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Long non-coding RNAs (IncRNAs) could modulate expression of immune checkpoints (ICPs) by
cooperating with immunity genes in tumor immunization. However, precise functions in immunity and
potential for predicting ICP inhibitors (ICI) response have been described for only a few IncRNAs. Here
we present an integrated framework that leverages network-based analyses and Bayesian network
inference to identify the regulated relationships including IncRNA, ICP and immunity genes as ICP-
related LncRNAs mediated Core Regulatory Circuitry Triplets (ICP-LncCRCTs) that can make robust
predictions. Hub ICP-related IncRNAs such as MIR155HG and ADAMTS9-AS2 were highlighted to
play central roles in immune regulation. Specific ICP-related IncRNAs could distinguish cancer
subtypes. Moreover, the ICP-related IncRNAs are likely to significantly correlated with immune cell
infiltration, MHC, CYT. Some ICP-LncCRCTs such as CXCL10-MIR155HG-ICOS could better predict
one-, three- and five-year prognosis compared to single molecule in melanoma. We also validated that
some ICP-LncCRCTs could effectively predict ICI-response using three kinds of machine learning
algorithms follow five independent datasets. Specially, combining ICP-LncCRCTs with the tumor
mutation burden (TMB) improves the prediction of ICI-treated melanoma patients. Altogether, this
study will improve our grasp of IncRNA functions and accelerating discovery of IncRNA-based

biomarkers in ICl treatment.

Immune checkpoint inhibitors (ICIs) activate immune cells by inhibiting
immune checkpoints (ICPs), thus blocking the immune escape of tumor
cells. ICIs have successfully changed the treatment prospects for many
cancer types, especially melanoma and lung cancer'. Several pivotal trials
have shown that ICIs, as either monotherapies or combination therapies,
improve most clinical efficacy endpoints for patients with locally advanced
or metastatic cancers’. Although ICIs can provide clinical benefit, there are
some main limitations which include low response rates, complex and
diverse immune-related adverse events (irAEs), and varying degrees of drug
resistance. Therefore, it is urgent to address the problems in current cancer

research involving ICIs requires studying the regulatory mechanism of ICP-
related genes at multiple molecular levels, such as protein-coding genes and
non-coding genes, predicting the therapeutic efficacy of ICIs, and identi-
fying early predictive biomarkers of ICI efficacy to terminate ineffective
treatment as soon as possible.

There is a large amount of non-coding RNA in the human genome,
which is widely involved in the occurrence and development of a variety of
cancer types and the effect of drug therapy’. Long-chain non-coding RNAs
(IncRNAs) are a very important class of non-coding RNAs with a length of
more than 200 bases that play an essential role in the process of cancer
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progression™’. In particular, during the regulation of the tumor-immune
response, IncRNAs can play an essential role by regulating necessary
immune genes and pathways. With continuous in-depth research in recent
years, the mechanisms and functions of several IncRNAs in cancer have
become increasingly clear. For example, Joseph Toker et al. suggested an
association between NEAT1 expression and patient response to anti-PD-1/
PD-L1 therapy in melanoma and glioblastoma’. However, the regulatory
mechanisms and functional effects of most IncRNAs and ICP molecules are
still unknown.

Innate and adaptive immunity are strongly dependent on a series of
mRNA-based regulatory events. LncRNAs are a kind of important gene
regulatory factor of these processes’. LncRNAs are emerging as critical
regulators of gene expression in the immune system’. For example, the
IncRNA SATB2-AS1 was downregulated in colon cancer and can inhibit
tumor metastasis by regulating the gene encoding STAB2 and affecting the
tumor-immune microenvironment’. An increasing number of studies have
shown that IncRNAs can directly or indirectly regulate ICP molecules,
leading to heterogeneity in ICI efficacy and the development of drug
resistance'’. For example, in diffuse large B-cell lymphoma, the IncRNA
SNHG14 upregulates the mRNA ZEB1 by competitively binding to miR-
5590-3p, and ZEBI positively activates SNHG14 and PD-L1, thereby pro-
moting immune escape of tumor cells". Thus, the core regulatory circuitry
consisting of IncRNAs, immune-related mRNAs, and ICP genes is crucial
for exploring the regulatory mechanisms of ICP molecules in tumors.

In this study, we report an integrated framework that leverages
network-based analyses and Bayesian network inference to (i) identify ICP-
related IncRNAs and (ii) infer the regulatory patterns of ICP-LncCRCTs.
The identified results were validated in independent datasets and databases.
Four basic regulatory patterns were inferred by the Bayesian network and
maximum likelihood estimation. Immunity-related genes play crucial roles
in the process through which IncRNAs regulate ICPs. Common and spe-
cific ICP-related IncRNAs participate in diverse immune processes.
Cancer-specific ICP-related IncRNAs can distinguish cancer types. ICP-
related IncRNAs were correlated with immune cell infiltration in cancers
based on bulk data, immune cell lines, and scRNA-seq datasets. Some
ICP-LncCRCTs could better predict patient prognosis than single
molecules in melanoma. We also validated that several ICP-LncCRCTs
could effectively predict ICI response using three kinds of machine
learning algorithms and five independent datasets. Specifically, com-
bining ICP-LncCRCTs with the tumor mutation burden (TMB)
improved the prediction of ICI-treated melanoma patients. In summary,
our method provides an approach to unveil insights into IncRNAs reg-
ulating ICPs in tumor immunity, helping previously identified bio-
markers improve the prediction of ICI response.

Results

Identification of ICP-related IncRNA-mediated core regulatory
circuitry triplets (ICP-LncCRCTSs) across cancer types

To identify candidate IncRNAs that can drive ICPs by forming core reg-
ulatory circuitry triplets, we proposed a four-step computational framework
(Fig. 1a). The framework systematically infers ICP-related IncRNAs and
their regulatory mechanisms from expression profiles, network modules,
and immune-related pathways based on a large number of samples. We
presumed that if IncRNAs could participate in immunology by regulating
ICPs, then they closely interact with immune genes and ICPs and could also
be enriched in immune-related pathways. Overall, four steps were applied to
identify ICP-LncCRCTs. First, differentially expressed immune gene,
IncRNA, and ICP for cancer patients were extracted. Second, genes that
were strongly correlated with each other were screened via Pearson corre-
lation analysis to construct co-expression networks. We used the page-rank
algorithm to identify the immune genes and IncRNAs that were closely
associated with ICP. Third, based on excluding the influence of tumor purity
using the partial correlation analysis, GSEA, S score, and permutation, we
further identified IncRNAs, immune genes, and ICP genes that might have a
ternary regulatory association (named ICP-LncCRCT). Finally, we inferred

the best regulatory pattern for each ICP-LncCRCT using Bayesian
inference.

By applying the four-step computational framework, ICP-related
IncRNAs and ICP-LncCRCTs were extracted from diverse cancer types
(Fig. 1b). The numbers of ICP-related IncRNAs and ICP-LncCRCTs
exhibited a greater range (2-94 and 12-25,527) by excluding the influence of
sample size. Although a moderate number of ICP-related IncRNAs were
identified, most of the identified ICP-LncCRCTs were associated with
SKCM and LUSC. These findings indicated that IncRNAs could play
complex roles in immunology by forming a multitude of ICP-LncCRCTs in
cancers. The reliability of the framework was validated in three parts. First,
the associations among IncRNAs, the ICP and immune genes were sig-
nificantly intersected according to two methods, PCC and MI (Fig. 1c).
Second, similar results were also validated in other independent datasets
(GBM and PRAD) after removing batch effects (Fig. 1d, Supplementary
Fig. 1). Finally, we found that the ICP-related IncRNAs had significant
interactions with immune-, cancer- and disease-related IncRNAs (Fig. 1e).
Taken together, these results revealed that ICP-LncCRCTs could be iden-
tified and considered valuable resources in cancer immunology.

ICP-LncCRCTs involve complex regulatory patterns across
cancers

To evaluate the mechanism through which IncRNAs regulate ICPs, four
major regulatory patterns of ICP-LncCRCT's were proposed to elucidate the
possible relationships within a triplet. The four regulatory mechanisms were
named IncRNA-mediated regulation of ICP by immune genes (LGI) and
IncRNA-mediated direct regulation of ICP, further influencing immune
genes (LIGs), coordinates (COOs), and independence (INDEP). In the
“Independent” pattern, IncRNAs acted as an independent regulator mod-
ulating ICP and immunity gene expression. In the “Coordinate” pattern,
IncRNAs and immunity genes could act as synergistic regulators to affect the
expression of the target ICP genes (Fig. 2a). The frequency of the four kinds
of regulatory patterns varied across cancer types. In general, the COO and
LIG regulatory patterns had the largest and the smallest proportions,
respectively, across cancers (Fig. 2b). Thus, immune genes produce a
marked effect on the process through which IncRNAs regulate ICPs. Almost
all the ICP-LncCRCTs were formed by multiple immune genes (Fig. 2c,
Supplementary Fig. 2). For example, the ICP-related IncRNA MIR155HG
could regulate ICP gene CXCL10 by binding to the ICOS immune gene via
the ICP-LncCRCT complex (Fig. 2d). Many studies have reported that
MIR155HG is associated with immune infiltration and the expression of
immune checkpoint molecules in a variety of cancers'>"*. We also found
that the immune regulatory effects of the identified ICP-related IncRNAs
were mediated by different numbers of immune genes involved in reg-
ulating ICP in different cancers. In addition, an identical IncRNA-ICP gene
pair could form different ICP-LncCRCTs with different immunity genes
and participate in diverse immune pathways to perform their functions.
(Fig. 2e). In summary, these results indicated that ICP-LncCRCTs involve
complex regulatory patterns across cancers.

Common and specific ICP-related IncRNAs play diverse roles in
immune-related cancers

To further investigate the crucial roles of ICP-related IncRNAs in diverse
cancer types, ICP-LncCRCT's were characterized in each cancer type. For all
IncRNAs in the ICP-LncCRCTs, IncRNAs identified in five or more types of
cancer were defined as common IncRNAs, and IncRNAs identified in two or
fewer types of cancer were defined as specific IncRNAs. We chose “five” to
define common IncRNAs because the numbers of common IncRNAs were
similar when five to other (6~14) were changed (Supplementary Fig. 3).
Subtypes with similar tissue-of-origin characteristics shared common ICP-
related IncRNAs and ICP-LncCRCTs (Fig. 3a). For example, the similarity
of ICP-related IncRNAs and ICP and IncRNA pairs was greater among two
subtypes of lung cancer, LUAD and LUSC. More than 50% of the ICP and
IncRNA pairs in LUAD also occurred in LUSC, which was significant
according to Fisher’s test (P = 2.34e-43). Similar results were also found in
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Fig. 1 | The computational algorithm for identification of ICP-LncCRCTs.

a Schematic representation of the four steps in the identification of ICP-LncCRCTs.
b The number of ICP-related IncRNAs and ICP-LncCRCTs in each cancer type.

¢ Venn diagram showing the overlap of coexpressed gene pairs detected using the
PCC and MI methods. The hypergeometric test was used to assess the significance of
the overlap. d Venn diagram of the results identified with other independent

LUSC

datasets. The intersections represent jointly identified results. The hypergeometric
test was used to assess the significance of the overlap. e Venn diagram of ICP-related
IncRNAs and immune-, cancer- and disease-related IncRNAs. The intersection
represents the common IncRNAs. The hypergeometric test was used to assess the
significance of the overlap.

COAD and READ, which are two intestinal cancer types (IncRNA:
P=2.69e-19; ICP and IncRNA pairs: P=5.96e-58). The ICP-LncCRCT
networks were constructed and analyzed for each cancer type. The degrees
of the IncRNAs were greater than those of the ICPs and immune genes in all
cancer types, which indicated that the regulatory association may be ICP-
centered in most cancer types (Supplementary Fig. 4). Several ICP-related
IncRNAs can be found in many kinds of cancer. These common IncRNAs
exhibit close interactions with ICP genes in many cancers (Fig. 3b). In this
common IncRNA network, several ICP-related IncRNAs and genes have
been validated in other studies. For example, MIR155HG can regulate the
tumor-immune microenvironment through cytokine-cytokine receptor
interactions and complement and coagulation cascades and is positively
correlated with TIM-3 expression"”. PSMB8-AS1 promotes pancreatic
cancer progression by regulating the miR-382-3p/STAT1/PD-L1 axis'.

In addition to common IncRNAs, several ICP-IncRNA pairs have been
identified in multiple cancer types. Although common ICP-IncRNA pairs
are present in multiple cancer types, the immune-related genes and reg-
ulatory mechanisms involved are diverse across cancer types. The vast
majority of the ICP-IncRNA pairs were mediated by 20 to 40 immune genes
and more than two kinds of regulatory mechanisms in different cancer types
(Fig. 3¢). For example, PSMB8-AS1 is a common ICP-related IncRNA, and
multiple immune genes that mediate and exhibit different regulatory pat-
terns can be found in gene pairs composed of PSMB8-AS1 and IL2RB. We
referred to this class of gene pairs as pattern-variable IncRNA-ICP rela-
tionship pairs (Fig. 3c). The common ICP-related IncRNA MIR155HG is
involved in the interaction of ICP-LncCRCTs with the ICP genes PD1,
PDL-1 and CD28, which are mediated by six different immunity genes in
tumors and T cells (Fig. 3d). Some of these regulatory associations have been
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Fig. 2 | ICP-LncCRCTs have complex regulatory mechanisms. a Four possible
regulatory patterns. b The proportions of the four regulatory patterns in all cancers.
¢ The numbers of immune genes comprising ICP-LncCRCT's in each cancer type.
Different colors indicate different types of cancer. The red horizontal line indicates
the mean value. d Subnetwork of ICP-LncCRCTs, including MIR155HG. Red,
green, and blue indicate the immune gene, ICP gene, and IncRNA, respectively. The
size of the nodes indicates the number of connected nodes. The thickness of the edges
indicates the level of correlation. e The same IncRNA-ICP gene pair can interact with

different ICP-LncCRCTs via different immune genes involved in diverse immune
pathways. The blue bubble diagram indicates the number of immune genes affected
by each IncRNA-ICP gene pair in each cancer. A Sankey diagram indicated that each
IncRNA-ICP gene pair participates in different immune pathways by mediating
different immune genes. The first column of the Sankey diagram indicates the
different immune pathways, and the second column indicates the immune genes.
The third column indicates the IncRNA-ICP gene pairs.
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verified in previous studies'"”. Taken together, these results indicated that  further confirmed by t-distributed stochastic neighbor embedding (t-SNE)
the regulatory associations between IncRNAs and ICP are complex. (Fig. 3f). Diverse cancer types could be distinguished, and cancers with

Specific ICP-related IncRNAs were also characterized. The number of  related tissue origins or the same cancer type were clustered together,
specific ICP-related IncRNAs was diverse (from 0 to 55) across cancer types  exhibiting similar IncRNA expression patterns, including core gastro-
(Fig. 3e). These expression patterns of specific ICP-related IncRNAs were  intestinal cancer (ESCA, STAD, COAD and READ) and squamous cell

Communications Biology | (2024)7:327 5



https://doi.org/10.1038/s42003-024-06004-z

Article

Fig. 3 | Common and specific ICP-related IncRNAs exhibited diverse immune
regulation patterns. a The upper triangular matrix shows the number of shared
IncRNA-ICP gene pairs between any two cancers. The lower triangular matrix shows
the number of shared ICP-related IncRNAs. A Venn diagram represents the overlap
of IncRNA-ICP gene pairs as well as ICP-related IncRNAs in two lung cancer
subtypes, LUAD and LUSC. The hypergeometric test was used to assess the sig-
nificance of the overlap, and the p values are shown below the figure. b Common
IncRNA network. The blue and red nodes indicate the ICP and common IncRNAs,
respectively. Pie charts of different colors indicate the presence of genes in different

cancers. The size of the nodes indicates the number of connected nodes. The
thickness of the edges indicates the level of correlation. ¢ Patterns and numbers of
regulated immune genes among the pattern-variable IncRNA-ICP gene pairs in
different cancers. The pie chart represents the percentages of the four models. The
heatmap represents the number of immune genes. d Inferred mechanisms by which
ICP-LncCRCTs act between immune cells and tumor cells. e Stacked bars indicate
the number of common IncRNAs and specific IncRNAs in each cancer. f Cancer
samples were clustered by t-distributed stochastic neighbor embedding (t-SNE)
based on specific IncRNAs. Different colors represent different cancer types.

carcinoma (LUSC, HNSC). Taken together, these findings revealed that
ICP-related IncRNAs exhibit common and specific characteristics in cancer,
suggesting that they play diverse roles in oncogenic processes and the
tumor-immune microenvironment.

ICP-related IncRNAs were correlated with immune cell infiltra-
tion in cancers

The immune response has been proven to involve tissue infiltration of
immune cells. Therefore, we hypothesized that if ICP-related IncRNAs
could perform essential and important functions in immune regulation,
they would tend to be highly expressed in immune cells and associated with
immune cell infiltration in tumors. Immune cell infiltration levels were
estimated by TIMER based on IncRNA expression profiles. Five kinds of
tumor-infiltrating immune cells, B cells, CD4 T cells, CD8 T cells, macro-
phages, and neutrophils, were analyzed. A large number of ICP-related
IncRNAs were correlated with immune cell infiltration (Fig. 4a, Supple-
mentary Fig. 5). In particular, common ICP-related IncRNAs were more
related to immune cell infiltration than other ICP-related IncRNAs were
(Supplementary Fig. 6). In addition, the MHC and CYT scores were greater
for common IncRNAs than for specific IncRNAs (Fig. 4b, c). Similar results
were also found for immune cell markers. These common ICP-related
IncRNAs were also more positively correlated with immune cell markers,
including B cells, CD4+ T cells, CD8+ T cells, and T cells, than were the
other IncRNAs (Fig. 4d). Then, we analyzed the expression profiles of 19
immune cell lines. The expression of 65% ICP-related IncRNAs, such as
MIR155HG and ADAMTS9-AS2, was significantly up-regulated in the
T-cell subset (Fig. 4e, Supplementary Fig. 7). In addition, several genes
related to ICP-IncRNAs among the ICP-LncCRCT' could also be related to
immune regulation. We observed that immune genes in ICP-LncCRCT's
had greater protein intensity in cancer tissues than in normal tissues by
immunohistochemical (IHC) and immunofluorescent (IF) staining. For
example, the C3ARI gene and HEL gene were affected (Fig. 4f). In sum-
mary, ICP-related IncRNAs are likely associated with immune cell infil-
tration, further validating the results of our algorithm.

ICP-related IncRNAs showed specific features across immune
cell subsets based on scRNA-seq data

We further analyzed the scRNA-seq data to explore the roles of ICP-related
IncRNAs in diverse immune cell subsets. The ten scRNA-seq datasets,
including seven cancer types, were collected and analyzed. The major cell
types included tumor cells, B cells, macrophages, NK cells, and T cells
(Figure S8). The numbers of ICP-LncCRCT's and ICP-related IncRNAs in
diverse cell types were cancer-specific (Fig. 5a). More ICP-LncCRCTs were
identified in T cells for the vast majority of cancer types. Like in tissue, there
were some common shared ICP-LncCRCTs and ICP-related IncRNAs
among diverse cancer types (Fig. 5b). Specifically, seven ICP-related
IncRNAs were found in T and B cells for all cancer types. We could infer that
ICP-related IncRN As were relatively stable in T and B cells. For individual
datasets from common cancers, more than half of the ICP-LncCRCTs and
ICP-related IncRNAs were present in only one dataset (Fig. 5¢c). These
findings indicated that the tumor microenvironment has strong hetero-
geneity. Like the regulatory patterns of ICP-LncCRCTs in tissue, we found
that the COO and INDEP regulatory patterns accounted for the largest
proportion of the pancancer cohort (Fig. 5d). The ssGSEA revealed that the
scores of ICP-related IncRNAs were greater for T cells, B cells and NK cells

(Fig. 5e). For example, the ICP-related IncRNA MIR155HG, which is also a
common IncRNA, was differentially expressed in diverse kinds of immune
cell types, especially in T cells (Fig. 5f, Supplementary Fig. 8). Consistent
results were also shown in the above analysis based on immune infiltration
and cell lines. In addition, the associations between ICPs and IncRNAs in
ICP-LncCRCTs were also closer in T cells for several cancer types (Sup-
plementary Fig. 9). These ICP-related IncRNAs were dynamically changed
at diverse pseudotime points (Fig. 5g). Common ICP-related IncRNAs
USP30-AS1, could cluster with MIR155HG and exhibited close co-
expression (Supplementary Fig. 10). Collectively, these results indicated
that ICP-related IncRNAs could play a role in performing the functions of
T cells, B cells and NK cells, further validating their roles in the tumor-
immune microenvironment.

Several ICP-LncCRCTs and ICP-related IncRNAs are associated
with survival, and the MIR155HG/CXCL10/EBI3 axis can predict
the prognosis in SKCM

Numerous studies have elucidated how various components of the immune
system control or contribute to cancer progression, thus revealing their
prognostic value'®. We considered whether these ICP-related IncRNAs,
especially ICP-LncCRCTs, were associated with the survival of cancer
patients. A large number of ICP-related IncRNAs and ICP-LncCRCT's were
associated with survival in patients with diverse cancers (Fig. 6a, b; Supple-
mentary Fig. 11). Especially in SKCM, 99.76% ICP-LncCRCT's were related to
survival (Fig. 6¢). The most survival-related ICP-LncCRCTs were found in
SKCM, LUAD and KIRC patients who had been treated with ICIs in the
clinic. Most of the ICP-LncCRCTs were cancer-specific and were associated
with prognosis in only one or two cancer types (Fig. 6d). However, seven ICP-
LncCRCTs could serve as prognostic biomarkers in four kinds of cancer
(Fig. 6e). We found that USP30-AS1 and LINC01943 were two key ICP-
related IncRNAs that participate in multiple survival-related ICP-LncCRCT's
with different ICPs and immune genes in diverse cancers. Previously, USP30-
AS1 was reported to mediate the progression of various human diseases, such
as colon cancer, glioblastoma, cervical cancer, and acute myeloid leukemia'**.
According to our above analysis, MIR155HG was the key common ICP-
related IncRNA. According to our analysis, MIR155HG could regulate the
ICP-related gene CXCLI10 by cooperating with the immune gene EBI3 (the
COO pattern) (Fig. 6f). We found that the ICP-LncCRCT MIR155HG/
CXCL10/EBI3 signature was an independent prognostic factor for overall
survival (OS) and could be a key integrated prognostic biomarker in SKCM
(Fig. 6g). A lower risk score for MIR155HG/CXCL10/EBI3 was associated
with a better prognosis in SKCM patients (P = 0.00017; Fig. 6h). The global
ICP-LncCRCT MIR155HG/CXCLI0/EBI3 could better distinguish the
prognosis of SKCM patients compared to single gene (Supplementary
Fig. 12). We also found that the ICP-LncCRCT MIR155HG/CXCL10/EBI3
could be an effective prognostic biomarker. The calibration curve showed that
the risk score of MIR155HG/CXCL10/EBI3 had a satisfactory fit between the
predicted and actual observations. Specifically, the risk score of the ICP-
LncCRCT MIR155HG/CXCL10/EBI3 combination could more effectively
predict 1-, 3- and 5-year prognoses than could the single ICP or IncRNA alone
in SKCM patients (Fig. 6i). Taken together, these results indicated that several
ICP-LncCRCTs were associated with survival in all cancer types.
MIR155HG/CXCL10/EBI3 could be effective prognostic biomarkers in
SKCM. To a certain degree, the whole MIR155HG/CXCL10/EBI3 axis has
better predictive performance for survival than single molecules in SKCM.
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Fig. 4 | Relationship between ICP-related IncRNAs and immune system activity.
a Heatmap showing the correlation of 18 common IncRNAs and specific IncRNAs
with TIMER scores. “*” indicates a strong correlation. b Heatmap representing the
correlation of common IncRNAs and specific IncRNAs with the MHC score and
CYT score. ¢ Violin plots representing the overall comparison of common IncRNAs
and specific IncRNAs with MHC scores and CYT scores. Black boxes indicate the
interquartile range of the data. White dots indicate the median. Black vertical lines
indicate 95% confidence intervals. The width of the violin plot indicates the density
of the data. d Correlations between common IncRNAs and specific IncRNAs and

I T gamma delta
A-431 cell
IL16

Location:Nuclear speckles

20pm

markers of four classes of immune cells. The size of the circle and the shade of the
color indicate the magnitude of the correlation. “x” indicates no correlation

(P> 0.05, Pearson correlation analysis). e Violin plots indicating the differential
expression of MIR155HG and ADAMTS9-AS2 in 19 immune cell lines (Kruskal-
Wallis test; p values are displayed at the bottom of the plots). Black boxes indicate the
interquartile range of the data. White dots indicate the median. Black vertical lines
indicate 95% confidence intervals. The width of the violin plot indicates the density
of the data. fImmunohistochemistry (IHC) staining of C3AR1 in LUAD, BRCA, and
SKCM tissues. Immunofluorescence (IF) staining of IL16 in A-431 cells.
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Combining several ICP-LncCRCTs with the tumor mutation
burden (TMB) improves the prediction of survival in ICl-treated
SKCM patients

To evaluate the ability of the ICP-LncCRCTs to predict ICI response,
multiple datasets from SKCM were used for analysis. After integrating the

five SKCM datasets, only four ICP-LncCRCTs were extracted. Three kinds
of machine learning algorithms, LASSO, the elastic network, and SVM, were
constructed to predict ICI response. We found that the ROC values were all
greater than 0.75 for all three algorithms, especially for the elastic network
(AUC = 0.844; Fig. 7a). We also compared the ability of the ICP-LncCRCT's
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Fig. 5 | ICP-related IncRNAs are specific to immune cell subsets according to the
scRNA-seq data. a Quantitative characterization of ICP-associated IncRNAs and
ICP-LncCRCTs in single-cell datasets. b Upset plots for all single-cell datasets and
the lung cancer single-cell dataset. The intersection of ICP-associated IncRNA and
ICP-LncCRCTs between the different datasets is shown. The bar graph on the left
side shows the total number contained in each dataset. The lower dot plot shows the
intersection relationship between each dataset, where each dot represents a dataset
and connected dots indicate datasets with intersection. The upper bar graph shows
the number of each intersection case. ¢ Pie charts and bar graphs show the per-
centage of the four patterns in the single-cell dataset for different cancers. d Pie
charts representing ICP-LncCRCT's share of the four modalities in different cancer

single-cell datasets. e Comparison of ssGSEA scores between different cell types in
the GSE117570 and GSE72056 datasets. P values were calculated using
Kruskal-Wallis. The horizontal lines of the box plot represent the maximum, upper
quartile, median, lower quartile, and minimum values. The width of the kernel
density plot represents the density of the data. f Violins indicate the differential
expression of MIR155HG in different types of immune cells in the GSE125449 and
GSE72056 datasets. White dots indicate the median. Black vertical lines indicate 95%
confidence intervals. The width of the violin plot indicates the density of the data.
g Pseudotime diagram of ICP-related IncRNAs. “*” indicates IncRNAs that are
common ICP-related IncRNAs in genes clustered with MIR155HG.
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Fig. 6 | ICP-LncCRCTs are associated with cancer prognosis. a Radar plot
representing the number of prognostic ICP-related IncRNAs in each type of cancer.
b The radar plot represents the number of prognostically relevant ICP-LncCRCTs in
each type of cancer. ¢ Survival-related ICP-LncCRCTs as a percentage of total ICP-
LncCRCTs in each cancer type. d Lollipop chart showing the numbers of cancer
types in which the same survival-related ICP-LncCRCT's were found. e Nine ICP-
LncCRCTs can be used as prognostic biomarkers in five cancer types. f Regulatory
mechanism of MIR155HG/CXCL10/EBI3. g Forest plot of the MIR155HG/

Predicted Probability of 3—year OS

Predicted Probability of 5-year OS

CXCLI10/EBIS3 risk score. The dashed line is the null line, indicating OR = 1. Each
horizontal line indicates a 95% confidence interval. Squares indicate point estimates.
h KM curves of the MIR155HG/CXCL10/EBI3-related genes in the high- and low-
risk groups. Solid blue lines indicate high-risk groups, and solid yellow lines indicate
low-risk groups. Shaded areas indicate 95% confidence intervals. Asterisks on the
curves indicate censoring points. i The ability of MIR155HG/CXCL10/EBI3 to
predict 1-, 3- and 5-year OS versus a single gene.
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Fig. 7 | Prediction of ICI response. a ROC curves of three machine learning
algorithms constructed using ICP-LncCRCTs to predict ICI responses.

b Comparison of the ability of ICP-LncCRCT to predict ICI response with that of
other clinical biomarkers. ¢ UMAP dimension reduction and clustering of respon-
ders and nonresponders based on the expression of ICP-LncCRCT' in the SKCM
dataset (Gide et al. [anti-PD-1]). d Impact of the TMB in combination with the ICP-

LncCRCT on tumor predictive performance. e Kaplan-Meier curves of overall
survival in SKCM patients between two groups divided by the expression levels of
ICP-LncCRCTs in responders and nonresponders. The survival difference is cal-
culated by log-rank test. Solid blue lines indicate the responding group, and solid
yellow lines indicate the nonresponding group. Shaded areas indicate 95% con-
fidence intervals. Asterisks on the curves indicate censoring points.

with that of clinical biomarkers to predict ICI response. The area under the
curve (AUC) values of the ICP-LncCRCT's were greater than those of several
clinical biomarkers, including CTLA4, CD28, PD-L1, IFNG, CD80 and
HAVCRY, for predicting ICI response (Fig. 7b). The ICI responders and
nonresponders could be well distinguished after UMAP dimension reduc-
tion and clustering based on the expression of ICP-LncCRCTs in the SKCM
with anti-PD-1 dataset (Fig. 7c). A high TMB is usually considered a clinical
biomarker for increased benefit from ICI treatment. However, ICI
responders and nonresponders often exhibit significant overlap in TMB,
suggesting that the TMB alone is not a sufficient predictor of the ICI
response. Therefore, we investigated whether combining ICP-LncCRCT's
with TMB-based predictors improved the prediction performance. The
AUC improved from 0.752 (only for TBM) and 0.976 (only for ICP-
LncCRCTs) to 0.983 when ICP-LncCRCT's were combined with the TMB
(Fig. 7d). Additionally, survival was better in the response groups (Fig. 7e).
Taken together, our results suggest that (i) several ICP-LncCRCT's could
predict ICI response and that (ii) several ICP-LncCRCTs could help
improve TMB-based ICI response predictions.

Discussion

Dysfunction of the ICPs in tumor cells enables them to evade recognition
and destruction by immune cells, promoting tumor growth and
metastasis”. LncRNAs can directly and indirectly regulate ICP genes. Thus,
the core regulatory circuitry consisting of IncRNAs, immune genes and ICP
genes is crucial for exploring the regulatory mechanisms of ICP molecules in
tumors. Herein, a complex computational algorithm was developed to
identify and explore the regulatory patterns of ICP-related IncRNAs and
ICP-LncCRCTs across cancers (Fig. la). Some previous works, such as
ImmlLnc, had identified immune-related IncRNAs”. Our research,

however, has a deeper approach to understanding the role of IncRNAs in ICI
treatment by concentrating on ICP-related IncRNAs. We also considered
our work could more accurately focused extract ICP-related IncRNAs from
a large number of immune-related IncRNAs (Supplementary Fig. 13). In
addition, we not only identified immune-related IncRNAs but also, more
importantly, identified regulatory associations and patterns among
IncRNAs, immune-related genes, and ICP genes. We have further investi-
gated the causal association between ICP and IncRNAs. The ability of the
ICP-LncCRCT signature to predict patient prognosis and immunotherapy
response was also validated in SKCM. Our results demonstrated a complex
relationship between ICP, IncRNAs, and immune genes and may help to
evaluate ICI response in cancer patients.

To improve our understanding of the impacts of IncRNAs on ICP-
related gene activity mediated by immune genes and their role in immune
regulation in cancer, we identified ICP-related IncRNAs and constructed
ICP-related IncRNA-mediated core regulatory circuitry triplets (ICP-
LncCRCTs). The page-rank algorithm was used to extract ICP-proximal
genes and IncRNAs. Although the page-rank algorithm is a network pro-
pagation algorithm that is based on degree, we also found that the
betweenness (Betweenness of a node is a measure of the extent to which a
node acts as an intermediary in a network, measuring the importance and
control a node has in connecting other nodes to each other in the network)
of the optimizing genes was greater than that of the other genes in all cancer
types (P <0.001, K-W test, Supplementary Fig. 14). The top 200 immunity
genes and IncRNAs with high betweenness in the co-expression network
were identified in our work. Next, we proposed potential regulatory patterns
dominated by ICP-related IncRNAs and inferred the probable regulatory
pattern for each ICP-LncCRC based on the Bayesian network and max-
imum likelihood estimation. The COO and LIG regulatory patterns had the

Communications Biology | (2024)7:327

10



https://doi.org/10.1038/s42003-024-06004-z

Article

largest and the smallest proportions, respectively, across cancers. In our
analysis, we considered only four basic and major assumed regulatory
patterns. There is no denying that other possibilities exist for IncRNAs to
regulate ICP regulatory patterns. Although there are certain limitations
associated with these assumed regulatory patterns, such as Bayesian net-
work inference processing, which also relies on prior knowledge, these
patterns could still provide perspectives for exploring immune regulation
and ICI response. These causal associations should be further validated in
vitro or in vivo.

Making effective biomarkers useful for predicting patient prognosis
and ICI response has always been a major challenge in precision medi-
cine using immunotherapy. Although several biomarkers, such as PD-L1,
TMB, and some genes, have been approved by the Food and Drug
Administration (FDA) or through experiments, these biomarkers lack
universality and specificity. Thus, identifying more accurate biomarkers
for predicting ICI response is urgently needed. According to our analysis,
compared with a single gene, ICP-LncCRCTs could better predict one-,
three- and five-year OS in SKCM patients. In the context of the five
integrated SKCM datasets, ICP-LncCRCTs exhibited superior predictive
power compared to several clinical biomarkers, as assessed by various
machine learning algorithms. Specifically, ICP-LncCRCTs can help
improve TMB-based ICI response predictions. In future work, the ability
of several ICP-LncCRCTs to predict OS should be validated in additional
cancer types following additional data generation and development with
respect to ICI response.

In our work, we used partial correlation to exclude the influence of
tumor purity in calculating the associations between ICP and IncRNA. The
result indicated that there is no significant difference in the partial corre-
lation coefficients between high- and low-tumor purity groups in half of the
cancer types (Supplementary Fig. 15). More attempts, validations, and
methods were also needed to further eliminate the influence of tumor purity.
In addition, more silico algorithms and histology slides should be used to
validate the estimation of tissue content, such as tumor purity and immune
cell purity. Although bulk RNA-seq data were used in the present study, the
results could be validated in immune cell lines and scRNA-seq datasets.
With the continuous increase in the amount of scRNA-seq data with
additional samples, cancer types, and clinical information on immune cells,
more accurate information on the regulatory associations between ICP and
IncRNAs could be obtained and analyzed.

In summary, we further revealed the associations among ICP,
IncRNAs, and immune genes in cancers by integrating bulk, single-cell,
and immune cell line datasets. The ICP-LncCRCT CXCL10-
MIR155HG-EBI3 showed a more accurate predictive ability for one-,
three-, and five-year prognoses in melanoma patients than single-
molecule therapy. We also validated that several ICP-LncCRCTs could
effectively predict ICI response. Specifically, combining ICP-LncCRCTs
with the tumor mutation burden (TMB) improved the ability of ICI-
treated melanoma patients to predict ICI efficacy. These findings could
lead to the identification of effective candidates for further exploration of
immune function and regulation of IncRNAs and could prove valuable in
future immunotherapeutic strategies.

Methods

Data collection

The gene expression profiles for 18 cancer types from The Cancer Genome
Atlas (TCGA) portal and noncancerous tissues from the Genotype Tissue
Expression (GTEx) consortium were downloaded from the UCSC Xena
platform (http://xena.ucsc.edu/). We also downloaded raw RNA-seq data
from several independent datasets obtained from other public sources to
validate the algorithm. The gene expression profiles of GBM and PRAD
from the International Cancer Genome Consortium (ICGC) were used as
independent datasets to validate the results. Batch effects were removed
between multiple independent datasets. Specifically, batch effects were
removed from the GTEx samples compared with the normal samples in the
TCGA. Normalized expression profiles were subjected to log2

transformation. For the gene expression profiles, we removed the genes
that were not expressed in more than 70% of the samples. The details of
each dataset we used are described in Supplementary Tables 1 and 2.
Clinical data were also downloaded from the UCSC Xena platform. To
identify ICP genes, we searched PubMed using a list of keywords, such as
‘immune checkpoint’, ‘immunotherapy’, and ICP’. Additionally, we
collected information via handbooks or website instructions from mul-
tiple companies. We extracted experimentally supported ICPs “by hand,”
that is, by manually curating them from published papers. All the
selected studies were reviewed by at least two researchers. We extracted
experimentally supported ICPs, which were confirmed by strong
experimental evidence, including RNA interference, in vitro knockdown,
western blot, real-time quantitative polymerase chain reaction
(qQRT-PCR), and luciferase reporter assays.

Differential expression analysis of IncRNAs, immune genes, and
ICP genes in different cancers

We identified differentially expressed IncRNAs, immune genes, and ICP
genes between cancer and normal tissue samples across different types using
the limma package in R software. To mitigate the influence of varying
sample sizes for each cancer type, we utilized the p value distribution, which
was generated from 1000 permutations of each cancer, to determine the final
cutoff. Initially, the sample labels were randomly perturbed, and the dif-
ferential expression analysis was re-performed to calculate the randomized
p value. If the randomized p value was smaller than the original p value, it
was recorded once. This perturbation was repeated 1000 times, and the final
adjusted p value for each gene was determined by the proportion of 1000
random perturbations, which yielded a p value lower than the original one.
Multiple tests were performed to correct the p values. LncRNAs, immune
genes, and ICP genes with false discovery rate (FDR) values less than 0.01
were identified for further analysis.

Identification of IncRNAs, immune genes, and ICP genes that
may have ternary regulatory associations

First, we constructed a co-expression network of IncRNAs, immune genes,
and ICP genes based on Pearson correlation coefficients between genes,
which were used as the weights of the network edges. Mutual information
(MI) was used to validate the correlations among IncRNAs, immune genes,
and the ICP gene. To reduce the influence of sample size for each cancer
type, the p value distribution generated from 1000 permutations of each
cancer was used to determine the final cutoff. We identified IncRNAs and
immunity genes that were closely associated with the ICP genes via network
propagation using the page-rank algorithm from the NetworkX Python
module. We used one for the ICP genes and zero for all the other genes in the
network as inputs for the personalization parameter in the page-rank
algorithm. Default settings were used for any other parameters for the page-
rank algorithm. After network propagation, we considered the top 200
immunity genes or IncRNAs with the highest influence scores as genes
closely related to the ICP genes.

Next, we used partial correlation analysis to exclude the influence of
tumor purity and further screened the correlations between the three types
of genes. The expression of the IncRNA, immune gene, and ICP gene was
defined as L(i) = (11,12,13, ..., Im), G(i) = (g1, g2, g3, ..., gm), and C(i) = (cl,
c2,¢3, ..., cm), respectively. The tumor purity scores across n patients were
defined as P = (p1, p2, p3, ..., pn). We first calculated the partial correlation
coefficient between the expression of IncRNA i and the expression of the ICP
gene j by considering tumor purity as a covariable:

Rie — Rpp * Rep
\/1_pr*\/1_}1%1>

where RLC, RLP, and RCP are the correlation coefficients between the
expression of IncRNA i and the ICP gene j, the expression of IncRNA i and
tumor purity, and the expression of the ICP gene j and tumor purity,
respectively.

PCC(ij) =
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Then, immune genes regulated by IncRNAs and ICP genes were
screened using GSEA enrichment analysis to obtain immune genes that
could be enriched in 18 immune pathways.

Finally, S scores were assigned to the gene pairs composed of IncRNAs
and ICP genes based on the results of GSEA and partial correlation analysis.

S= wa(_ log 10(P,;) * sign(cor;) — log 10(P,;) * sign(cor,;))

i=1

where 7 is the number of immunity genes regulated by the gene pairs
composed of IncRNAs and ICP genes, wi is the enrichment score of
immunity genes in the GSEA enrichment results, P1i is the partial corre-
lation p value of IncRNAs and immunity genes, P2i is the partial correlation
p value of ICP genes and immunity genes, corli is the partial correlation
coefficient of IncRNAs and immunity genes, and cor2i is the partial cor-
relation coefficient of ICP genes and immunity genes.

After scoring each gene pair composed of the IncRNA and ICP genes,
1000 random perturbations were performed by perturbing the sample
labels, and the FDR was calculated by Benjamini and Hochberg (BH) cor-
rection to obtain the gene pairs composed of IncRNAs and ICP genes with
FDR < 0.01. By partial correlation analysis, GSEA, S score, and random
perturbation, we obtained IncRNAs, immunity genes, and ICP genes with
possible ternary regulatory associations. We named these regulatory asso-
ciations among IncRNA, immunity gene, and ICP gene as ICP-related
IncRNA-mediated core regulatory circuitry triplets (ICP-LncCRCTs).

Construction of a possible regulatory model among IncRNAs,
immunity genes, and ICP genes in ICP-LncCRCTs

Based on the previously identified IncRN As, immunity genes, and ICP genes
with possible ternary regulatory associations, we constructed ICP-related
IncRNA-mediated core regulatory circuitry triplets (ICP-LncCRCTs) and
proposed four possible regulatory models: INDEP, LGI, LIG and COO
regulatory patterns. For each of the proposed patterns, we defined the joint
probability distribution based on the assumption of standard Markovian
characterization as follows:

Pinpep(L, C, M) = P(L)P(C|L)P(M]L),
Pcoo(L, C, M) = P(L)P(M)P(CIL, M),
Prg(L, C,M) = P(L)P(M|L)P(C|M),

Pyy6(L, C, M) = P(L)P(C|L)P(M|C),

where L represents the expression value of the IncRNA, C represents the
expression value of the ICP, and M represents the expression value of the
immune genes. We assigned each ICP-LncCRCT to the corresponding
pattern by the MLE method. Subsequently, we calculated the Akaike
information criterion (AIC) score and Akaike weights (w(AIC)).

AIC; = —2logL; + 2K;

—1A,(AIC)

e (AIC) € (0, 1)

w(AIC) = —————, W
J Z;“:l i@y

A(AIC) = AIC; — min(AIC)

where L; is the maximum likelihood for pattern j. Finally, the pattern with
the lowest AIC and largest w(AIC) was selected as the best pattern for each
ICP-LncCRCT. The pattern selection process was performed using the R
package bnlearn.

Recognition of pattern-variable gene pairs composed of
IncRNAs and ICP genes

Immunity genes produce a marked effect on the process through which
IncRNAs regulate ICPs. In various cancers, the same IncRNA-ICP gene pair
can form ICP-LncCRCTs with differing patterns, shaped by the diverse
immune genes involved. We defined IncRNA-ICP gene pairs that occurred
in more than or equal to five cancers and had different patterns of ICP-
LncCRCT due to different immune genes as pattern-variable IncRNA-ICP
relationship pairs.

Correlations between ICP-related IncRNAs and antitumor
immune activity in cancers

We evaluated the immunological characteristics of the ICP-related IncRNAs
by calculating correlations with the following factors: (i) Immune cell
infiltration score from TIMER. (i) Antitumor immunoreactivity was
measured by the MHC score and CYT score according to the mean
expression of the corresponding markers™*. (i) Expression of immune cell
markers. (iv) Expression in immune cell lines. (v) IHC and IF staining were
performed with a Human Protein Atlas (https://www.proteinatlas.org/).
Spearman rank correlations were calculated between the expression of each
IncRNA and the TIMER score, MHC score, CYT score, and expression of
immune cell markers. Kruskal-Wallis (K-W) tests were performed to
evaluate the differences in the expression of each IncRNA in 19 immune cell
lines™.

Obtaining and analyzing the scRNA-seq data

The scRNA-seq expression profile data of seven cancer types and 10 datasets
were downloaded from the Gene Expression Omnibus (Supplementary
Table 3, GEO, https://www.ncbi.nlm.nih.gov/geo). The preprocessed gene
expression matrix and cell annotation information were encapsulated using
the R package Seurat™. The marker genes of specific cell types collected from
published literature”*** were used to define cell clusters. The ‘GSVA’ package
was used for single sample gene set enrichment analysis (ssGSEA) to eval-
uate the gene set enrichment score of each cell. The calculated ssGSEA
scores are displayed in the UMAP graph. The difference in IncRNA
expression among cell types was tested by the K-W test. A common com-
putational pipeline was also used to identify ICP-LncCRCTs across cancer
types utilizing scRNA-seq data to analyze various cell types.

Survival analysis of patients with important ICP-LncCRCTs in
multiple cancer types

The association between the expression of ICP-related IncRNAs in ICP-
LncCRCTs and survival was assessed using univariate Cox regression
analysis and the log-rank test. Candidate prognostic ICP-related IncRNAs
were identified by P<0.05 for univariate Cox regression analysis and
P <0.05 for the log-rank test.

For ICP-LncCRCTs, we assigned risk scores to each patient based on
linear combinations of the expression of each gene in the ICP-LncCRCT's
weighted by the regression coefficients from the multivariate Cox regression
analyses. The risk scores for each sample were defined as follows:

3
Risk = Z P; * exp;
=1

where # is the number of genes in each ICP-LncCRCT, f; is the regression
coefficient for the multivariate Cox regression analysis, and exp; is the
expression of the gene;. Patients were divided into high- and low-risk groups
based on the median risk score, and differences in survival were analyzed
using the log-rank test. The calibration curves for the probability of OS
showed that the nomogram’s prediction matched the actual observation™.

Prediction of ICI response in SKCM based on ICP-LhcCRCT
Five datasets of SKCM treated with immunotherapy were obtained, and
batch effects were removed using the R package “sva” (Supplementary
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Table 4). Seventy percent of the samples were used as the training set, and
the remaining samples were used as the test set. After data processing, the
expression of IncRNAs, immune genes, and the ICP gene in 216 prognosis-
related ICP-LncCRCT's was found in all six datasets.

The expression of four ICP-LncCRCTs, three IncRNAs, three immu-
nity genes, and two ICP genes, was extracted from all the datasets via LASSO
regression analysis. We further tested the predictive performance of the
models based on the expression of four prognosis-related ICP-LncCRCT's
using LASSO regression analysis, elastic network analysis, and support
vector machine (SVM) analysis. The receiver operating characteristic
(ROC) curve was used to evaluate the predictive ability of the model using
the R package “ROCR”. We compared the predictive performance of
models based on ICP-LncCRCTs and other clinical indicators (PD-LI,
IFNG, CD28, CD80, HAVCR?2, and CTLA4) using SVM models. We also
analyzed the ability of the IMvigor210 dataset to predict ICI responses using
TMB and the mean expression level of ICP-LncCRCTs. For the IMvigor210
dataset, the mutation burden per megabase was used as the TMB.

Statistics and reproducibility

Statistical analyses were conducted using R software (version 4.3.1). We use
the limma package to screen for differentially expressed genes. For the
correlation between genes, we use the cor.test function to calculate the
Pearson correlation coefficient. The difference between IncRNA and known
IncRNA is analyzed by Fisher’s test, and Fisher’s test is performed by the
fisher.test function. The significance of the intersection of sets is analyzed by
the hypergeometric test, and the hypergeometric test is performed by the
phyper function. The difference in IncRNA expression and ssGSEA score
among multiple types of cells is analyzed by the Kruskal-Wallis test, and the
Kruskal-Wallis test is performed by the Kruskal test function. The com-
parison of survival curves in survival analysis is analyzed by the log-rank
rank test, and the log-rank rank test is performed by the ggsurvplot function
in the survminer package.

Ethics approval and consent to participate

All relevant ethical regulations were followed in the original study of the
datasets, and the authors of the source studies also obtained informed
consent from participants.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability

The TCGA datasets were downloaded from the UCSC Xena platform
(http://xena.ucsc.edu/). scRNA-seq data’*~*" was obtained from GEO with
the accession number GSE127471, GSE117570, GSE69405, GSE75688,
GSE118389, GSE125449, GSE81861, GSE103322 and GSE72056. Immu-
notherapy response data®™™* was obtained from Tumor-Immune Dys-
function and Exclusion (http://tide.dfci.harvard.edu/). The analysis results
associated with this paper are available on GitHub (https://github.com/
GaoYueWorkspace/ICP-related-IncRNAs/Bayes  network  ICP-related
IncRNA/Data) and are publicly accessioned via Zenodo" (https://doi.org/
10.5281/zenodo.10726010). The numerical source data for the graphs in the
main and Supplementary Figs. can be found in Supplementary Data 1, 2.

Code availability

The R code used in the analysis of the data is available on GitHub (https://
github.com/GaoYueW orkspace/ICP-related-IncRNAs/Bayes network ICP-
related IncRNA/Code) and is publicly accessioned via Zenodo" (https://doi.
org/10.5281/zenodo.10726010).
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