Skip to main content
. 2024 Mar 14;14:6172. doi: 10.1038/s41598-024-56843-3

Table 2.

Parameters of each model tuned through GridSearchCV (tenfold cross validation).

Model Best parameter
RFC* [CTL]** (All***) (criterion = 'entropy', max_features = None, n_estimators = 250)
Logistic* [CTL] (SHAP 0.01***) (class_weight: None, penalty: 'l2', solver: 'liblinear')
Logistic [CTL] (SHAP 0.02***) (class_weight: None, penalty: 'l2', solver: 'liblinear')
RFR* [Dys]** (All) (max_depth = 25, n_estimators = 700)
Linear* [Dys] (SHAP 0.01) (default)
Linear [Dys] (SHAP 0.02) (default)
RFR [Exc] (All) (max_depth = 20, n_estimators = 300)
Linear [Exc] (SHAP 0.01) (default)
Linear [Exc] (SHAP 0.02) (default)
Stepwise model [CTL → Dys] (all)

RFC [CTL]: (criterion = 'entropy', max_features = None, n_estimators = 250)

RFR [Dys]: (max_depth = 25, n_estimators = 700)

Stepwise model [CTL → Exc] (all)

RFC [CTL]: (criterion = 'entropy', max_features = None, n_estimators = 250)

RFR [Exc]: (max_depth = 20, n_estimators = 300)

Stepwise model [CTL → Dys] (SHAP 0.01)

Logistic [CTL]: (class_weight: None, penalty: 'l2', solver: 'liblinear')

Linear [Dys]: (default)

Stepwise model [CTL → Exc] (SHAP 0.01)

Logistic [CTL]: (class_weight: None, penalty: 'l2', solver: 'liblinear')

Linear [Exc]: (default)

Stepwise model [CTL → Dys] (SHAP 0.02)

Logistic [CTL]: (class_weight: None, penalty: 'l2', solver: 'liblinear')

Linear [Dys]: (default)

Stepwise model [CTL → Exc] (SHAP 0.02)

Logistic [CTL]: (class_weight: None, penalty: 'l2', solver: 'liblinear')

Linear [Exc]: (default)

*RFC: Random forest classifier, RFR: Random forest regression model, Logistic: Logistic regression classifier, Linear: Linear regression model.

**[CTL]: model for predicting CTL level, [Dys]: model for predicting dysfunction score, [Exc]: model for predicting exclusion score, [CTL →  Dys]: model for predicting the ICB response using [Dys] model when [CTL] model predicts the CTL level as high, [CTL → Exc]: model for predicting the ICB response using [Exc] model when [CTL] model predicts the CTL level as low.

***All: All miRNA features, SHAP 0.01: miRNAs with feature importance of mean (|Shapley values|) > 0.01, SHAP 0.02: miRNAs with feature importance of mean (|Shapley values|) > 0.02.