting, we first set out to identify its target gene(s). The closest annotated 
gene to the rs6740960 is C2orf91 (LINC02898). However, when we examined RNA-seq data from 
the in vitro derived CNCCs and their derivative cell types, we observed minimal if any, expression 
of C2orf91 (TPM <1) (Figure 3—figure supplement 1), suggesting that a bona fide target of the 
rs6740960 cognate enhancer may be a more distal gene. Analysis of cell type-specific long-range 
chromatin interactions can help nominate their distal target genes (Jeng et al., 2019; López-Isac 
et al., 2019). To examine long-range interactions of the rs6740960 cognate enhancer during cranio-
facial development, we utilized an in vitro model previously developed in our laboratory, in which 
hESC are differentiated to CNCCs, and then further to cranial chondrocytes (Bajpai et  al., 2010; 
Rada-Iglesias et al., 2012; Prescott et al., 2015; Long et al., 2020; Figure 3A). From these cell 
derivatives, we profiled active chromatin by H3K27ac ChIP-seq and enhancer-promoter interactions 
using H3K27ac HiChIP, an assay based on principles of chromatin conformation capture, which further 
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Figure 2. Sequence and activity changes of rs6740960 cognate enhancer in hominids. (A) Multi-species abridged alignment of the genomic region 
surrounding rs6740960. Extant species are Human, Altai Neanderthal and Chimp, and ancestral reconstructed species are Homo, Hominin, and 
Hominid. Human-specific substitution (‘A’ at rs6740960) and chimp-specific substitution (T→C) are highlighted, along with transcription factors predicted 
to gain binding affinity via the substitution and their consensus sequence motifs. (B) Genome browser track showing the location of rs6740960 and 
its overlap with H3K27ac and P300 ChIP-seq signal from human and chimpanzee CNCCs. Note higher enrichments in the chimpanzee. Region 
corresponding to the sequence tested in (C) is highlighted in purple. ChIP-seq data from Prescott et al., 2015 (C) LacZ Transgenic Mouse Reporter 
assays performed using Human (with an ancestral ‘T’ allele) and Chimp orthologs of the genomic region surrounding rs6740960. Triplicate copies of the 
500 bp sequence orthologs are used in the reporter vector. Both human and chimp orthologs show LacZ reporter activity restricted to the head and face 
prominences in E11.5 transgenic mice and overlapping upper and lower jaw primordia (Maxillary Prominence-MxP and Mandibular Prominence-MdP). 
The Chimp ortholog shows stronger activity within both MxP and MdP and within the Lateral and Medial Nasal Processes (LNP and MNP). NP – Nasal 
Pit. LacZ-positive animals that show the same staining profile of expression domains are numbered. See Figure 2—figure supplement 1 for images of 
all LacZ-positive embryos.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. LacZ transgenic mouse reporter assay results for the 500 bp Human ‘T’ allele and Chimp ortholog of the rs6740960 cognate 
enhancer.

https://doi.org/10.7554/eLife.82564


 Research article﻿﻿﻿﻿﻿﻿ Developmental Biology | Evolutionary Biology

Mohammed et al. eLife 2024;13:e82564. DOI: https://doi.org/10.7554/eLife.82564 � 7 of 22

Figure 3. rs6740960 regulates expression of PKDCC in cranial chondrocytes. (A) Schematic of the in vitro differentiation protocol for obtaining CNCCs 
and cranial chondrocytes from human embryonic stem cells (hESCs). (B) Mapping of long-range chromatin interactions by H3K27ac HiChIP in CNCCs 
and cranial chondrocytes revealed significant contacts between rs6740960 cognate enhancer and PKDCC promoter in chondrocytes. H3K27ac ChIP-
seq genome browser tracks at the locus from CNCCs (top) and cranial chondrocytes (bottom) are shown. Significant HiChIP interactions, called at FDR 
<10% and within 25 Kb bins given the resolution of this dataset (dotted lines), are shown underneath ChIP-seq tracks. Fold-change relative to input 
samples, as computed by the ENCODE chipseq2 pipeline, are shown on the y-axis. (C) Changes in allele-specific PKDCC expression upon deletion of 
rs6740960 cognate enhancer or mutation of rs6740960 to heterozygosity. Wild-type un-edited cells, homozygous for rs6740960 (A/A), show no PKDCC 
allelic imbalance, as expected. Three independent CRISPR-Cas9 heterozygous enhancer deletion hESC lines show a 40–60% decrease in PKDCC 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.82564
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enriches for long-range interactions between active regulatory elements via an immunoprecipitation 
step with an H3K27ac antibody (Mumbach et al., 2016). In H3K27ac ChIP-seq data, we observed that 
the rs6740960 cognate enhancer is comparably enriched for H3K27ac both in CNCCs and in cranial 
chondrocytes, although in general, there was more H3K27ac at the locus in chondrocytes (Figure 3B). 
We further confirmed commensurate H3K27ac levels at the rs6740960 cognate enhancer in CNCCs 
and chondrocytes using the more quantitative ChIP-qPCR analysis (Figure 3—figure supplement 2). 
Surprisingly, however, in the HiChIP assay, the rs6740960 cognate enhancer makes contact with the 
promoter of the PKDCC gene selectively in chondrocytes, but not in CNCCs (Figure 3B). While we 
observed another significant contact between the PKDCC promoter and more proximal enhancers 
both in CNCCs and in chondrocytes, we detected significant contact between the PKDCC promoter 
and the rs6740960 cognate enhancer only in chondrocytes (Figure 3B). PKDCC is an attractive target 
gene candidate for the rs6740960 cognate enhancer, because it encodes a secreted tyrosine kinase 
involved in chondrocyte differentiation, which when mutated in mice results in skeletal defects in limbs 
and face, including clefting (Imuta et al., 2009; Kinoshita et al., 2009; Bordoli et al., 2014).

To directly test the contribution of the rs6740960 cognate enhancer to PKDCC expression, we used 
CRISPR/Cas9 genome editing to generate hESC lines containing a heterozygous deletion of the 1.2 kB 
sequence corresponding to the entire, broad p300 peak spanning the rs6740960 cognate enhancer 
(Figure 3—figure supplement 3A–B). Following differentiations of three independent heterozygous 
enhancer deletion lines and wild-type control hESC lines (that underwent the editing process in parallel 
but remained unedited) to CNCCs and cranial chondrocytes, we profiled the allele-specific expression 
of PKDCC using droplet-digital PCR (ddPCR). In ddPCR, fluorescently labeled FAM or HEX probes 
designed against a heterozygous SNP (rs7439) within PKDCC 3’ UTR region permit allele-specific 
measurements of PKDCC expression in the presence or absence of the enhancer. The assay is inter-
nally controlled, since measurements of PKDCC’s expression with or without the enhancer are simul-
taneously assayed in thousands of individual droplets where each droplet receives a single template. 
By phasing the enhancer deletion strand with the corresponding PKDCC SNP allele (Figure 3—figure 
supplement 3C), PKDCC’s expression can be computed from the final number of FAM or HEX-labeled 
droplets using Poisson statistics. These experiments showed an approximately 40–60%  decrease 
in PKDCC expression at the allele bearing the enhancer deletion. Notably, this effect was present 
only within the heterozygous deletion lines but absent from wild-type cells, as expected (Figure 3C, 
Figure 3—figure supplement 5 for independent biological replicate). In concordance with H3K27ac 
HiChIP interactions, the effect of the enhancer deletion was present in cranial chondrocytes, but not 
in CNCCs. Collectively, our results demonstrate that the rs6740960 cognate enhancer targets the 
PKDCC gene and provides a strong contribution to its expression selectively in chondrocytes.

expression for the enhancer deletion allele selectively in cranial chondrocytes. Three independent heterozygous rs6740960 (A/T) edited lines show a 
15–30% decrease in PKDCC expression due to the ancestral ‘T’ allele. FAM/HEX droplet-digital PCR (ddPCR) probes that distinguish PKDCC alleles 
based on rs7439 (A/G) heterozygous single nucleotide polymorphism (SNP) are shown. This same SNP was used to phase the enhancer deletion or SNP 
mutation with PKDCC (see Figure 3—figure supplements 3–4). Genomic DNA from H9 wild-type cells was used to verify the FAM/HEX ratio of one at 
rs7439.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Figure supplement 1. RNA expression of lincRNA C2orf91/LINC02898 and protein-coding gene PKDCC, and two marker genes of CNCC identity 
(AP2α and NR2F1).

Figure supplement 2. H3K27ac ChIP-qPCR data from H9 human embryonic stem cell (hESC) derived CNCCs and cranial chondrocyte cells, as shown in 
Figure 3A and B.

Figure supplement 3. Generation of a 1.2 Kb deletion at the rs6740960 cognate enhancer using CRISPR/Cas9 genome editing of H9 human embryonic 
stem cells (hESCs).

Figure supplement 3—source data 1. Unprocessed gel blot, as SCN file, and labeled TIFF image corresponding to Figure 3—figure supplement 3B.

Figure supplement 4. Generation of A-to-T point mutation at rs6740960 using CRISPR/Cas9 genome editing of H9 human embryonic stem cells 
(hESCs).

Figure supplement 5. PKDCC allele-specific droplet-digital PCR (ddPCR) expression profiling conducted from a second independent differentiation of 
unedited wild-type, heterozygous enhancer knock-out, and heterozygous rs6740960 mutant human embryonic stem cell (hESC) lines.

Figure 3 continued

https://doi.org/10.7554/eLife.82564
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rs6740960 variant causes cell-type specific allelic differences in the 
PKDCC expression
To provide direct evidence for the effect of the lead GWAS SNP itself on PKDCC’s expression, we 
used genome editing to create multiple, independent clonal rs6740960 A/T heterozygous hESC lines 
(wild type H9 hESC used in our studies are A/A homozygous for rs6740960). Given that H9 hESC is 
heterozygous for other variants at the locus, we obtained cell lines in which one or the other alternate 
allele was mutated from A to T at rs6740960 (Figure 3—figure supplement 4). Following differentia-
tion to CNCCs and cranial chondrocytes, we compared PKDCC expression in these lines to the uned-
ited cells. As expected, the effects of the single base mutation were not as large as those seen for the 
deletion of the entire enhancer. Nonetheless, the allele bearing the ‘T’ variant at rs6740960 showed a 
15–30% reduction in PKDCC expression across examined cell lines, and this reduction was observed 
only in chondrocytes (Figure 3C, Figure 3—figure supplement 5 for independent biological repli-
cate). Of note, while the ‘T’ mutation consistently resulted in diminished PKDCC expression across cell 
lines, the effect was larger when one allele was targeted compared to the other; similar effects were 
observed in heterozygous deletion lines where the enhancer has been deleted from alternate alleles 
(Figure 3C). These observations suggest that other cis-regulatory variants at the locus – which need 
not be in genetic linkage with rs6740960 – can modulate the effects of rs6740960 and its cognate 
enhancer on PKDCC expression. Together, our results show that the rs6740960 variant is sufficient to 
affect PKDCC transcript levels.

In vivo perturbation of Pkdcc dosage affects the shape of the jaw and 
palatine bones
Our molecular studies of the rs6740960 cognate enhancer, its cis-mutations, and PKDCC expression 
suggest that rs6740960 affects the normal-range facial shape and predisposition to clefting by quan-
titatively influencing PKDCC dosage during cranial chondrogenesis. To directly quantify the impact of 
PKDCC dosage changes on facial morphology, we turned to mouse models. Knockout of Pkdcc (also 
known as Vlk) in mice results in craniofacial malformations and clefting, indicating evolutionary conser-
vation of PKDCC craniofacial function, and nominating mice as the most relevant, experimentally 
accessible model for directly quantifying the impact of Pkdcc dosage changes on facial morphology 
(Imuta et  al., 2009; Kinoshita et  al., 2009). Given that the rs6740960 cognate enhancer affects 
PKDCC dosage by altering its expression, we perturbed Pkdcc gene dosage in mice through hetero-
zygous coding mutations using previously described Pkdcc (Vlk) knockout mice (Kinoshita et  al., 
2009). The phenotypes reported in the Pkdcc-/- mice include perinatal lethality associated with respi-
ratory and suckling defects, growth retardation, shortened limbs, delayed ossification, and craniofa-
cial anomalies; at least some of these malformations have been attributed to perturbed chondrogenic 
differentiation and maturation (Imuta et al., 2009; Kinoshita et al., 2009). Within the cranial skel-
eton, Pkdcc-/- neonates were described to have cleft palate and shortened nasal capsule and maxilla, 
whereas dysmorphic craniofacial phenotypes have not been reported in heterozygous Pkdcc+/- mice 
(Imuta et al., 2009; Kinoshita et al., 2009). To confirm the reported loss-of-function phenotypes and 
to quantitatively characterize potential effects associated with Pkdcc heterozygosity, we performed 
high-resolution micro-computed tomography (micro-CT) imaging on wild-type, Pkdcc+/- and Pkdcc-

/- mice at E18.5 (Figure 4A). First, we confirmed that Pkdcc-/- embryos (n=13) indeed displayed a 
shortened nasal capsule and severe clefting affecting the relevant regions of the maxilla and palatine 
bones as compared to wild-type embryos (Figure 4—figure supplement 1, Figure 4—videos 1–2 
(mandible), Figure 4—videos 3–5 (maxilla/palatine)).

We next proceeded to examine the phenotypes of Pkdcc+/- mice. Given the modest, normal-range 
face shape changes associated with rs6740960 in humans (Figure 1A), we also expected subtle pheno-
types associated with Pkdcc heterozygosity in mice, requiring both a large animal sample size and 
sensitive morphometric analysis. In this vein, we utilized a pipeline that incorporated high-resolution 
micro-CT data from 20 wild-type and 24 Pkdcc+/- E18.5 mutant embryos spanning seven litters, manual 
bone segmentation, and dense landmarking of bone surfaces to capture subtle effects on bone shape 
variation (Figure 4A). To circumvent the limitations of sparsely labeled bone landmarks common to 
standard morphometric analysis, we used the software package MeshMonk, to densely landmark 
each specimen via a non-rigid registration of a template surface onto each specimen thereby allowing 
comparative bone surface evaluation (White et al., 2019). Using the full collection of aligned surfaces 

https://doi.org/10.7554/eLife.82564
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Figure 4. Morphogenetic assessment of Pkdcc dosage on cranial skeletal variation in mice. (A) Workflow of cranial morphometric analysis from wild-
type and Pkdcc mutant mice. Following colony expansion, wild-type, Pkdcc+/- and Pkdcc-/- E18.5 embryos were fixed and imaged using high-resolution 
micro-CT. Following bone segmentation and sparse landmarking, bone surfaces were non-rigidly aligned to template samples with the MeshMonk 
software, which facilitated a dense correspondence map between all animals’ surfaces. Partial least squares (PLS) regression was used to analyze 
genotype-to-phenotype effects. (B, C, D) Bone surface variation between wild-type and Pkdcc+/- heterozygous mutant mice for the Mandible (B), 
Palatine Bone (C), and the Maxilla (D). Blue and red coloring represent local depression and protrusion of the bone surface, respectively, due to 50% 
reduction in Pkdcc expression. (B) Pkdcc+/- mice exhibit overall significant shape change in the mandible (Permutation test global p-value = 0.0021). 
Local variation in the mandibular ramus, angular process, condylar process, and the mental protuberance contribute to the overall elongation of the 
mandible (See also Figure 4—videos 6–7). (C,D) Pkdcc+/- mice exhibit overall significant shape change in the Maxilla and Palatine bones (Permutation 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.82564
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as the measured phenotype, we used partial least-squares regressions and permutation tests to 
compute the effect of genotype, independent of other covariates such as litter and sex, on pheno-
type, either at the level of complete bone shape or variation at each vertex (see Methods). Local 
regions of depression or protrusion in the shape of the bone in Pkdcc heterozygous mutant animals, as 
compared to wild-type animals, are visualized in blue and red color maps representing the regression 
coefficients.

Using this pipeline, we characterized the phenotypes of the mandible, maxilla, and palatine bones. 
We saw overall significant changes to the mandible shape, with strong local effects seen within the 
mandibular ramus and mental protuberance region, especially evident in the elongation of the angular 
process and mental region in Pkdcc+/- as compared to wild-type animals, phenotypes consistent with 
the protruding jaw phenotype reported in GWAS (Figure 4B, Figure 4—videos 6–7). Additionally, we 
observed significant shape variation in the oral view of the palatine bone, especially in the distance 
between the symmetric horizontal plates whose eventual closure forms the base of the hard palate 
(Figure 4C, Figure 4—videos 8–10). A similar effect was observed, but to a lesser extent, for the 
palatal processes of the maxillae. The palatine and maxillary phenotypes are more subtle and distinct 
from the complete cleft phenotype that is present in the Pkdcc-/- homozygous mice. These changes 
can explain why alternations in PKDCC dosage associated with a common genetic variant in humans 
increase susceptibility to clefting, but are not by themselves sufficient to cause CL/P. Finally, we exam-
ined the maxilla for shape differences between genotypes. We observed no appreciable differences 
within the palatine process of the maxilla, but we saw significant shape changes throughout the zygo-
matic processes (Figure 4D, Figure 4—videos 8–10). Interestingly, these observations may poten-
tially explain why the rs6740960 variant shows a modest, but significant association with cheek shape 
in facial GWAS (Figure 1A). In summary, quantitative exploration of facial phenotypes in Pkdcc+/- mice 
has allowed us to identify specific anatomical structures that are affected by decreases in Pkdcc gene 
dosage. The remarkable concordance of these phenotypes and face shape changes associated with 

test global p-value = 0.015). (C) Pkdcc+/- mice have a wider distance between the horizontal plates of the palatine bone, a structure that forms the 
posterior part of the hard palate (See also Figure 4—videos 8–10). (D) Significant variation in the shape of maxilla, especially within the zygomatic 
arches between wild-type and Pkdcc+/- animals. Similar analysis performed between wild-type and Pkdcc-/- animals are shown in Figure 4—videos 1–2 
(mandible), and Figure 4—videos 3–5 (maxilla/palatine). (see also Figure 4—figure supplement 1).

The online version of this article includes the following video and figure supplement(s) for figure 4:

Figure supplement 1. Micro-CT images demonstrating cranial skeletal differences between wild-type and Pkdcc-/- mutant E18.5 mouse embryos.

Figure 4—video 1. Medial side view of the left mandible shape effect changes between averaged wild-type and Pkdcc-/- E18.5 mouse embryos.

https://elifesciences.org/articles/82564/figures#fig4video1

Figure 4—video 2. Lateral side view of the left mandible shape effect changes between averaged wildtype and Pkdcc-/- E18.5 mouse embryos.

https://elifesciences.org/articles/82564/figures#fig4video2

Figure 4—video 3. Oral view of the maxilla and palatine bone shape effect changes between averaged wild-type and Pkdcc-/- E18.5 mouse embryos.

https://elifesciences.org/articles/82564/figures#fig4video3

Figure 4—video 4. Top view of the maxilla and palatine bone shape effect changes between averaged wild-type and Pkdcc-/- E18.5 mouse embryos.

https://elifesciences.org/articles/82564/figures#fig4video4

Figure 4—video 5. Front view of the maxilla and palatine bone shape effect changes between averaged wild-type and Pkdcc-/- E18.5 mouse embryos.

https://elifesciences.org/articles/82564/figures#fig4video5

Figure 4—video 6. Medial side view of the left mandible shape effect changes between averaged wild-type and Pkdcc+/- E18.5 mouse embryos.

https://elifesciences.org/articles/82564/figures#fig4video6

Figure 4—video 7. Lateral side view of the left mandible shape effect changes between averaged wild-type and Pkdcc+/- E18.5 mouse embryos.

https://elifesciences.org/articles/82564/figures#fig4video7

Figure 4—video 8. Oral view of the maxilla and palatine bone shape effect changes between averaged wild-type and Pkdcc+/- E18.5 mouse embryos.

https://elifesciences.org/articles/82564/figures#fig4video8

Figure 4—video 9. Top view of the maxilla and palatine bone shape effect changes between averaged wild-type and Pkdcc+/- E18.5 mouse embryos.

https://elifesciences.org/articles/82564/figures#fig4video9

Figure 4—video 10. Front view of the maxilla and palatine bone shape effect changes between averaged wild-type and Pkdcc+/- E18.5 mouse embryos.

https://elifesciences.org/articles/82564/figures#fig4video10

Figure 4 continued
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the rs6740960 substitution in humans provides strong support to our hypothesis that this genetic 
variant affects normal-range and disease-associated facial variation through regulating the expression 
of PKDCC.

Discussion
Our study provides an in-depth functional analysis of a non-coding genetic variant associated with 
both normal-range and disease-associated variation in a human morphological trait. Based on our 
collective results we propose a mechanism of rs6740960 function. The rs6740960 SNP resides in and 
modulates the activity of a craniofacial enhancer active in the developing jaw primordia. This enhancer 
regulates the expression of PKDCC in cranial chondrocytes. The PKDCC gene encodes a secreted 
tyrosine kinase, which remodels the extracellular matrix during cartilage development and affects the 
timing of proliferative chondrocyte differentiation and subsequent bone formation (Bordoli et al., 
2014). Although in mice Pkdcc/Vlk is also important for long bone development in limbs (Imuta et al., 
2009; Kinoshita et al., 2009), the craniofacial activity of the cognate rs6740960 enhancer restricts 
the SNP effects on PKDCC dosage to the developing face. Thus, a parsimonious explanation for the 
association of rs6740960 with facial variation is through the sensitivity of cranial chondrogenesis, and 
in turn facial skeletal development, to the PKDCC dosage. This may be especially pronounced during 
lower jaw development, where the transient Meckel’s cartilage impacts mandibular form (Svandova 
et al., 2020), and mandibular chondrocytes can directly transform into bone cells (Jing et al., 2015). 
Indeed, we demonstrated that in mice 50% reduction in Pkdcc dosage results in quantitative changes 
in the shape of several mandibular regions.

Our observations can also explain why rs6740960 is associated with nsCL/P. The reduction in Pkdcc 
dosage increased the distance between the horizontal plates of the palatine bones (and the palatal 
plates of the maxillae to a lesser extent) which ultimately need to fuse to form the secondary palate, 
but by itself, is not sufficient for clefting. This makes sense, given that the frequency of the risk-
conferring rs6740960 ‘T’ allele in the European ancestry population (even in a homozygous setting) is 
two orders of magnitude higher than the frequency of orofacial clefting in the same population. Thus, 
by definition, the risk variant must work additively or synergistically with other variants acting on genes 
affecting palate development, either at the same locus or at different loci, and/or with environmental 
factors. These include prenatal exposure to alcohol, nicotine, viruses, maternal diabetes, and methyl 
donor deficiency, all of which are linked to an increased prevalence of orofacial clefts (Martinelli et al., 
2020). Interestingly, unaffected relatives of individuals with nsCL/P show distinctive facial features, 
which have been quantitatively characterized to define a subclinical ‘endophenotype’ that may reflect 
a heightened susceptibility to clefting (Indencleef et al., 2021; Weinberg, 2022). Subsequent GWAS 
analysis revealed loci associated with nsCL/P endophenotype in a healthy, unselected population 
(Indencleef et al., 2021). Notably, one of the genome-wide significant lead SNPs from this analysis, 
rs4952552, maps to the PKDCC locus, suggesting that the impact of rs6740960 on clefting risk is likely 
modulated by the presence of other common variants acting on PKDCC.

It is not entirely clear what the embryological origins of the maxillary and palatine changes observed 
in Pkdcc heterozygous mutants, particularly given the intramembranous origin of these bones. One 
possibility is that these changes are a secondary consequence of effects taking place in the adjacent 
endochondral cranial base. Another possibility worth future exploration is that in addition to chon-
drocytes, mesenchymal tissues forming the bony structures of the palate are also sensitive to Pkdcc 
dosage. Consistent with this possibility, Kinoshita et al., 2009 showed that Pkdcc is expressed in the 
CNCC-derived mesenchyme populating the palatal shelves. Regardless, the quantitative phenotypes 
we describe in Pkdcc heterozygous mice are consistent with an increased susceptibility of clefting in 
Europeans carrying the risk-conferring rs6740960 allele.

The activity of the rs6740960 cognate enhancer diverged in hominids, suggesting that this element 
may have contributed to the divergence in craniofacial morphology between hominid species. Our 
analysis also revealed drastic variation in rs6740960 allele frequency across modern human popula-
tions, with Europeans and South Asians showing high heterozygosity for this SNP, and East Asians 
exhibiting prevalence of the ancestral ‘T’ allele. What could be the potential adaptive advantages 
for the increased frequency of the human-derived allele in European and South Asian populations? 
Our analysis suggests that the variation in jaw phenotype associated with the rs6740960 was partly 
driven by variation in the angular process of the mandible. The angular process, or mandibular angle, 

https://doi.org/10.7554/eLife.82564
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attaches to the masseter muscle which generates the majority of bite-force during mastication (Sella-
Tunis et al., 2018). Could the derived ‘A’ allele facilitate masticatory adaptations influenced by dietary 
changes along population boundaries? Was the increase in the derived allele frequency associated 
with the elevated susceptibility to clefting associated with the ancestral allele in the European popula-
tion? And if so, are East Asians buffered from these effects by other, compensatory genetic variants? 
Or, alternatively, could the advantageous benefit be purely an aesthetic one, with a less or more 
protruding jaw appearance affecting sexual selection differently in distinct human populations and 
cultures? While we do not have answers to these questions at present, our results merit further consid-
eration in the context of human facial adaptations and evolution.

Methods
Cell culture and differentiation of hESCs to CNCCs and cranial 
chondrocytes
Human Embryonic Stem Cell (hESC) H9 line (directly obtained from WiCell Research Institute [catalog 
number WA09]) was cultured and differentiation to CNCCs using a protocol previously described in 
Prescott et al., 2015. Briefly, the hESC H9 line was authenticated by next-generation sequencing 
experiments and was verified to be free of mycoplasma contamination. The hESC H9 cell line is 
excluded from the catalog of commonly misidentified cell lines curated by the International Cell Line 
Authentication Committee. hESCs were plated onto tissue-culture six-well plates pre-coated with 
Matrigel (Corning 356231) using mTESR-1 medium (StemCell Technologies 85850) and grown for 
5–8 days with daily medium replacement. Cells were passaged 1:6 using RELESR (StemCell Technol-
ogies 05872) for detachment of hESCs. For differentiation of hESCs to CNCCs, large hESC colonies 
were detached using 2 mg/mL Collagenase IV (Fisher 17104019) resuspended in KnockOut DMEM 
(Gibco 10829018), and incubation for 30 min – 1 hr at 37 °C. Intact cell clumps were washed in PBS 
and plated into Neural Crest Differentiation medium (NDM) in 10 cm Petri Dishes incubated at 37 °C. 
Media was changed daily until Day 4, changing plates every day. On Day 4, neuroectoderm spheres 
were left undisturbed until Day 7 to promote attachment to the dish. From Day 7–11 CNCCs emerged 
from attached neural spheres, and NDM media was changed daily without disturbing attached spheres 
and CNCCs. To transition CNCCs to passage 1, neural spheres were removed by gentle aspiration, the 
plate was washed with PBS, and the remaining CNCCs were detached using 50% Accutase diluted in 
PBS. After incubation at 37 °C for 1 min, CNCC were disaggregated with gentle pipetting. CNCCs 
were plated onto fibronectin-coated six-well tissue-culture treated plates with Neural Crest Mainte-
nance media (NMM), left to be attached for 15 min at 37 °C, and medium containing Accutase was 
replaced with fresh pre-warmed NMM. Medium was replaced daily without tilting plates. Cells were 
split 1:3 every 2 days, using 50% accutase, and the same procedure of allowing CNCCs to attach to 
the plate for 15 min at 37 °C, and immediately replacing accutase containing medium with fresh pre-
warmed NMM. One day after splitting to passage 3, cells were transitioned to NMM + BMP2 and 
ChIRON medium (NMM + BC).

Passage 4 CNCCs were harvested for experiments, or differentiated further to cranial chondro-
cytes. For cranial chondrocytes differentiation, NMM + BC medium was replaced with Chondrocyte 
Differentiation Medium (CDM) without TGFβ3 supplement, with an intermediate PBS wash between 
media change (day 0). Medium was changed on day 1 and day 4 with CDM supplemented with TGFβ3, 
and cells were harvested on day 5. To disassociate single-cell chondrocytes from the extracellular 
matrix, we used the protocol described in Makki et al., 2017. Briefly, cells were washed with PBS, and 
incubated with digestion medium (1 mg/mL Pronase (Roche 10165921001), 1 mg/mL Collagenase B 
(Roche 11088815001), 4 U/mL Hyaluronidase (Sigma H3506), resuspended in KnockOut DMEM) for 
1 hr at 37 °C, with agitation every 15 min. Digestion medium was aspirated after centrifugation (5 min, 
100 r.c.f), and the cell pellet was washed twice with PBS, with centrifugation between each wash.

Neural Crest Differentiation Medium (NDM): 1:1 Neurobasal Medium (Thermo Scientific 21103049) 
and DMEM F-12 medium (GE Healthcare SH30271.01), 0.5 X Gem21 NeuroPlex supplement (B-27) 
(Gemini 400–160), 0.5 X N2 NeuroPlex supplement (Gemini 400–163), 20 ng/mL bFGF (PeproTech 
100-18B), 20 ng/mL EGF (PeproTech AF-100–15), 5 ug/mL bovine insulin (Gemini 700–112 P), 1 X 
Glutamax supplement (Thermo Fisher 35050061), 1 X Antibiotic-Antimycotic (Gibco 15240062).

https://doi.org/10.7554/eLife.82564
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Neural Crest Maintenance Medium (NMM): 1:1 Neurobasal Medium (Thermo Fisher 21103049) and 
DMEM F-12 medium (GE Healthcare SH30271.01), 1 mg/mL BSA (Gemini 700–104 P), 0.5 X Gem21 
NeuroPlex supplement (B-27) (Gemini 400–160), 0.5X N2 Neuroplex supplement (Gemini 400–163), 
1  mg/mL BSA (Gemini 700–104  P), 20  ng/mL bFGF (PeproTech 100-18B), 20  ng/mL EGF (Pepro-
Tech AF-100–15), 1 X Glutamax supplement (Thermo Scientific 35050061), 1 X Antibiotic-Antimycotic 
(Gibco 15240062).

NMM +BMP2/ChIRON: NMM medium supplemented with 50 pg/mL BMP2 (PeproTech 120–02) 
and 3 uM CHIR-99021 (Selleck Chemicals S2924).

CDM: DMEM High Glucose Medium (Cytiva SH30243.01), 5% FBS, 1  X ITS+ Premix (Corning 
354352), 1 X Sodium Pyruvate (Gibco 11360070), 50 ug/mL L-Ascorbic Acid (Sigma-Aldrich A4403), 
0.1 uM Dexamethasone (Alfa Aesar A17590), 10 ng/mL TGFβ3 (PeproTech 10036E), 1 X Antibiotic-
Antimycotic (Gibco 15240062).

H3K27ac HiChIP and ChIP
CNCCs and Chondrocytes were detached as singled cells and resuspended in BSA and Serum-free 
NMM or CDM, respectively (1 million cells/mL), fixed in 1% formaldehyde with end-over-end rotation 
at room temperature for 10 min, quenched with 0.2 M glycine solution for 5 min, and pelleted by 
centrifugation (5 min, 1350 r.c.f, 4 °C). Cell pellet was washed twice with cold PBS, with centrifugation 
between washes, and the cell pellet was flash-frozen in liquid nitrogen and stored at –80 °C.

HiChIP experiments were conducted following the protocol described in Mumbach et al., 2016 
using MboI digestion, and ChIP experiments were performed as described in Long et al., 2020. In 
both experiments, we used Active Motif Rabbit Polyclonal H3K27ac ChIP-grade antibody (Cat No 
39133). HiChIP experiments were performed on eight biological replicates of CNCC and chondrocyte 
differentiations, and both HiChIP and 1% Input libraries were sequenced on the Illumina NovoSeq 
6000 (2 × 100 bp) platform resulting in 244 million non-duplicate reads. HiChIP data was processed 
using HiC-Pro pipeline with 25 Kb resolution (Servant et al., 2015), the recommended resolution of 
this data prescribed by HiC-Res (Marchal et al., 2020). HiC-Pro was used as a preprocessing workflow 
to align reads to the hg38 genome, and to save only valid read pairs (i.e. from cis long and short-range 
interactions, and intra-chromosomal interactions). Significant 3D interactions (10% False Discovery 
Rate) were called using MAPS (Juric et al., 2019).

To call significant 3D interactions, MAPS requires precomputed 1-dimensional (1D) ChIP peaks, 
ideally called from independent ChIP-seq experiments. For this purpose, H3K27ac ChIP-seq peaks for 
CNCCs were identified using published Human H3K27ac ChIP-seq data from Prescott et al., 2015. To 
call ChIP-seq peaks in cranial chondrocytes, we performed H3K27ac ChIP-seq experiments from three 
additional chondrocyte differentiations. ChIP-seq data were aligned to the hg38 genome using a BWA 
MEM aligner (Li and Durbin, 2009), and broad peaks were identified using macs3 (Zhang et al., 2008). 
Finally, for visualizing comparable H3K27ac ChIP signal for CNCC and chondrocytes in Figure 3B, we 
performed H3K27ac ChIP-seq on a single hESC → CNCC → chondrocyte differentiation. Signal tracks 
showing H3K27ac or P300 ChIP fold-enrichment relative to the input samples were produced from the 
ENCODE Transcription Factor and Histone ChIP-Seq processing pipeline (RRID:SCR_021323; version 
2.2.2) (https://github.com/ENCODE-DCC/chip-seq-pipeline2; ENCODE-DCC, 2024a).

LacZ transgenic mouse experiments
Enhancer elements were cloned in triplicate copy into a LacZ reporter plasmid immediately upstream 
of an Hsp68 promoter and LacZ-P2A-tdTomato fusion gene, all surrounded by core insulator elements. 
Orthologs of the rs6740960 cognate enhancer from Human and Chimp (each 500 bp in length) were 
amplified from genomic DNA extracted from Human H9 and Chimp C0818 cell lines. H9 is homozy-
gous for the ‘A’ (derived) allele of rs6740960. To create a human homolog bearing the ‘T’ ancestral 
allele, we utilized PCR primer bearing this allele and PCR fragment ligation to recreate a mutagenized 
sequence. Mouse transgenesis experiments, conducted by Cyagen, were performed as described 
in Samuels et  al., 2020. Briefly, reporter plasmids were linearized, injected into fertilized mouse 
oocytes, where they randomly integrated into the genome, oocytes were implanted into recipient 
females, and allowed to develop to the E11.5 embryonic stage. Embryos were harvested, genotyped 
for positive reporter integration, and stained with X-gal to reveal the anatomical structures where the 
reporter transgene was expressed. We required at least three LacZ-positive embryos with consistent 
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LacZ staining profiles for expression domains to be considered reproducible. Multiple injection exper-
iments were needed to meet this requirement.

Generation of enhancer knock-out cell lines using CRISPR/Cas9
Deletion of the rs6740960 cognate enhancer and A-to-T replacement of the lead SNP in H9 hESCs 
was accomplished with CRISPR/Cas9 genome editing using the CRISPR RNA ‘​GTGG​​GGAT​​TGCG​​
CTAA​​CTCA​’ synthesized by IDT and homology-direct repair (HDR) template bearing either the 1.2 Kb 
enhancer deletion, or the wild-type enhancer bearing the alternate ‘T’ allele of rs6740960. HDR 
templates were cloned independently into an AAV2 production plasmid (Addgene 32395), using left 
and right homology arms cloned from H9 genomic DNA (Left Arm Primers GTGC​AGAG​CTGT​CTG / ​
ATGT​​TTTA​​CTAG​​CTCC​​TGCT​​AT; Right Arm Primers AGGG​AGGA​TGGG​AAGG​A / ​GACA​​GGCA​​AGAG​​
ACTG​​ACAT​A). AAV HDR donor plasmid, and Capsid 2 and AD5 helper plasmids, were co-transfected 
into HEK-293FT cells (Invitrogen R70007), and after 48 hr, high-titer virions were purified by Iodixanol 
ultracentrifugation using a modified protocol provided in Martin et al., 2019.

H9 hESCs were cultured in mTESR-1 medium supplemented with 10 uM ROCKi (Y27632; StemCell 
Technology 72304) for 24 hr, washed with PBS, and brought to single-cell pellet with Accutase treat-
ment for 5 min at 37 °C and gentle centrifugation (100 r.c.f; 5 min). 1 million hESCs were resuspended 
with 100 uL Lonza Amaxa P3 nucleofection solution (Lonza V4XP-3024), the annealed, pre-complexed 
crRNA:tracrRNA guide-RNA duplex (3 uL of 50 uM gRNA duplex), and 19 ug Alt-R S.p. HiFi Cas9 v3 
Nuclease (IDT 1081060) (2.5:1 Cas9:gRNA molar ratio). Cells were electroporated using the CA-137 
setting on the Lonza 4D Amaxa Nucleofector, immediately plated onto precoated matrigel plates 
with 100 K MOI AAV2 HDR, and cultured with mTESR1 + 10 uM ROCKi for 96 hr. Edited single-
cells were passaged sparsely (600 cells per well of six-well plate), and allowed to grow for 7 days. 
Clonal expanded colonies were manually picked, further expanded, and genomic DNA was isolated 
using a Quick-Extract Buffer (Lucigen GE09050). Successful heterozygous deletion lines were iden-
tified using the PCR primers ​CCCC​​CACC​​CATC​​AGTC​​ATTC​ and ​GGTT​​GTGC​​CTCA​​TAGT​​GCCT​ and 
Q5 Polymerase (NEB M0491S). Edited lines showed a 2.4 kB band corresponding to the deletion 
allele in contrast to the 3.6 kB unedited, wild-type band. Heterozygous rs6740960 A/T lines were 
validated using droplet-digital probes and primers against rs6740960 (see below). Successful A-to-T 
heterozygous replacement clonal lines were identified if they displayed a 50:50 FAM:HEX positive 
droplet ratio in their genomic DNA. Clonal lines that underwent the same editing procedure, but 
emerged un-edited were chosen as wild-type controls for all expression assays. To phase the enhancer 
deletion allele with PKDCC heterozygous SNP rs7439, we used the PCR primers ​CAGC​​AGCC​​AGAG​​
ATCC​​TTTA​G and ​AAGG​​AAAG​​CCTC​​CACT​​TCTT​T to amplify a 12.7  kB region encompassing the 
enhancer and rs10168129 and rs72792594, the two closest pre-phased SNPs obtained from H9 10 X 
whole-genome sequencing data (Long et al., 2020). PCR products were sent for long-read Oxford 
Nanopore sequencing, and phasing was conducted by manual examination of allele co-occurrence in 
the returned long reads.

Droplet digital experiments for rs6740960 H3K27ac signal and PKDCC 
expression
Droplet digital PCR (ddPCR) experiments were performed using protocols for the ddPCR Supermix 
for Probes (No dUTP) (Bio-Rad 1863025), droplet generator, and droplet reader provided by BioRad. 
To assay allele-specific expression of PKDCC, rs6740960 cognate enhancer heterozygous deletion H9 
lines, rs6740960 (A/T) heterozygous H9 lines, and un-edited wild-type H9 cells were differentiated to 
CNCCs and chondrocytes. Total RNA was extracted using TRIzol Reagent according to manufactur-
er’s protocol (Thermo Scientific 15596026), and 2 ug of total RNA was DNase I treated and reverse-
transcribed to cDNA using random Hexamer oligos according to Thermo SuperScript IV VILO master 
mix kit (Thermo Scientific 11766050). cDNA was diluted 40 X for use as input material in RT-ddPCR 
experiments.

IDT Locked Nucleic Acid (LNA) FAM and HEX fluorescently labeled probes were designed to distin-
guish the ‘A’ and ‘T’ alleles of rs6740960 in rs6740960 (A/T) heterozygous H9 lines (56-FAM/ATT+CATA-
A+T+T+AGCA+GGCCATG/3IABkFQ/ and /5HEX/ATT+CATAA+T+A+AGCA+GGCCATG/3IABkFQ/). 
Forward and reverse PCR primers to amplify the 119 bp region surrounding rs6740960 were ​CTTT​​
CTTC​​TGTG​​AGCT​​GTAG​​CA and ​TCCA​​CGCT​​GGGT​​TTAG​​TTAT​​TT. Similarly, probes were designed to 
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assay the allele-specific expression of PKDCC in rs6740960 cognate enhancer heterozygous deletion 
H9 lines and rs6740960 (A/T) heterozygous H9 lines. Specifically, FAM/HEX probes designed against 
heterozygous SNP rs7439 (A/G) located within PKDCC’s 3’UTR (/56-FAM/CGG+G+A+G+A+TG-
C/3IABkFQ/ and /5HEX/CGG+G+G+GATGC/3IABkFQ/). This 88 bp 3’UTR region was amplified with 
TCGT​GGAG​TGTT​CTCT​CA and AGCC​TCCC​CAGG​TAC PCR primers. To validate that fluorescently 
labeled probes designed against heterozygous SNPs were unbiased in their binding affinities, H1 
hESC genomic DNA was used as a quality control to ensure a 50:50 FAM:HEX ratio for the rs6740960 
SNP (H1 hESCs are naturally heterozygous for rs6740960), and H9 hESC genomic DNA was used as a 
quality control to a ensure a 50:50 FAM:HEX ratio for the rs7439 SNP.

BioRad QuantSoft Analysis Pro v1.0 software was used to analyze ddPCR experiments. Quant-
Soft uses Poisson statistics to estimate the number of FAM-positive and HEX-positive droplets in the 
starting reaction. These ratios were plotted in R to quantify allele-specific PKDCC expression and to 
identify rs6740960 (A/T) heterozygous edited cell lines.

Linkage disequilibrium and imputation analysis of rs6740960
The SNP rs6740960 was imputed in our previous GWAS with a high imputation INFO score of 0.91 
(Claes et al., 2018; White et al., 2021). Imputation and LD calculation were based upon the reference 
haplotypes from the pre-phased genotypes of European individuals within the 1000 Genomes Project 
reference panel phase 3. Imputation INFO score values range from 0 to 1 with 0 meaning complete 
lack of support for a SNP’s allelic phase, and 1 representing SNPs that were genotyped. Higher values 
indicate higher probabilities of a SNP’s phase based on haplotype configurations within the reference 
panel. The SNP rs4952552 was directly genotyped in our previous GWAS study and was found to be 
in high LD with rs6740960 (r2=0.81 using a European cohort), which contributes to the high imputation 
score of the latter variant.

RNA-seq and ATAC-seq data and analysis
RNA-seq datasets were obtained from previously published studies. hESC data was obtained for H9 
cells from Prescott et al., 2015, CNCC data were obtained from both (Prescott et al., 2015), and 
(Yankee et al., 2023), which reflect unique in vitro hESC to CNCC differentiation protocols. Cranial 
chondrocyte data were obtained from Long et al., 2020. All samples were uniformly processed using 
the ENCODE long read RNA-seq pipeline (RRID:SCR_025093; version 2.1.0) (https://github.com/​
ENCODE-DCC/long-read-rna-pipeline; ENCODE-DCC, 2023), which uses the STAR aligner for read 
mapping, and RSEM software for Transcripts Per Million (TPM) calculation.

ATAC-seq dataset for human CNCCs (H9 derived) were obtained from Prescott et  al., 2015. 
ATAC-seq datum was processed using the ENCODE ATAC-seq pipeline (RRID:SCR_023100; version 
2.2.3) (https://github.com/ENCODE-DCC/atac-seq-pipeline; ENCODE-DCC, 2024b).

Micro-CT of E18.5 Pkdcc mutant mice
Pkdcc knock-out mice were created by Kinoshita et  al., 2009 by replacing the first exon with a 
Venus - SV40 polyA tag. Cryogenic preserved two-cell oocytes were obtained from RIKEN BioRe-
source Research Center (RBRC057275) and rederived at Stanford University’s Transgenic, Knockout, 
and Tumor Model Center (TKTC). Founder animals were genotyped using a triplicate primer set (ggca​
tgga​cgag​ctgt​acaa​, ​GGCT​​CAGG​​CTAC​​ACTA​​AGGC​, ​CTGG​​GTTC​​TGCA​​CCTA​​GCTG​), that resulted in 
a single 332 bp amplicon for wild-type animals, a single 594 bp amplicon for homozygous-tagged 
animals, and dual bands for heterozygous animals. Mice were housed at the Animal Veterinary Center 
at Stanford University. All procedures involving animal care and use were conducted under a pre-
approved protocol by the Administrative Panel on Laboratory Animals Care at Stanford University 
(APLAC Protocol No. 30364).

Mouse embryos were collected at E18.5 developmental stage, and fixed in 4% Paraformalde-
hyde for 7 days at 4 °C. Embryos were imaged on Bruker Skyscan 1276 micro-CT imager using the 
following settings (15 um pixel size, 2 K resolution, 0.25 mm Al filter, ~750 ms exposure, 360° scan-
ning, rotation step 0.5 degree, 100% partial width, 2 frame averaging). Bruker NRecon software 
was used for 3D reconstruction using the settings smoothing = 2, ring artifacts correction = 20, 
beam hardening = 0%, Gaussian Smoothening Kernel. Volume-of-interest (VOI) were isolated for 
the head region of each animal using Bruker DataViewer software. Mandible, maxilla, and palatine 
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bones were segmented and roughly landmarked for each VOI using Amira 3D 2021.1 software. 
We used landmarks recommended by Ho et al., 2015. Segmented bone surfaces were exported 
as Wavefront OBJ format and landmarks were exported as fiducial CSV formats for morphometry 
analysis.

Morphometry analysis for E18.5 embryos
Morphometric differences in cranial bone surfaces of wild-type, Pkdcc+/-, and Pkdcc-/- E18.5 embryos 
were analyzed in Matlab 2021b. The MeshMonk toolbox (White et  al., 2019) was developed for 
spatially dense phenotyping of 3D surface meshes of anatomical structures and has been used exten-
sively in studies of craniofacial variation in humans (Claes et al., 2018; Liu et al., 2021; White et al., 
2021). MeshMonk performs a non-rigid registration of a template mesh onto each target mesh. There-
after each target sample is represented in terms of the topology of the template mesh. The vertices 
of each registered surface are spatially-dense analogs of traditional anthropometric landmarks. In this 
study, the mandible, maxilla, and palatine bone surfaces from one representative wild-type animal 
was chosen as the template sample, and the corresponding structures in each sample were registered 
with this template.

Further statistical analysis was performed using in-house software developed by authors HM and 
PC in MATLAB 2021b. All landmark configurations were aligned to their mean and scaled to unit size 
by generalized Procrustes analysis. Dimensionality of landmark variation was reduced by projection 
onto the principal components (PCs) explaining 96% of the variation. The partial effect of genotype 
(independent of litter and sex) on the shape was tested with partial least-squares regressions and 
permutation test (10,000 permutations) on the partial effect size (partial R2) as described in Shrimpton 
et al., 2014. The categorical covariates sex and litter were each coded as k-1 binary ‘dummy’ vari-
ables, where k is the number of categories. To test for effects at the level of the whole structure, prin-
cipal component scores were normalized to have unit variance along each PC, and the partial effect 
size is the variance explained in these normalized PCs. To test for effects at each vertex the principal 
component projection was reversed and partial R2 was computed for each vertex. The regression 
coefficients represent the change in the shape of the bone between wild-type and Pkdcc mutant 
animals are visualized as color maps showing change in the direction perpendicular to the surface at 
each vertex (blue = inward; red = outward).

Materials availability
Edited human ESC cell lines (H9) and other research reagents generated in this study are available to 
academic researchers by contacting the corresponding author.
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