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The landscape of immune checkpoint-
related long non-coding RNAs core
regulatory circuitry reveals implications
for immunoregulationand immunotherapy
responses
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Changfan Qu1,3, Hao Cui2,3, Song Xiao1,3, Longlong Dong1, Qianyi Lu1, Lei Zhang2, Peng Wang1,
Mengyu Xin1, Hui Zhi1, Chenyu Liu1, Shangwei Ning 1 & Yue Gao 1

Long non-coding RNAs (lncRNAs) could modulate expression of immune checkpoints (ICPs) by
cooperating with immunity genes in tumor immunization. However, precise functions in immunity and
potential for predicting ICP inhibitors (ICI) response have been described for only a few lncRNAs. Here
we present an integrated framework that leverages network-based analyses and Bayesian network
inference to identify the regulated relationships including lncRNA, ICP and immunity genes as ICP-
related LncRNAs mediated Core Regulatory Circuitry Triplets (ICP-LncCRCTs) that can make robust
predictions. Hub ICP-related lncRNAs such as MIR155HG and ADAMTS9-AS2 were highlighted to
play central roles in immune regulation. Specific ICP-related lncRNAs could distinguish cancer
subtypes. Moreover, the ICP-related lncRNAs are likely to significantly correlated with immune cell
infiltration, MHC, CYT. Some ICP-LncCRCTs such as CXCL10-MIR155HG-ICOS could better predict
one-, three- and five-year prognosis compared to singlemolecule inmelanoma.Wealso validated that
some ICP-LncCRCTs could effectively predict ICI-response using three kinds of machine learning
algorithms follow five independent datasets. Specially, combining ICP-LncCRCTs with the tumor
mutation burden (TMB) improves the prediction of ICI-treated melanoma patients. Altogether, this
study will improve our grasp of lncRNA functions and accelerating discovery of lncRNA-based
biomarkers in ICI treatment.

Immune checkpoint inhibitors (ICIs) activate immune cells by inhibiting
immune checkpoints (ICPs), thus blocking the immune escape of tumor
cells. ICIs have successfully changed the treatment prospects for many
cancer types, especially melanoma and lung cancer1. Several pivotal trials
have shown that ICIs, as either monotherapies or combination therapies,
improve most clinical efficacy endpoints for patients with locally advanced
or metastatic cancers2. Although ICIs can provide clinical benefit, there are
some main limitations which include low response rates, complex and
diverse immune-related adverse events (irAEs), and varying degrees of drug
resistance. Therefore, it is urgent to address the problems in current cancer

research involving ICIs requires studying the regulatorymechanismof ICP-
related genes atmultiple molecular levels, such as protein-coding genes and
non-coding genes, predicting the therapeutic efficacy of ICIs, and identi-
fying early predictive biomarkers of ICI efficacy to terminate ineffective
treatment as soon as possible.

There is a large amount of non-coding RNA in the human genome,
which is widely involved in the occurrence and development of a variety of
cancer types and the effect of drug therapy3. Long-chain non-coding RNAs
(lncRNAs) are a very important class of non-coding RNAs with a length of
more than 200 bases that play an essential role in the process of cancer
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progression4,5. In particular, during the regulation of the tumor-immune
response, lncRNAs can play an essential role by regulating necessary
immune genes and pathways. With continuous in-depth research in recent
years, the mechanisms and functions of several lncRNAs in cancer have
become increasingly clear. For example, Joseph Toker et al. suggested an
association betweenNEAT1 expression and patient response to anti-PD-1/
PD-L1 therapy in melanoma and glioblastoma6. However, the regulatory
mechanisms and functional effects ofmost lncRNAs and ICPmolecules are
still unknown.

Innate and adaptive immunity are strongly dependent on a series of
mRNA-based regulatory events. LncRNAs are a kind of important gene
regulatory factor of these processes7. LncRNAs are emerging as critical
regulators of gene expression in the immune system8. For example, the
lncRNA SATB2-AS1 was downregulated in colon cancer and can inhibit
tumor metastasis by regulating the gene encoding STAB2 and affecting the
tumor-immunemicroenvironment9. An increasing number of studies have
shown that lncRNAs can directly or indirectly regulate ICP molecules,
leading to heterogeneity in ICI efficacy and the development of drug
resistance10. For example, in diffuse large B-cell lymphoma, the lncRNA
SNHG14 upregulates the mRNA ZEB1 by competitively binding to miR-
5590-3p, and ZEB1 positively activates SNHG14 and PD-L1, thereby pro-
moting immune escape of tumor cells11. Thus, the core regulatory circuitry
consisting of lncRNAs, immune-related mRNAs, and ICP genes is crucial
for exploring the regulatory mechanisms of ICP molecules in tumors.

In this study, we report an integrated framework that leverages
network-based analyses and Bayesian network inference to (i) identify ICP-
related lncRNAs and (ii) infer the regulatory patterns of ICP-LncCRCTs.
The identified results were validated in independent datasets and databases.
Four basic regulatory patterns were inferred by the Bayesian network and
maximum likelihood estimation. Immunity-related genes play crucial roles
in the process through which lncRNAs regulate ICPs. Common and spe-
cific ICP-related lncRNAs participate in diverse immune processes.
Cancer-specific ICP-related lncRNAs can distinguish cancer types. ICP-
related lncRNAs were correlated with immune cell infiltration in cancers
based on bulk data, immune cell lines, and scRNA-seq datasets. Some
ICP-LncCRCTs could better predict patient prognosis than single
molecules in melanoma. We also validated that several ICP-LncCRCTs
could effectively predict ICI response using three kinds of machine
learning algorithms and five independent datasets. Specifically, com-
bining ICP-LncCRCTs with the tumor mutation burden (TMB)
improved the prediction of ICI-treated melanoma patients. In summary,
our method provides an approach to unveil insights into lncRNAs reg-
ulating ICPs in tumor immunity, helping previously identified bio-
markers improve the prediction of ICI response.

Results
Identification of ICP-related lncRNA-mediated core regulatory
circuitry triplets (ICP-LncCRCTs) across cancer types
To identify candidate lncRNAs that can drive ICPs by forming core reg-
ulatory circuitry triplets, we proposed a four-step computational framework
(Fig. 1a). The framework systematically infers ICP-related lncRNAs and
their regulatory mechanisms from expression profiles, network modules,
and immune-related pathways based on a large number of samples. We
presumed that if lncRNAs could participate in immunology by regulating
ICPs, then they closely interact with immune genes and ICPs and could also
be enriched in immune-relatedpathways.Overall, four stepswere applied to
identify ICP-LncCRCTs. First, differentially expressed immune gene,
lncRNA, and ICP for cancer patients were extracted. Second, genes that
were strongly correlated with each other were screened via Pearson corre-
lation analysis to construct co-expression networks.We used the page-rank
algorithm to identify the immune genes and lncRNAs that were closely
associatedwith ICP.Third, basedonexcluding the influenceof tumorpurity
using the partial correlation analysis, GSEA, S score, and permutation, we
further identified lncRNAs, immune genes, and ICP genes thatmight have a
ternary regulatory association (named ICP-LncCRCT). Finally, we inferred

the best regulatory pattern for each ICP-LncCRCT using Bayesian
inference.

By applying the four-step computational framework, ICP-related
lncRNAs and ICP-LncCRCTs were extracted from diverse cancer types
(Fig. 1b). The numbers of ICP-related lncRNAs and ICP-LncCRCTs
exhibiteda greater range (2–94 and12–25,527) by excluding the influenceof
sample size. Although a moderate number of ICP-related lncRNAs were
identified, most of the identified ICP-LncCRCTs were associated with
SKCM and LUSC. These findings indicated that lncRNAs could play
complex roles in immunology by forming amultitude of ICP-LncCRCTs in
cancers. The reliability of the framework was validated in three parts. First,
the associations among lncRNAs, the ICP and immune genes were sig-
nificantly intersected according to two methods, PCC and MI (Fig. 1c).
Second, similar results were also validated in other independent datasets
(GBM and PRAD) after removing batch effects (Fig. 1d, Supplementary
Fig. 1). Finally, we found that the ICP-related lncRNAs had significant
interactions with immune-, cancer- and disease-related lncRNAs (Fig. 1e).
Taken together, these results revealed that ICP-LncCRCTs could be iden-
tified and considered valuable resources in cancer immunology.

ICP-LncCRCTs involve complex regulatory patterns across
cancers
To evaluate the mechanism through which lncRNAs regulate ICPs, four
major regulatory patterns of ICP-LncCRCTswere proposed to elucidate the
possible relationshipswithin a triplet. The four regulatorymechanismswere
named lncRNA-mediated regulation of ICP by immune genes (LGI) and
lncRNA-mediated direct regulation of ICP, further influencing immune
genes (LIGs), coordinates (COOs), and independence (INDEP). In the
“Independent” pattern, lncRNAs acted as an independent regulator mod-
ulating ICP and immunity gene expression. In the “Coordinate” pattern,
lncRNAsand immunity genes could act as synergistic regulators toaffect the
expression of the target ICP genes (Fig. 2a). The frequency of the four kinds
of regulatory patterns varied across cancer types. In general, the COO and
LIG regulatory patterns had the largest and the smallest proportions,
respectively, across cancers (Fig. 2b). Thus, immune genes produce a
marked effect on the process throughwhich lncRNAs regulate ICPs.Almost
all the ICP-LncCRCTs were formed by multiple immune genes (Fig. 2c,
Supplementary Fig. 2). For example, the ICP-related lncRNA MIR155HG
could regulate ICP gene CXCL10 by binding to the ICOS immune gene via
the ICP-LncCRCT complex (Fig. 2d). Many studies have reported that
MIR155HG is associated with immune infiltration and the expression of
immune checkpoint molecules in a variety of cancers12–14. We also found
that the immune regulatory effects of the identified ICP-related lncRNAs
were mediated by different numbers of immune genes involved in reg-
ulating ICP in different cancers. In addition, an identical lncRNA-ICP gene
pair could form different ICP-LncCRCTs with different immunity genes
and participate in diverse immune pathways to perform their functions.
(Fig. 2e). In summary, these results indicated that ICP-LncCRCTs involve
complex regulatory patterns across cancers.

Common and specific ICP-related lncRNAs play diverse roles in
immune-related cancers
To further investigate the crucial roles of ICP-related lncRNAs in diverse
cancer types, ICP-LncCRCTswere characterized in each cancer type. For all
lncRNAs in the ICP-LncCRCTs, lncRNAs identified infive ormore types of
cancerweredefinedas common lncRNAs, and lncRNAs identified in twoor
fewer types of cancer were defined as specific lncRNAs. We chose “five” to
define common lncRNAs because the numbers of common lncRNAs were
similar when five to other (6~14) were changed (Supplementary Fig. 3).
Subtypes with similar tissue-of-origin characteristics shared common ICP-
related lncRNAs and ICP-LncCRCTs (Fig. 3a). For example, the similarity
of ICP-related lncRNAs and ICP and lncRNApairs was greater among two
subtypes of lung cancer, LUAD and LUSC. More than 50% of the ICP and
lncRNA pairs in LUAD also occurred in LUSC, which was significant
according to Fisher’s test (P = 2.34e-43). Similar results were also found in

https://doi.org/10.1038/s42003-024-06004-z Article

Communications Biology |           (2024) 7:327 2



COAD and READ, which are two intestinal cancer types (lncRNA:
P = 2.69e-19; ICP and lncRNA pairs: P = 5.96e-58). The ICP-LncCRCT
networks were constructed and analyzed for each cancer type. The degrees
of the lncRNAswere greater than those of the ICPs and immune genes in all
cancer types, which indicated that the regulatory association may be ICP-
centered in most cancer types (Supplementary Fig. 4). Several ICP-related
lncRNAs can be found in many kinds of cancer. These common lncRNAs
exhibit close interactions with ICP genes in many cancers (Fig. 3b). In this
common lncRNA network, several ICP-related lncRNAs and genes have
been validated in other studies. For example, MIR155HG can regulate the
tumor-immune microenvironment through cytokine‒cytokine receptor
interactions and complement and coagulation cascades and is positively
correlated with TIM-3 expression15. PSMB8-AS1 promotes pancreatic
cancer progression by regulating the miR-382-3p/STAT1/PD-L1 axis16.

In addition to common lncRNAs, several ICP-lncRNApairs have been
identified in multiple cancer types. Although common ICP-lncRNA pairs
are present in multiple cancer types, the immune-related genes and reg-
ulatory mechanisms involved are diverse across cancer types. The vast
majority of the ICP-lncRNApairsweremediated by 20 to 40 immune genes
andmore than twokinds of regulatorymechanisms indifferent cancer types
(Fig. 3c). For example, PSMB8-AS1 is a common ICP-related lncRNA, and
multiple immune genes that mediate and exhibit different regulatory pat-
terns can be found in gene pairs composed of PSMB8-AS1 and IL2RB. We
referred to this class of gene pairs as pattern-variable lncRNA-ICP rela-
tionship pairs (Fig. 3c). The common ICP-related lncRNA MIR155HG is
involved in the interaction of ICP-LncCRCTs with the ICP genes PD1,
PDL-1 and CD28, which are mediated by six different immunity genes in
tumors andTcells (Fig. 3d). Someof these regulatory associationshave been

Fig. 1 | The computational algorithm for identification of ICP-LncCRCTs.
a Schematic representation of the four steps in the identification of ICP-LncCRCTs.
b The number of ICP-related lncRNAs and ICP-LncCRCTs in each cancer type.
c Venn diagram showing the overlap of coexpressed gene pairs detected using the
PCC andMImethods. The hypergeometric test was used to assess the significance of
the overlap. d Venn diagram of the results identified with other independent

datasets. The intersections represent jointly identified results. The hypergeometric
test was used to assess the significance of the overlap. eVenn diagram of ICP-related
lncRNAs and immune-, cancer- and disease-related lncRNAs. The intersection
represents the common lncRNAs. The hypergeometric test was used to assess the
significance of the overlap.
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Fig. 2 | ICP-LncCRCTs have complex regulatory mechanisms. a Four possible
regulatory patterns. b The proportions of the four regulatory patterns in all cancers.
c The numbers of immune genes comprising ICP-LncCRCTs in each cancer type.
Different colors indicate different types of cancer. The red horizontal line indicates
the mean value. d Subnetwork of ICP-LncCRCTs, including MIR155HG. Red,
green, and blue indicate the immune gene, ICP gene, and lncRNA, respectively. The
size of the nodes indicates the number of connected nodes. The thickness of the edges
indicates the level of correlation. eThe same lncRNA-ICP gene pair can interact with

different ICP-LncCRCTs via different immune genes involved in diverse immune
pathways. The blue bubble diagram indicates the number of immune genes affected
by each lncRNA-ICP gene pair in each cancer. A Sankey diagram indicated that each
lncRNA-ICP gene pair participates in different immune pathways by mediating
different immune genes. The first column of the Sankey diagram indicates the
different immune pathways, and the second column indicates the immune genes.
The third column indicates the lncRNA-ICP gene pairs.
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verified in previous studies13,17. Taken together, these results indicated that
the regulatory associations between lncRNAs and ICP are complex.

Specific ICP-related lncRNAs were also characterized. The number of
specific ICP-related lncRNAswas diverse (from 0 to 55) across cancer types
(Fig. 3e). These expression patterns of specific ICP-related lncRNAs were

further confirmed by t-distributed stochastic neighbor embedding (t-SNE)
(Fig. 3f). Diverse cancer types could be distinguished, and cancers with
related tissue origins or the same cancer type were clustered together,
exhibiting similar lncRNA expression patterns, including core gastro-
intestinal cancer (ESCA, STAD, COAD and READ) and squamous cell
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carcinoma (LUSC, HNSC). Taken together, these findings revealed that
ICP-related lncRNAs exhibit commonand specific characteristics in cancer,
suggesting that they play diverse roles in oncogenic processes and the
tumor-immune microenvironment.

ICP-related lncRNAs were correlated with immune cell infiltra-
tion in cancers
The immune response has been proven to involve tissue infiltration of
immune cells. Therefore, we hypothesized that if ICP-related lncRNAs
could perform essential and important functions in immune regulation,
theywould tend to be highly expressed in immune cells and associated with
immune cell infiltration in tumors. Immune cell infiltration levels were
estimated by TIMER based on lncRNA expression profiles. Five kinds of
tumor-infiltrating immune cells, B cells, CD4 T cells, CD8 T cells, macro-
phages, and neutrophils, were analyzed. A large number of ICP-related
lncRNAs were correlated with immune cell infiltration (Fig. 4a, Supple-
mentary Fig. 5). In particular, common ICP-related lncRNAs were more
related to immune cell infiltration than other ICP-related lncRNAs were
(Supplementary Fig. 6). In addition, theMHC and CYT scores were greater
for common lncRNAs than for specific lncRNAs (Fig. 4b, c). Similar results
were also found for immune cell markers. These common ICP-related
lncRNAs were also more positively correlated with immune cell markers,
including B cells, CD4+ T cells, CD8+ T cells, and T cells, than were the
other lncRNAs (Fig. 4d). Then, we analyzed the expression profiles of 19
immune cell lines. The expression of 65% ICP-related lncRNAs, such as
MIR155HG and ADAMTS9-AS2, was significantly up-regulated in the
T-cell subset (Fig. 4e, Supplementary Fig. 7). In addition, several genes
related to ICP-lncRNAs among the ICP-LncCRCTs could also be related to
immune regulation. We observed that immune genes in ICP-LncCRCTs
had greater protein intensity in cancer tissues than in normal tissues by
immunohistochemical (IHC) and immunofluorescent (IF) staining. For
example, the C3AR1 gene and HEL gene were affected (Fig. 4f). In sum-
mary, ICP-related lncRNAs are likely associated with immune cell infil-
tration, further validating the results of our algorithm.

ICP-related lncRNAs showed specific features across immune
cell subsets based on scRNA-seq data
We further analyzed the scRNA-seq data to explore the roles of ICP-related
lncRNAs in diverse immune cell subsets. The ten scRNA-seq datasets,
including seven cancer types, were collected and analyzed. The major cell
types included tumor cells, B cells, macrophages, NK cells, and T cells
(Figure S8). The numbers of ICP-LncCRCTs and ICP-related lncRNAs in
diverse cell types were cancer-specific (Fig. 5a). More ICP-LncCRCTs were
identified in T cells for the vast majority of cancer types. Like in tissue, there
were some common shared ICP-LncCRCTs and ICP-related lncRNAs
among diverse cancer types (Fig. 5b). Specifically, seven ICP-related
lncRNAswere found inTandBcells for all cancer types.Wecould infer that
ICP-related lncRNAs were relatively stable in T and B cells. For individual
datasets from common cancers, more than half of the ICP-LncCRCTs and
ICP-related lncRNAs were present in only one dataset (Fig. 5c). These
findings indicated that the tumor microenvironment has strong hetero-
geneity. Like the regulatory patterns of ICP-LncCRCTs in tissue, we found
that the COO and INDEP regulatory patterns accounted for the largest
proportion of the pancancer cohort (Fig. 5d). The ssGSEA revealed that the
scores of ICP-related lncRNAs were greater for T cells, B cells and NK cells

(Fig. 5e). For example, the ICP-related lncRNAMIR155HG, which is also a
common lncRNA, was differentially expressed in diverse kinds of immune
cell types, especially in T cells (Fig. 5f, Supplementary Fig. 8). Consistent
results were also shown in the above analysis based on immune infiltration
and cell lines. In addition, the associations between ICPs and lncRNAs in
ICP-LncCRCTs were also closer in T cells for several cancer types (Sup-
plementary Fig. 9). These ICP-related lncRNAs were dynamically changed
at diverse pseudotime points (Fig. 5g). Common ICP-related lncRNAs
USP30-AS1, could cluster with MIR155HG and exhibited close co-
expression (Supplementary Fig. 10). Collectively, these results indicated
that ICP-related lncRNAs could play a role in performing the functions of
T cells, B cells and NK cells, further validating their roles in the tumor-
immune microenvironment.

Several ICP-LncCRCTs and ICP-related lncRNAs are associated
with survival, and the MIR155HG/CXCL10/EBI3 axis can predict
the prognosis in SKCM
Numerous studies have elucidated how various components of the immune
system control or contribute to cancer progression, thus revealing their
prognostic value18. We considered whether these ICP-related lncRNAs,
especially ICP-LncCRCTs, were associated with the survival of cancer
patients. A large number of ICP-related lncRNAs and ICP-LncCRCTs were
associated with survival in patients with diverse cancers (Fig. 6a, b; Supple-
mentaryFig. 11).Especially inSKCM,99.76%ICP-LncCRCTswere related to
survival (Fig. 6c). The most survival-related ICP-LncCRCTs were found in
SKCM, LUAD and KIRC patients who had been treated with ICIs in the
clinic. Most of the ICP-LncCRCTs were cancer-specific and were associated
withprognosis in onlyoneor twocancer types (Fig. 6d).However, seven ICP-
LncCRCTs could serve as prognostic biomarkers in four kinds of cancer
(Fig. 6e). We found that USP30-AS1 and LINC01943 were two key ICP-
related lncRNAs that participate inmultiple survival-related ICP-LncCRCTs
with different ICPs and immune genes in diverse cancers. Previously,USP30-
AS1was reported tomediate the progression of various humandiseases, such
as coloncancer, glioblastoma, cervical cancer, andacutemyeloid leukemia19,20.
According to our above analysis, MIR155HG was the key common ICP-
related lncRNA. According to our analysis, MIR155HG could regulate the
ICP-related gene CXCL10 by cooperating with the immune gene EBI3 (the
COO pattern) (Fig. 6f). We found that the ICP-LncCRCT MIR155HG/
CXCL10/EBI3 signature was an independent prognostic factor for overall
survival (OS) and could be a key integrated prognostic biomarker in SKCM
(Fig. 6g). A lower risk score for MIR155HG/CXCL10/EBI3 was associated
with a better prognosis in SKCM patients (P = 0.00017; Fig. 6h). The global
ICP-LncCRCT MIR155HG/CXCL10/EBI3 could better distinguish the
prognosis of SKCM patients compared to single gene (Supplementary
Fig. 12). We also found that the ICP-LncCRCT MIR155HG/CXCL10/EBI3
couldbe aneffectiveprognostic biomarker.The calibration curve showed that
the risk score ofMIR155HG/CXCL10/EBI3 had a satisfactory fit between the
predicted and actual observations. Specifically, the risk score of the ICP-
LncCRCT MIR155HG/CXCL10/EBI3 combination could more effectively
predict1-, 3- and5-yearprognoses thancould the single ICPor lncRNAalone
in SKCMpatients (Fig. 6i). Taken together, these results indicated that several
ICP-LncCRCTs were associated with survival in all cancer types.
MIR155HG/CXCL10/EBI3 could be effective prognostic biomarkers in
SKCM. To a certain degree, the whole MIR155HG/CXCL10/EBI3 axis has
better predictive performance for survival than single molecules in SKCM.

Fig. 3 | Common and specific ICP-related lncRNAs exhibited diverse immune
regulation patterns. a The upper triangular matrix shows the number of shared
lncRNA-ICP gene pairs between any two cancers. The lower triangularmatrix shows
the number of shared ICP-related lncRNAs. A Venn diagram represents the overlap
of lncRNA-ICP gene pairs as well as ICP-related lncRNAs in two lung cancer
subtypes, LUAD and LUSC. The hypergeometric test was used to assess the sig-
nificance of the overlap, and the p values are shown below the figure. b Common
lncRNA network. The blue and red nodes indicate the ICP and common lncRNAs,
respectively. Pie charts of different colors indicate the presence of genes in different

cancers. The size of the nodes indicates the number of connected nodes. The
thickness of the edges indicates the level of correlation. c Patterns and numbers of
regulated immune genes among the pattern-variable lncRNA-ICP gene pairs in
different cancers. The pie chart represents the percentages of the four models. The
heatmap represents the number of immune genes. d Inferred mechanisms by which
ICP-LncCRCTs act between immune cells and tumor cells. e Stacked bars indicate
the number of common lncRNAs and specific lncRNAs in each cancer. f Cancer
samples were clustered by t-distributed stochastic neighbor embedding (t-SNE)
based on specific lncRNAs. Different colors represent different cancer types.
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Fig. 4 | Relationship between ICP-related lncRNAs and immune system activity.
a Heatmap showing the correlation of 18 common lncRNAs and specific lncRNAs
with TIMER scores. “*” indicates a strong correlation. b Heatmap representing the
correlation of common lncRNAs and specific lncRNAs with the MHC score and
CYT score. cViolin plots representing the overall comparison of common lncRNAs
and specific lncRNAs with MHC scores and CYT scores. Black boxes indicate the
interquartile range of the data. White dots indicate the median. Black vertical lines
indicate 95% confidence intervals. The width of the violin plot indicates the density
of the data. d Correlations between common lncRNAs and specific lncRNAs and

markers of four classes of immune cells. The size of the circle and the shade of the
color indicate the magnitude of the correlation. “x” indicates no correlation
(P > 0.05, Pearson correlation analysis). e Violin plots indicating the differential
expression of MIR155HG and ADAMTS9-AS2 in 19 immune cell lines (Kruskal‒
Wallis test; p values are displayed at the bottomof the plots). Black boxes indicate the
interquartile range of the data. White dots indicate the median. Black vertical lines
indicate 95% confidence intervals. The width of the violin plot indicates the density
of the data. f Immunohistochemistry (IHC) staining of C3AR1 in LUAD,BRCA, and
SKCM tissues. Immunofluorescence (IF) staining of IL16 in A-431 cells.
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Combining several ICP-LncCRCTs with the tumor mutation
burden (TMB) improves the prediction of survival in ICI-treated
SKCM patients
To evaluate the ability of the ICP-LncCRCTs to predict ICI response,
multiple datasets from SKCM were used for analysis. After integrating the

five SKCM datasets, only four ICP-LncCRCTs were extracted. Three kinds
ofmachine learning algorithms, LASSO, the elastic network, andSVM,were
constructed to predict ICI response.We found that the ROC values were all
greater than 0.75 for all three algorithms, especially for the elastic network
(AUC = 0.844; Fig. 7a).We also compared the ability of the ICP-LncCRCTs
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Fig. 5 | ICP-related lncRNAs are specific to immune cell subsets according to the
scRNA-seq data. a Quantitative characterization of ICP-associated lncRNAs and
ICP-LncCRCTs in single-cell datasets. b Upset plots for all single-cell datasets and
the lung cancer single-cell dataset. The intersection of ICP-associated lncRNA and
ICP-LncCRCTs between the different datasets is shown. The bar graph on the left
side shows the total number contained in each dataset. The lower dot plot shows the
intersection relationship between each dataset, where each dot represents a dataset
and connected dots indicate datasets with intersection. The upper bar graph shows
the number of each intersection case. c Pie charts and bar graphs show the per-
centage of the four patterns in the single-cell dataset for different cancers. d Pie
charts representing ICP-LncCRCTs share of the four modalities in different cancer

single-cell datasets. e Comparison of ssGSEA scores between different cell types in
the GSE117570 and GSE72056 datasets. P values were calculated using
Kruskal–Wallis. The horizontal lines of the box plot represent the maximum, upper
quartile, median, lower quartile, and minimum values. The width of the kernel
density plot represents the density of the data. f Violins indicate the differential
expression of MIR155HG in different types of immune cells in the GSE125449 and
GSE72056 datasets.White dots indicate themedian. Black vertical lines indicate 95%
confidence intervals. The width of the violin plot indicates the density of the data.
g Pseudotime diagram of ICP-related lncRNAs. “*” indicates lncRNAs that are
common ICP-related lncRNAs in genes clustered with MIR155HG.

Fig. 6 | ICP-LncCRCTs are associated with cancer prognosis. a Radar plot
representing the number of prognostic ICP-related lncRNAs in each type of cancer.
bThe radar plot represents the number of prognostically relevant ICP-LncCRCTs in
each type of cancer. c Survival-related ICP-LncCRCTs as a percentage of total ICP-
LncCRCTs in each cancer type. d Lollipop chart showing the numbers of cancer
types in which the same survival-related ICP-LncCRCTs were found. e Nine ICP-
LncCRCTs can be used as prognostic biomarkers in five cancer types. f Regulatory
mechanism of MIR155HG/CXCL10/EBI3. g Forest plot of the MIR155HG/

CXCL10/EBI3 risk score. The dashed line is the null line, indicating OR = 1. Each
horizontal line indicates a 95% confidence interval. Squares indicate point estimates.
h KM curves of the MIR155HG/CXCL10/EBI3-related genes in the high- and low-
risk groups. Solid blue lines indicate high-risk groups, and solid yellow lines indicate
low-risk groups. Shaded areas indicate 95% confidence intervals. Asterisks on the
curves indicate censoring points. i The ability of MIR155HG/CXCL10/EBI3 to
predict 1-, 3- and 5-year OS versus a single gene.
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with that of clinical biomarkers to predict ICI response. The area under the
curve (AUC)values of the ICP-LncCRCTswere greater than thoseof several
clinical biomarkers, including CTLA4, CD28, PD-L1, IFNG, CD80 and
HAVCR2, for predicting ICI response (Fig. 7b). The ICI responders and
nonresponders could be well distinguished after UMAP dimension reduc-
tion and clustering basedon the expression of ICP-LncCRCTs in the SKCM
with anti-PD-1 dataset (Fig. 7c). A highTMB is usually considered a clinical
biomarker for increased benefit from ICI treatment. However, ICI
responders and nonresponders often exhibit significant overlap in TMB,
suggesting that the TMB alone is not a sufficient predictor of the ICI
response. Therefore, we investigated whether combining ICP-LncCRCTs
with TMB-based predictors improved the prediction performance. The
AUC improved from 0.752 (only for TBM) and 0.976 (only for ICP-
LncCRCTs) to 0.983 when ICP-LncCRCTs were combined with the TMB
(Fig. 7d). Additionally, survival was better in the response groups (Fig. 7e).
Taken together, our results suggest that (i) several ICP-LncCRCTs could
predict ICI response and that (ii) several ICP-LncCRCTs could help
improve TMB-based ICI response predictions.

Discussion
Dysfunction of the ICPs in tumor cells enables them to evade recognition
and destruction by immune cells, promoting tumor growth and
metastasis21. LncRNAs can directly and indirectly regulate ICP genes. Thus,
the core regulatory circuitry consisting of lncRNAs, immune genes and ICP
genes is crucial for exploring the regulatorymechanismsof ICPmolecules in
tumors. Herein, a complex computational algorithm was developed to
identify and explore the regulatory patterns of ICP-related lncRNAs and
ICP-LncCRCTs across cancers (Fig. 1a). Some previous works, such as
ImmLnc, had identified immune-related lncRNAs22. Our research,

however, has adeeper approach tounderstanding the role of lncRNAs in ICI
treatment by concentrating on ICP-related lncRNAs. We also considered
our work couldmore accurately focused extract ICP-related lncRNAs from
a large number of immune-related lncRNAs (Supplementary Fig. 13). In
addition, we not only identified immune-related lncRNAs but also, more
importantly, identified regulatory associations and patterns among
lncRNAs, immune-related genes, and ICP genes. We have further investi-
gated the causal association between ICP and lncRNAs. The ability of the
ICP-LncCRCT signature to predict patient prognosis and immunotherapy
response was also validated in SKCM. Our results demonstrated a complex
relationship between ICP, lncRNAs, and immune genes and may help to
evaluate ICI response in cancer patients.

To improve our understanding of the impacts of lncRNAs on ICP-
related gene activity mediated by immune genes and their role in immune
regulation in cancer, we identified ICP-related lncRNAs and constructed
ICP-related lncRNA-mediated core regulatory circuitry triplets (ICP-
LncCRCTs). The page-rank algorithm was used to extract ICP-proximal
genes and lncRNAs. Although the page-rank algorithm is a network pro-
pagation algorithm that is based on degree, we also found that the
betweenness (Betweenness of a node is a measure of the extent to which a
node acts as an intermediary in a network, measuring the importance and
control a node has in connecting other nodes to each other in the network)
of the optimizing genes was greater than that of the other genes in all cancer
types (P < 0.001, K-W test, Supplementary Fig. 14). The top 200 immunity
genes and lncRNAs with high betweenness in the co-expression network
were identified in ourwork.Next, we proposed potential regulatory patterns
dominated by ICP-related lncRNAs and inferred the probable regulatory
pattern for each ICP-LncCRC based on the Bayesian network and max-
imum likelihood estimation. TheCOOand LIG regulatory patterns had the

Fig. 7 | Prediction of ICI response. a ROC curves of three machine learning
algorithms constructed using ICP-LncCRCTs to predict ICI responses.
b Comparison of the ability of ICP-LncCRCT to predict ICI response with that of
other clinical biomarkers. c UMAP dimension reduction and clustering of respon-
ders and nonresponders based on the expression of ICP-LncCRCTs in the SKCM
dataset (Gide et al. [anti-PD-1]). d Impact of the TMB in combination with the ICP-

LncCRCT on tumor predictive performance. e Kaplan–Meier curves of overall
survival in SKCM patients between two groups divided by the expression levels of
ICP-LncCRCTs in responders and nonresponders. The survival difference is cal-
culated by log-rank test. Solid blue lines indicate the responding group, and solid
yellow lines indicate the nonresponding group. Shaded areas indicate 95% con-
fidence intervals. Asterisks on the curves indicate censoring points.
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largest and the smallest proportions, respectively, across cancers. In our
analysis, we considered only four basic and major assumed regulatory
patterns. There is no denying that other possibilities exist for lncRNAs to
regulate ICP regulatory patterns. Although there are certain limitations
associated with these assumed regulatory patterns, such as Bayesian net-
work inference processing, which also relies on prior knowledge, these
patterns could still provide perspectives for exploring immune regulation
and ICI response. These causal associations should be further validated in
vitro or in vivo.

Making effective biomarkers useful for predicting patient prognosis
and ICI response has always been a major challenge in precision medi-
cine using immunotherapy. Although several biomarkers, such as PD-L1,
TMB, and some genes, have been approved by the Food and Drug
Administration (FDA) or through experiments, these biomarkers lack
universality and specificity. Thus, identifying more accurate biomarkers
for predicting ICI response is urgently needed. According to our analysis,
compared with a single gene, ICP-LncCRCTs could better predict one-,
three- and five-year OS in SKCM patients. In the context of the five
integrated SKCM datasets, ICP-LncCRCTs exhibited superior predictive
power compared to several clinical biomarkers, as assessed by various
machine learning algorithms. Specifically, ICP-LncCRCTs can help
improve TMB-based ICI response predictions. In future work, the ability
of several ICP-LncCRCTs to predict OS should be validated in additional
cancer types following additional data generation and development with
respect to ICI response.

In our work, we used partial correlation to exclude the influence of
tumor purity in calculating the associations between ICP and lncRNA. The
result indicated that there is no significant difference in the partial corre-
lation coefficients between high- and low-tumor purity groups in half of the
cancer types (Supplementary Fig. 15). More attempts, validations, and
methodswere alsoneeded to further eliminate the influenceof tumorpurity.
In addition, more silico algorithms and histology slides should be used to
validate the estimation of tissue content, such as tumor purity and immune
cell purity. Although bulk RNA-seq data were used in the present study, the
results could be validated in immune cell lines and scRNA-seq datasets.
With the continuous increase in the amount of scRNA-seq data with
additional samples, cancer types, and clinical information on immune cells,
more accurate information on the regulatory associations between ICP and
lncRNAs could be obtained and analyzed.

In summary, we further revealed the associations among ICP,
lncRNAs, and immune genes in cancers by integrating bulk, single-cell,
and immune cell line datasets. The ICP-LncCRCT CXCL10-
MIR155HG-EBI3 showed a more accurate predictive ability for one-,
three-, and five-year prognoses in melanoma patients than single-
molecule therapy. We also validated that several ICP-LncCRCTs could
effectively predict ICI response. Specifically, combining ICP-LncCRCTs
with the tumor mutation burden (TMB) improved the ability of ICI-
treated melanoma patients to predict ICI efficacy. These findings could
lead to the identification of effective candidates for further exploration of
immune function and regulation of lncRNAs and could prove valuable in
future immunotherapeutic strategies.

Methods
Data collection
The gene expression profiles for 18 cancer types from The Cancer Genome
Atlas (TCGA) portal and noncancerous tissues from the Genotype Tissue
Expression (GTEx) consortium were downloaded from the UCSC Xena
platform (http://xena.ucsc.edu/). We also downloaded raw RNA-seq data
from several independent datasets obtained from other public sources to
validate the algorithm. The gene expression profiles of GBM and PRAD
from the International Cancer Genome Consortium (ICGC) were used as
independent datasets to validate the results. Batch effects were removed
between multiple independent datasets. Specifically, batch effects were
removed from theGTEx samples compared with the normal samples in the
TCGA. Normalized expression profiles were subjected to log2

transformation. For the gene expression profiles, we removed the genes
that were not expressed in more than 70% of the samples. The details of
each dataset we used are described in Supplementary Tables 1 and 2.
Clinical data were also downloaded from the UCSC Xena platform. To
identify ICP genes, we searched PubMed using a list of keywords, such as
‘immune checkpoint’, ‘immunotherapy’, and ‘ICP’. Additionally, we
collected information via handbooks or website instructions from mul-
tiple companies. We extracted experimentally supported ICPs “by hand,”
that is, by manually curating them from published papers. All the
selected studies were reviewed by at least two researchers. We extracted
experimentally supported ICPs, which were confirmed by strong
experimental evidence, including RNA interference, in vitro knockdown,
western blot, real-time quantitative polymerase chain reaction
(qRT–PCR), and luciferase reporter assays.

Differential expression analysis of lncRNAs, immune genes, and
ICP genes in different cancers
We identified differentially expressed lncRNAs, immune genes, and ICP
genes between cancer andnormal tissue samples across different types using
the limma package in R software. To mitigate the influence of varying
sample sizes for each cancer type, we utilized the p value distribution, which
was generated from1000permutationsof eachcancer, todetermine thefinal
cutoff. Initially, the sample labels were randomly perturbed, and the dif-
ferential expression analysis was re-performed to calculate the randomized
p value. If the randomized p value was smaller than the original p value, it
was recorded once. This perturbationwas repeated 1000 times, and thefinal
adjusted p value for each gene was determined by the proportion of 1000
random perturbations, which yielded a p value lower than the original one.
Multiple tests were performed to correct the p values. LncRNAs, immune
genes, and ICP genes with false discovery rate (FDR) values less than 0.01
were identified for further analysis.

Identification of lncRNAs, immune genes, and ICP genes that
may have ternary regulatory associations
First, we constructed a co-expression network of lncRNAs, immune genes,
and ICP genes based on Pearson correlation coefficients between genes,
which were used as the weights of the network edges. Mutual information
(MI) was used to validate the correlations among lncRNAs, immune genes,
and the ICP gene. To reduce the influence of sample size for each cancer
type, the p value distribution generated from 1000 permutations of each
cancer was used to determine the final cutoff. We identified lncRNAs and
immunity genes that were closely associated with the ICP genes via network
propagation using the page-rank algorithm from the NetworkX Python
module.Weusedone for the ICPgenesand zero for all the other genes in the
network as inputs for the personalization parameter in the page-rank
algorithm.Default settings were used for any other parameters for the page-
rank algorithm. After network propagation, we considered the top 200
immunity genes or lncRNAs with the highest influence scores as genes
closely related to the ICP genes.

Next, we used partial correlation analysis to exclude the influence of
tumor purity and further screened the correlations between the three types
of genes. The expression of the lncRNA, immune gene, and ICP gene was
defined as L(i) = (l1, l2, l3,…, lm), G(i) = (g1, g2, g3,…, gm), andC(i) = (c1,
c2, c3,…, cm), respectively. The tumor purity scores across n patients were
defined as P = (p1, p2, p3,…, pn).We first calculated the partial correlation
coefficient between the expressionof lncRNAiand the expressionof the ICP
gene j by considering tumor purity as a covariable:

PCCðijÞ ¼ RLC � RLP � RCPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

LP

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

CP

p

where RLC, RLP, and RCP are the correlation coefficients between the
expression of lncRNA i and the ICP gene j, the expression of lncRNA i and
tumor purity, and the expression of the ICP gene j and tumor purity,
respectively.
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Then, immune genes regulated by lncRNAs and ICP genes were
screened using GSEA enrichment analysis to obtain immune genes that
could be enriched in 18 immune pathways.

Finally, S scores were assigned to the gene pairs composed of lncRNAs
and ICP genes based on the results of GSEA and partial correlation analysis.

S ¼
Xn

i¼1

wið� log 10 P1i

� � � sign cor1i
� �� log 10 P2i

� � � signðcor2iÞÞ

where n is the number of immunity genes regulated by the gene pairs
composed of lncRNAs and ICP genes, wi is the enrichment score of
immunity genes in the GSEA enrichment results, P1i is the partial corre-
lation p value of lncRNAs and immunity genes, P2i is the partial correlation
p value of ICP genes and immunity genes, cor1i is the partial correlation
coefficient of lncRNAs and immunity genes, and cor2i is the partial cor-
relation coefficient of ICP genes and immunity genes.

After scoring each gene pair composed of the lncRNA and ICP genes,
1000 random perturbations were performed by perturbing the sample
labels, and the FDR was calculated by Benjamini and Hochberg (BH) cor-
rection to obtain the gene pairs composed of lncRNAs and ICP genes with
FDR < 0.01. By partial correlation analysis, GSEA, S score, and random
perturbation, we obtained lncRNAs, immunity genes, and ICP genes with
possible ternary regulatory associations. We named these regulatory asso-
ciations among lncRNA, immunity gene, and ICP gene as ICP-related
lncRNA-mediated core regulatory circuitry triplets (ICP-LncCRCTs).

Construction of a possible regulatory model among lncRNAs,
immunity genes, and ICP genes in ICP-LncCRCTs
Basedon thepreviously identified lncRNAs, immunity genes, and ICPgenes
with possible ternary regulatory associations, we constructed ICP-related
lncRNA-mediated core regulatory circuitry triplets (ICP-LncCRCTs) and
proposed four possible regulatory models: INDEP, LGI, LIG and COO
regulatory patterns. For each of the proposed patterns, we defined the joint
probability distribution based on the assumption of standard Markovian
characterization as follows:

PINDEPðL;C;MÞ ¼ PðLÞPðCjLÞPðMjLÞ;

PCOOðL;C;MÞ ¼ PðLÞPðMÞPðCjL;MÞ;

PLGIðL;C;MÞ ¼ PðLÞPðMjLÞPðCjMÞ;

PLIGðL;C;MÞ ¼ PðLÞPðCjLÞPðMjCÞ;

where L represents the expression value of the lncRNA, C represents the
expression value of the ICP, and M represents the expression value of the
immune genes. We assigned each ICP-LncCRCT to the corresponding
pattern by the MLE method. Subsequently, we calculated the Akaike
information criterion (AIC) score and Akaike weights (w(AIC)).

AICj ¼ �2 log Lj þ 2Kj

wjðAICÞ ¼
e�

1
2ΔjðAICÞ

P4
j¼1e

�1
2ΔjðAICÞ

;wjðAICÞ 2 ð0; 1Þ

ΔjðAICÞ ¼ AICj �minðAICÞ

where Lj is the maximum likelihood for pattern j. Finally, the pattern with
the lowest AIC and largest w(AIC) was selected as the best pattern for each
ICP-LncCRCT. The pattern selection process was performed using the R
package bnlearn.

Recognition of pattern-variable gene pairs composed of
lncRNAs and ICP genes
Immunity genes produce a marked effect on the process through which
lncRNAs regulate ICPs. In various cancers, the same lncRNA-ICP gene pair
can form ICP-LncCRCTs with differing patterns, shaped by the diverse
immune genes involved.We defined lncRNA-ICP gene pairs that occurred
in more than or equal to five cancers and had different patterns of ICP-
LncCRCT due to different immune genes as pattern-variable lncRNA-ICP
relationship pairs.

Correlations between ICP-related lncRNAs and antitumor
immune activity in cancers
Weevaluated the immunological characteristics of the ICP-related lncRNAs
by calculating correlations with the following factors: (i) Immune cell
infiltration score from TIMER. (ii) Antitumor immunoreactivity was
measured by the MHC score and CYT score according to the mean
expression of the correspondingmarkers23,24. (iii) Expression of immune cell
markers. (iv) Expression in immune cell lines. (v) IHC and IF staining were
performed with a Human Protein Atlas (https://www.proteinatlas.org/).
Spearman rank correlations were calculated between the expression of each
lncRNA and the TIMER score, MHC score, CYT score, and expression of
immune cell markers. Kruskal‒Wallis (K-W) tests were performed to
evaluate the differences in the expression of each lncRNA in 19 immune cell
lines25.

Obtaining and analyzing the scRNA-seq data
The scRNA-seq expressionprofile data of seven cancer types and10datasets
were downloaded from the Gene Expression Omnibus (Supplementary
Table 3, GEO, https://www.ncbi.nlm.nih.gov/geo). The preprocessed gene
expressionmatrix and cell annotation informationwere encapsulated using
theRpackage Seurat26. Themarker genes of specific cell types collected from
published literature27,28were used todefine cell clusters. The ‘GSVA’package
was used for single sample gene set enrichment analysis (ssGSEA) to eval-
uate the gene set enrichment score of each cell. The calculated ssGSEA
scores are displayed in the UMAP graph. The difference in lncRNA
expression among cell types was tested by the K-W test. A common com-
putational pipeline was also used to identify ICP-LncCRCTs across cancer
types utilizing scRNA-seq data to analyze various cell types.

Survival analysis of patients with important ICP-LncCRCTs in
multiple cancer types
The association between the expression of ICP-related lncRNAs in ICP-
LncCRCTs and survival was assessed using univariate Cox regression
analysis and the log-rank test. Candidate prognostic ICP-related lncRNAs
were identified by P < 0.05 for univariate Cox regression analysis and
P < 0.05 for the log-rank test.

For ICP-LncCRCTs, we assigned risk scores to each patient based on
linear combinations of the expression of each gene in the ICP-LncCRCTs
weighted by the regression coefficients from themultivariateCox regression
analyses. The risk scores for each sample were defined as follows:

Risk ¼
X3

j¼1

βj � expj

where n is the number of genes in each ICP-LncCRCT, βj is the regression
coefficient for the multivariate Cox regression analysis, and expj is the
expression of the genej. Patientswere divided into high- and low-risk groups
based on the median risk score, and differences in survival were analyzed
using the log-rank test. The calibration curves for the probability of OS
showed that the nomogram’s prediction matched the actual observation29.

Prediction of ICI response in SKCM based on ICP-LncCRCT
Five datasets of SKCM treated with immunotherapy were obtained, and
batch effects were removed using the R package “sva” (Supplementary
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Table 4). Seventy percent of the samples were used as the training set, and
the remaining samples were used as the test set. After data processing, the
expression of lncRNAs, immune genes, and the ICP gene in 216 prognosis-
related ICP-LncCRCTs was found in all six datasets.

The expression of four ICP-LncCRCTs, three lncRNAs, three immu-
nity genes, and two ICPgenes,was extracted fromall the datasets via LASSO
regression analysis. We further tested the predictive performance of the
models based on the expression of four prognosis-related ICP-LncCRCTs
using LASSO regression analysis, elastic network analysis, and support
vector machine (SVM) analysis. The receiver operating characteristic
(ROC) curve was used to evaluate the predictive ability of the model using
the R package “ROCR”. We compared the predictive performance of
models based on ICP-LncCRCTs and other clinical indicators (PD-L1,
IFNG, CD28, CD80, HAVCR2, and CTLA4) using SVM models. We also
analyzed the ability of the IMvigor210 dataset to predict ICI responses using
TMBand themean expression level of ICP-LncCRCTs. For the IMvigor210
dataset, the mutation burden per megabase was used as the TMB.

Statistics and reproducibility
Statistical analyses were conducted using R software (version 4.3.1).We use
the limma package to screen for differentially expressed genes. For the
correlation between genes, we use the cor.test function to calculate the
Pearson correlation coefficient. The difference between lncRNAand known
lncRNA is analyzed by Fisher’s test, and Fisher’s test is performed by the
fisher.test function. The significance of the intersection of sets is analyzed by
the hypergeometric test, and the hypergeometric test is performed by the
phyper function. The difference in lncRNA expression and ssGSEA score
amongmultiple types of cells is analyzed by theKruskal–Wallis test, and the
Kruskal–Wallis test is performed by the Kruskal test function. The com-
parison of survival curves in survival analysis is analyzed by the log-rank
rank test, and the log-rank rank test is performed by the ggsurvplot function
in the survminer package.

Ethics approval and consent to participate
All relevant ethical regulations were followed in the original study of the
datasets, and the authors of the source studies also obtained informed
consent from participants.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The TCGA datasets were downloaded from the UCSC Xena platform
(http://xena.ucsc.edu/). scRNA-seq data28,30–37 was obtained fromGEOwith
the accession number GSE127471, GSE117570, GSE69405, GSE75688,
GSE118389, GSE125449, GSE81861, GSE103322 and GSE72056. Immu-
notherapy response data38–40 was obtained from Tumor-Immune Dys-
function and Exclusion (http://tide.dfci.harvard.edu/). The analysis results
associated with this paper are available on GitHub (https://github.com/
GaoYueWorkspace/ICP-related-lncRNAs/Bayes network ICP-related
lncRNA/Data) and are publicly accessioned via Zenodo41 (https://doi.org/
10.5281/zenodo.10726010). The numerical source data for the graphs in the
main and Supplementary Figs. can be found in Supplementary Data 1, 2.

Code availability
The R code used in the analysis of the data is available on GitHub (https://
github.com/GaoYueWorkspace/ICP-related-lncRNAs/Bayes network ICP-
related lncRNA/Code) and is publicly accessioned via Zenodo41 (https://doi.
org/10.5281/zenodo.10726010).
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