Skip to main content
. 2024 Mar 15;103(11):e37395. doi: 10.1097/MD.0000000000037395

Table 2.

Logistic regression models of ITE.

Univariable LR Multivariable LR BART
Baseline predictors
 BMI z-score 0.872 (0.743, 1.026), P = .098 0.914 (0.770, 1.087), P = .308
 Albumin (g/dL) 0.731 (0.531, 1.005), P = .054 0.938 (0.653, 1.347), P = .727
 Hemoglobin (g/dL) 0.879 (0.794, 0.973), P = .013 0.924 (0.827, 1.032), P = .161
 Monocyte (%) 1.048 (0.996, 1.103), P = .069 1.069 (1.011, 1.129), P = .019
 Lymphocyte (%) 0.979 (0.963, 0.995), P = .010 0.975 (0.958, 0.993), P = .008
 Platelet count (10^9/L) 1.002 (1.001, 1.004), P = .008 1.002 (1.000, 1.003), P = .029
Model evaluation
 AUC 0.667 (0.606, 0.723) 0.696 (0.653, 0.736)
 Comparison of AUC P < .0001
 Sensitivity 0.382 (0.276, 0.489) 0.484 (0.351, 0.607)
 Specificity 0.802 (0.747, 0.858) 0.769 (0.680, 0.852)
 Positive predictive value 0.583 (0.486, 0.680) 0.605 (0.548, 0.667)
 Negative predictive value 0.586 (0.642, 0.699) 0.674 (0.636, 0.714)