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Abstract 
B cell epitope prediction methods are separated into linear sequence-based predictors and conformational epitope predictions that 
typically use the measured or predicted protein structure. Most linear predictions rely on the translation of the sequence to biologically 
based representations and the applications of machine learning on these representations. We here present CALIBER ‘Conformational 
And LInear B cell Epitopes pRediction’, and show that a bidirectional long short-term memory with random projection produces a more 
accurate prediction (test set AUC=0.789) than all current linear methods. The same predictor when combined with an Evolutionary Scale 
Modeling-2 projection also improves on the state of the art in conformational epitopes (AUC = 0.776). The inclusion of the graph of the 
3D distances between residues did not increase the prediction accuracy. However, the long-range sequence information was essential 
for high accuracy. While the same model structure was applicable for linear and conformational epitopes, separate training was required 
for each. Combining the two slightly increased the linear accuracy (AUC 0.775 versus 0.768) and reduced the conformational accuracy 
(AUC = 0.769). 
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INTRODUCTION 
B cells are produced in the bone marrow and are characterized 
by the presence of a unique receptor on their surface denoted 
as the B cell receptor (BCR) [1]. When a B cell encounters an 
antigen, the BCR binds to the antigen, via interactions between 
the BCR binding site and a specific region of the antigen called an 
epitope and triggers a series of events that lead to the production 
of a clone of B cells producing antibodies specific to that antigen 
[2]. B cells also play a role in the development of immunological 
memory, which allows the immune system to respond rapidly to 
future encounters with the same antigen [3]. 

The epitopes bound by BCRs are typically on the surface of anti-
gens [4]. In protein-based antigens, B-cell epitopes can be linear 
or conformational. Linear epitopes are a continuous sequence of 
amino acid (AA) residues, while conformational epitopes consist 
of the spatially continuous ones, which may be sequence-wise 
discontinuous AA [5]. 

The identification of B-cell epitopes is crucial for peptide-based 
vaccines [6], diagnostic tools [7, 8] and the selection of high-
affinity antibodies for immuno-therapy and immuno-diagnostics 
[9]. Experimental epitope-identification methods examine large 

arrays of potential epitope candidates and are expensive and 
time-consuming [10]. 

To overcome these limitations, a large number of tools were 
developed to predict B-cell epitopes. Those tools can be classified 
into two approaches: full peptide prediction and single AA predic-
tion. In the single AA prediction approach (e.g. BepiPred-3.0 [11] 
and DiscoTope2 [12]), one studies a protein or chain and predicts 
for each AA whether it is part of an epitope or not. Full peptide 
prediction approaches (e.g. epitope1D [13], DeepLBCEPred [14], 
LBCEPred [15], NetBCE [16]) receive a candidate peptide within 
a protein and predict whether it is an epitope or not. Full pep-
tide prediction methods are limited to linear epitopes. Moreover, 
they cannot be used to screen all candidate peptides. Single AA-
based methods are usually trained on conformational (nonlinear) 
epitopes, although they can be applied also to linear epitopes, 
where each residue in the epitope is considered by itself. Besides 
the general epitope prediction algorithms above, models were 
developed to predict epitopes for a specific antibody [2, 17–20]. 
The advantage of such models is that they use the antibody 
information and their prediction may be more accurate. Their 
limitation is that they cannot be used for general screening of
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Table 1: Pro. Len.—Average and standard deviation of the protein length in the training and test sets of each dataset. Epitope 
Len.—Number of epitope residues in each protein. Fraction—Fraction of residues in the protein that are in epitopes. Num. of 
Pro.—number of proteins. Residue epitope—the number of all residues that are in epitopes. Residue non-epitope—the number of 
residues that are not in epitopes 

Pro. len Epitope len Fraction Num of Pro. Residue epitope Residue non-epitope 

Linear Train 685 ± 876 14 ± 4 0.05 ± 0.05 10 552 147 646 7078 382 
Linear Test 642 ± 722 14 ± 5 0.05 ± 0.06 1173 16 414 737 189 
Conformational Train 214 ± 128 19 ± 9 0.12 ± 0.07 1320 24 958 256 971 
Conformational Test 195 ± 106 22 ± 12 0.13 ± 0.07 146 3204 25 222 

candidate epitopes for any antibody in a protein, as required for 
example, when looking for positions in viral proteins that can be 
targeted [ 21]. 

However, current prediction algorithms suffer from some limi-
tations. When screening for epitopes in a protein, one may look for 
either linear or conformational epitopes. All current approaches 
treat the predictions of such epitopes as distinct tasks. More-
over, full-epitope prediction algorithms require an estimate of 
the epitope length, which is often not available. Finally, for con-
formational epitope, most algorithms require either predicted or 
observed 3D structure that is often not available. 

We here propose to bridge the gap between linear and nonlin-
ear epitopes and improve prediction accuracy. We present CAL-
IBER a bidirectional long short-term memory (BiLSTM) [22] model 
that assign each residue the probability that it is part of an 
epitope.We denote this algorithm CALIBER (Conformational And 
LInear B cell Epitopes pRediction). We show that this model can 
be applied to linear and conformational-epitopes, and suggests 
an extended framework for detecting linear or conformational 
epitopes. We show that this model significantly improves on the 
current state-of-the-art (SOTA) of linear-epitope predictions, and 
is as good or better than the SOTA in conformational epitopes. 
CALIBER is available as a server at https://caliber.math.biu.ac.il 
or a stand-alone Python code at https://github.com/louzounlab/ 
epitope_b_cells_predictor. 

We compare the predictions of CALIBER with existing mod-
els. There are many epitope-prediction tools [11–16, 23–29], and 
others. We describe here the main SOTA methods. BepiPred-2.0 
[23] is a sequence-based B-cell epitope prediction. It predicts for 
each antigen residue (except for the first and last four residues 
in antigen) the probability of being a part of an epitope. Each 
residue is encoded using biochemical features of all the residues 
in a nine-residue sliding window centered on the residue itself. 
Then, a Random Forest algorithm was trained on these structural 
features. 

BepiPred-3.0 [11] improves on BepiPred-2.0 using representa-
tions from the protein language model Evolutionary Scale Model-
ing (ESM)-2 [30]. Instead of the structural information, they repre-
sent the residues by embedding extracted from the ESM-2 model 
of each residue in a window of size 9. Each window is an input 
for Feed Forward Neural Network. DiscoTope-2 [12] combines a 
statistical difference in AA composition between epitope and non-
epitope residues and a definition of the spatial neighborhood for 
integrating log-odds ratios in residue proximity. GraphBepi [24] 
is a graph-based model. GraphBepi first generates the sequence 
representations and protein structures from antigen sequences by 
a pre-trained language model and AlphaFold2 [31], respectively. 
This information is the input of an edge-enhanced deep graph 
neural network [32] and of a BiLSTM neural networks [33] in  
parallel. Those are combined to predict B cell epitopes using a 
multilayer perceptron (MLP). EpiDope [25] is a linear epitope single 
residue predictor. It is based on deep neural networks to detect 
epitopes in proteins based on their primary AA sequence. 

While existing models consecutively improved the prediction 
accuracy, the accuracy is still not high enough for the clinical 
estimate of epitopes, and more advanced models are required. 
Moreover, almost all linear epitope models predict whether a 
full peptide is an epitope rather than providing a score for each 
residue in the peptide to allow an estimate of how precise is the 
prediction per residue. We here propose such a model. 

MATERIALS AND METHODS 
Datasets 
Linear epitopes 
The dataset used to train and evaluate the models was taken 
from the Immune Epitope Database (IEDB) [34], following the 
linear test set used in BepiPred-2.0. The peptides were divided 
into positive and negative. Negative peptides or peptides that were 
confirmed as positive only in one experiment were dropped. B cell 
epitopes tend to be 5 to 25 AAs [35], therefore longer or shorter 
epitopes were also dropped. Then every peptide was matched 
with its original protein sequence. We used only the proteins 
that contained a positive peptide. Protein sequences with non-
standard AA symbols were discarded from the dataset. The final 
dataset contained 11 725 proteins, where 10% of the proteins were 
used as an external test set (Table 1). 

Conformational epitopes 
We used the antigen training dataset from BepiPred-3.0. The 
dataset was obtained from the Protein Data Bank (PDB). We 
included only structures that contain at least one complete anti-
body, and at least one non-antibody (antigen) protein chain, with 
a resolution lower than 3Å and R-factor (a metric that gauges 
how well the proposed crystallographic model aligns with the 
actual experimental X-ray diffraction data) lower than 0.3, the 
resolution and R-factor values were chosen according to BepiPred-
3.0 [11] dataset preparation. This resulted in 582 antigen-antibody 
structures. We kept only the antigen chains that had at least one 
epitope residue and a sequence length of 39 or more. We obtained 
a total of 1466 antigens. Ten percent of the data set is used as an 
external test set. Proteins that appear in the training set were not 
included in the test set. 

Protein features 
Each protein residue was represented by different embeddings. 
We tested Kidera [36] factors, biochemical properties or the ESM-2 
embedding for the linear epitopes, and ESM-2 or ESM-IF1 (inverse 
folding) embeddings for the conformational epitopes. Kidera fac-
tors are a set of 10 physico-chemical properties used to describe 
the As [36]. An additional vector of eight properties was calculated 
for each residue on a sequence of nine (the residue itself, and 
four before and after), or less if the size of the residue from the 
start/end of the sequence is less than 4 AA: the molecular mass 
of the sequence [37], average of KD score on sequence [38], fraction 
of helix [39], aromaticity [40], instability index [41], isoelectric
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point [42], the molar extinction coefficient assuming cysteines 
(reduced) and cysteines residues (Cys-Cys-bond) [43]. Those eight 
properties were Z-scored. 

ESM-2 encoding [30] was calculated by the pre-trained ESM-2 
transformer which returns for an entire antigen sequence a 1280 
dimensions encoding for each AA in the protein. ESM-IF1 [44] is  
based on the protein structure; hence a PDB file is required as 
input. The encoding is a vector in size 512 for each AA. 

Relative Surface Accessibility (RSA) was also calculated using 
NetSurfP-3.0 [45], as an additional feature for the ESM embedding, 
and for the biochemical features. 

Model architecture 
The output of all models was the input of an MLP with one hidden 
layer which returns a single value per residue, and then a sigmoid 
σ(x) = 1 

1+e−x function is applied to the output to get a probability 
value. The difference between the models is in the initial layers. 

BiLSTM 
The first step was performed on four kinds of initialization: (1) 
random embedding, (2) the Kidera Factors vector that was used 
to initialize the embedding layer, (3) the Kidera Factors with bio-
chemical features; the Kidera Factors vector was used to initialize 
the embedding layer, and the embedding output concatenated to 
the biochemical features vector. For each of these methods, the 
embedding layer was learned in each epoch. (4) ESM-2 pretrained 
embedding. In the next step, one of the initialization methods of 
the entire protein was the input of a BiLSTM. The BiLSTM network 
outputs a vector for every residue of the protein. The output is a 
concatenation of the two LSTM directions, hence the output is fed 
into an MLP with one layer to combine the results (Figure 1A). This 
model requires only the protein sequence and does not consider 
the structure. 

Graph convolutional networks 
Each protein was represented as a graph, where each node is a 
residue. The node features were ESM-2 or ESM-IF1 pre-trained 
embedding concatenated or not to the RSA (Figure 2A). An edge 
exists between two residues if the distance (calculated from the 
PDB) of them is less or equal to 5 (this value was chosen through 
a grid search); the edges were unweighted. 

The distance was computed using the observed PDB files. We 
calculated the distances between every two atoms that appear 
in the structure. The distance between each pair of AA was 
determined to be the minimal distance between the atoms of 
each AA. 

The protein graph was the input of a graph convolutional 
network (GCN) model with two layers. The activation function 
was a Rectified Linear Unit [46], and a dropout between each 
layer was performed. This model requires the protein structure, 
regardless of the chosen embedding, since the graph is based on 
the distances. 

Hyper-parameters tuning 
A Binary Cross-Entropy loss was used. The optimizer was Adam. 
An early stopping mechanism was set to stop the training process 
after 10 consecutive epochs of decreasing validation Area under 
the ROC Curve (AUC). All the model hyperparameters were opti-
mized using a grid search using an internal validation AUC as a 
score. The following ranges were used: learning rate in the range 
of 10−3 to 10−5, encoding dimension for the random embedding 
in the range of 10 to 100, L2-regularization in the range of 0 to 
0.1, drop-out rate in the range of 0 to 0.3, LSTM hidden size in 

the range of 10 to 100, LSTM number of layers in the range of 1 
to 4, 1–7 GCN layers, 10–30 neurons per GCN hidden layer, the 
distance between two residues to determine edges in the range 
of 3–10 Å. The hyper-parameters were selected to maximize the 
AUC in the internal validation set. The hyper-parameters for the 
linear epitopes models and the joint training of both linear and 
Conformational epitopes were - learning rate = 0.001, dropout 
rate = 0.25, LSTM hidden size = 100, LSTM number of layers = 
2, L2 regularization = 10−6, encoding dimension = 10. The hyper-
parameters for the Conformational epitopes models - learning 
rate =0.0001, dropout rate = 0.2, LSTM hidden size = 10, LSTM 
number of layers = 2, L2 regularization = 10−4, GCN layers = 16, 
distance = 5. 

Performance evaluation 
Each residue received a score whether it is an epitope. The entire 
protein/chain was used in the training and the evaluation, except 
when we used ESM-2, the model returns the embedding up to 1023 
first residues, therefore for longer proteins, we used only the first 
1023 residues. The model was first evaluated by the AUC over a 5-
fold cross-validation, to find the optimal hyper-parameters. Then 
it was evaluated on an external test set. For each model, we report 
the following outcomes: 

• AUC—the area under the curve of the recall/sensitivity 
(TP/(TP+FN)) versus the false positive rate or specificity 
(FP/(FP+TN)). 

• Area under the precision-recall curve (PR-AUC)—the AUC 
of the positive predictive value (PPV)/precision (TP/(TP+FP)) 
versus the recall/sensitivity (TP/(TP+FN)). 

• Balanced accuracy (BAC)—The average of recall/sensitivity 
and specificity 

1 
2

(
TP 

TP + FN 
+ 

TN 
TN + FP

)

• Matthews correlation coefficient (MCC) -

(TP TN − FP FN)√
(TP + FP)(TP + FN)(TN + FP)(TN + FN) 

, 

where TP=True Positive, TN=True Negative, FP=False Positive, and 
FN=False Negative. 

Statistical tests 
To examine whether the difference between the results of the 
different algorithms is statistically significant, we performed a 
one-sample t-test, since we examined the performances on a 
single test set. We used the standard error of the validation set, 
calculated over the cross-validation. A total of 25 validations for 
the boosting model (five for BiLSTM, five for GCN and all their 
combinations for the boosting). 

os_t_test = 
x − y 

σ 
, (1)  

where for each measure tested, x is the CALIBER performance 
score on the test set, y is the performance score of the other tested 
algorithms and σ is the standard error of the validation set by 
CALIBER.
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Figure 1. Linear epitopes. A) Model architecture. First, choose an encoding for each residue—ESM-2, Kidera factors. Then embed the vector and 
concatenate it to the biochemical properties of the residue. The combined sequence is the input of a BiLSTM, and the output is the input of an MLP. 
B) Percentage of each AAa from the protein sequences that are epitopes(light color) and non-epitope (dark color). C-J) Distribution of epitope and non-
epitope for different properties, where each residue was represented by the average feature of the ninemer around it. I-J) Y-axis in log scale. K) RSA 
distribution of epitope and non-epitope residues.
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Figure 2. A) Model architecture. First, choose an encoding - ESM-2 or ESM-IF1. Then, the whole sequence is the input of either a BiLSTM or GCN. Finally, 
the output of these models is the input of an MLP.B) Chain A of the protein 1TPX. Residues that are part of a linear epitope are colored red, residues that 
are part of a Conformational epitope are colored green, and those that are not a part of an epitope are colored blue. C) ROC curve of linear epitopes on the 
test sets of all 4 methods. D) An example of the graphical diagram that the CALIBER website produces for each protein in the input. The x-axis represents 
the residue position, and the y-axis the CALIBER scores. The dashed line represents the threshold. Each residue with a score over the threshold is colored 
in red. The threshold can be set on the website.
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Table 2: AUC for epitope residues using each feature by itself in 
Linear epitope. 

Feature AUC 

Molecular weight 0.526 
Gravy 0.419 
secondary structure fraction 0.446 
Aromaticity 0.5 
Instability index 0.524 
Isoelectric point 0.507 
Molar reduced 0.5 
Molar disulfide 0.5 
RSA 0.57 

RESULTS 
Epitopes in proteins can be linear or conformational. Typically 
conformational epitopes are computed using an available struc-
ture [12, 47, 48]. However, often such a structure is unavail-
able. We first tested for linear epitopes whether it is better to 
use an embedding based on biological insight or a purely data-
oriented approach. Epitopes are presented on the surface of the 
protein. As such, one could expect multiple biochemical prop-
erties to differ significantly between residues in epitopes and 
not within epitopes. We checked whether specific AA properties 
are associated with linear epitopes. We then trained different 
models, with either AA biochemical properties, random embed-
ding or properties of the entire protein, and tested what model 
produces the most accurate prediction of linear epitopes on a 
test set. 

Linear epitopes properties 
We compared the biochemical properties of AAs within and out-
side epitopes in 11 725 proteins from the IEDB [34] (see methods). 
Each AA was represented by the average feature of the ninemer 
around it. For each residue we measured its RSA and a 9 AA 
window moving average of the following features: the molecular 
mass, the KD score, the fraction of helices residues, aromaticity, 
instability index, iso-electric point, the molar extinction coeffi-
cient assuming cysteine (reduced) and cysteine residues (Cys-Cys-
bond) (see Methods). All distributions are not sampled from a 
normal distribution (Shapiro–Wilk test P−value < 0.001 ) We com-
pared the distributions and performed a Mann–Whitney U-test of 
the distributions of each of these properties for ninemers where 
the central residue was within or outside epitopes. Significant 
differences were obtained for the molecular mass of the sequence, 
the average KD score, the fraction of helices, the instability index, 
the isoelectric point and RSA. However, the differences in the 
distributions (Figure 1 B–K) were very limited, and not enough 
to separate the two groups (epitopes and non-epitopes). Indeed, 
the AUC of the classification of residues into inside and outside 
of epitopes, based on each property by itself, are all around 0.5 
(Table 2). 

Linear-epitopes models 
Given the low accuracy of predictors based on single features, 
we tested more complex classifiers. Linear epitope prediction can 
be treated as a text classification problem. To test the accuracy 
of such models, We trained BiLSTM models with the embedding 
of each AA as an input with different encodings: 1) a randomly 
initialized embedding layer further trained by the model, 2) an 
embedding layer initialized with the Kidera factor further trained 

by the model, 3) an embedding layer initialized with the Kidera 
factor further trained by the model concatenated to biochemical 
features (fraction of helix, aromaticity, instability index, isoelec-
tric point, the molar extinction coefficient assuming cysteines 
(reduced) and cystines residues (Cys-Cys-bond)), and the RSA of 
the AAs. The prediction was for each AA whether it is part of an 
epitope. 4) pre-trained ESM-2 embedding. The BiLSTM output was 
fed into an MLP with 2 layers. 

We trained each model over a 5-fold cross-validation. When 
the input of the model was random AA embedding, Kidera or 
Kidera with biochemical properties, the average AUC was 0.8 on 
the validation dataset. For the ESM-2 embedding the average AUC 
on the validation dataset was 0.77 (Supp. Mat. Table S1). When 
the input is the ESM-2, the validation set is not equal to the AA 
embedding input, since ESM-2 embedding is limited to the 1,023 
first residue and so on the output. We checked the AUC of the 
AA embedding up to the first 1,023 residues of the proteins, the 
validation average AUC is 0.76. This is a similar validation AUC 
as the AA embedding. However, it is much more computationally 
expensive. The runtime of the random AA embedding is 0.08 sec 
versus 14.34 sec for ESM-2 on average on 50 proteins from the 
test (Table 3) on a single GPU, and it can be applied to all protein 
lengths. 

The MCC and PR-AUC validation are equal for all methods. 
The BAC of the random initial embedding is the highest and is 
0.73 (Supp. Mat. Table S1). Since epitope prediction can be used 
for large-scale screening, one may require much shorter times. 
As such, given that both models have similar performances, we 
prefer the model with the shorter run time. 

To ensure the results of CALIBER are not the effect of parameter 
hyper-tuning, we performed an additional test on samples that 
the model was not exposed to during training or parameter tun-
ing. The model-based on random embedding, Kidera embedding 
and Kidera embedding with biochemical properties inputs yielded 
a higher AUC,0.789, 0.787, and 0.783, respectively versus ESM-2 
AUC of 0.768 (Figures 2C, 3A), while ESM-2 yielded a higher PR-
AUC of 0.13 versus 0.12. (Table 3) We compared our method with 
Bepipred-3.0 and EpiDope on the external test set. DiscoTope-2 
required the protein structure, therefore it was not included in this 
comparison. The accuracy of CALIBER is higher than BepiPred-3.0 
and EpiDope by all measures (Table 3, Figure 3A). 

Conformational epitopes 
Conformational epitopes are typically discontinuous (See Figure 2B 
for example). Most prediction algorithms use the structure for 
the prediction of AA belonging to such epitopes [12, 47, 48]. 
However, given the accuracy of the linear models above, we tested 
the trained linear model with the four initialization methods: 
random embedding, Kidera factors, Kidera factors concatenated 
to biochemical features, and ESM-2 on the conformational 
epitopes test set; The AUC values were 0.62,0.62,0.54 and 0.56, 
respectively. Thus, the sequence-based models above do not apply 
to conformational epitopes. 

To test whether the source of the difference is the model or 
the data, we trained the same models with the conformational 
epitopes training set and evaluated the AUC on the test set; the 
AUC were 0.66, 0.69,0.72, and 0.78, respectively (Table 4, and  the  
validation results in Supp. Mat. Table S2). Thus, at least for the 
ESM-2-based model, the required model architecture is similar for 
linear and conformational epitopes. However, the models should 
be trained independently. 

We further tested, whether including the physical distance 
between the residues would improve the precision. We thus

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae084#supplementary-data
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Table 3: CALIBER (above line) and other models (below lines) Linear epitope prediction performance on the external test set. CALIBER 
is applied with different embedding methods: AA random embedding, ESM-2, Kidera embedding, Kidera embedding + biochemical 
properties, to other algorithms: BepiPred-3.0 and EpiDope. The run times of CALIBER in seconds per protein (averaged over 50 proteins 
from the test. 

AUC BAC MCC PR-AUC Time 

Random 0.789 0.71 0.13 0.12 0.08 
Random up to 1023 0.764 0.69 0.14 0.13 -
Kidera 0.787 0.71 0.13 0.12 0.08 
Kidera+bio 0.783 0.71 0.13 0.12 0.15 
ESM-2 0.768 0.7 0.14 0.13 14.34 
BepiPred-3.0 0.622 0.59 0.06 0.04 -
EpiDope 0.604 0.58 0.05 0.03 -

Figure 3. AUC of the test dataset. The blue bars are the results of CALIBER. A) Linear epitopes test set AUC of CALIBER and of BepiPred-3.0 and EpiDope 
by the different initialization methods. B) Conformational epitopes test set AUC of CALIBER by the different initialization methods and the different 
models (in the label name, separated by ’;’). C) Conformational epitopes test set AUC of CALIBER (ESM-IF1;Boosting) versus other models on the Epitope3D 
dataset. D) Performance comparison of CALIBER and BepiPred-3.0 on the blind test set Epitope3D, on different ranges of RSA. E) Performance comparison 
of CALIBER and BepiPred-3.0 on the blind test set Epitope3D, on different ranges of chain length. 

tested a GCN, or the combination of a GCN with the model 
above, as well as boosting both models (See methods). We trained 
and optimized the models again over a 5-fold cross-validation. 
When the structure is given, one can also produce an ESM-IF1 
embedding. The models were trained with either ESM-2 or ESM-
IF1 initial embedding. We further trained all models either with 

( Supp. Mat. Table S3) or without RSA (Table 4, Figure 3B, Supp. 
Mat. Table S2). The performances were similar, so we used the 
model without the RSA input. To summarize, as was the case 
in the linear models, explicitly adding information on the protein 
structure to the language models had a limited contribution to the 
accuracy.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae084#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae084#supplementary-data
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Table 4: CALIBER Conformational epitope prediction performance of BiLSTM, GCN, and boosting models on the Test dataset. 
Comparing the different embedding methods: Random initialization. Kidera, Kidera + biochemicals, ESM-2 and ESM-IF1. 

Embedding Model AUC BAC MCC PR-AUC 

Random BiLSTM 0.664 0.62 0.16 0.18 
Kidera BiLSTM 0.694 0.64 0.18 0.21 
Kidera+bio BiLSTM 0.718 0.66 0.21 0.25 
ESM-2 BiLSTM 0.776 0.7 0.27 0.35 
ESM-2 GCN 0.753 0.69 0.25 0.32 
ESM-2 Boosting 0.777 0.68 0.23 0.37 
ESM-IF1 BiLSTM 0.778 0.7 0.28 0.34 
ESM-IF1 GCN 0.763 0.68 0.24 0.33 
ESM-IF1 Boosting 0.788 0.69 0.24 0.38 

Table 5: CALIBER Performance of the BiLSTM model initialized 
with ESM-2 trained on both datasets of Linear and 
Conformational epitopes, on the Test datasets. 

Dataset AUC BAC MCC PR-AUC 

Linear 0.775 0.7 0.14 0.13 
Conformational 0.769 0.62 0.17 0.34 

Given the high accuracy of the ESM-2 model on both 
types of epitopes, we tested whether a single model could be 
produced for both types of epitopes, training the BiLSTM model 
with ESM-2 as an input on the linear and conformational epitopes 
simultaneously. The resulting AUC for the linear test was 0.775 
and AUC for the conformational 0.769 ( Table 5, 3B). This is 
slightly lower than each model by itself. However, this is the first 
combined model that gives better than SOTA results for both 
types of epitopes. 

Conformational epitope predictions comparison 
We compared our model with existing conformational epitope 
prediction methods, using an additional external test set includ-
ing 45 proteins provided in Epitope3D [48]. 

To ensure consistency with existing methods, the test mea-
sures were calculated only on surface residues with an RSA above 
15%, as evaluated in Epitope3D publication (Table 6, Figure 3C). 
We performed a one-sample t-test between CALIBER results and 
all other models for all measures. The results are significantly dif-
ferent with p−value < 0.001. The AUC values were extracted from 
the Bepipred-3.0 publication, and BAC and MCC were extracted 
from the Epitope3D publication, except for the Bepipred-3.0 which 
was computed directly using Bepipred-3.0. We did not compare 
with GarphBepi, since neither the code nor the website produced 
results. CALIBER and BepiPred-3.0 which both used protein lan-
guage models outperformed the other models, while CALIBER 
used all protein/chain sequences for prediction and BepiPred-
3.0 only used local information suggests again that information 
beyond the embedding and the language model has minimal 
contribution to the accuracy. We further tested the AUC of CAL-
IBER and BepiPred-3.0 for different ranges of RSA, we included all 
residues with RSA in the range from all proteins in the test set. 
CALIBER has a higher AUC for all RSA ranges (Figure 3D, Supp. 
Mat. Table S5). In addition, We tested the AUC of CALIBER and 
BepiPred-3.0 for different ranges of chain length, we included all 
residues of chines in the length range from all proteins in the test 
set. For proteins up to a length of 100, BepiPred-3.0 slightly outper-
formed CALIBER (AUC of 0.709 versus 0.697), for proteins in the 
300–500 range, the AUC is equal for both methods and is lowest 
for all length ranges (AUC of 0.579). For the other length range 

Table 6: Performance comparison of CALIBER and methods for 
Conformational epitopes: BepiPred-3.0, Epitope3D, Seppa-3.0, 
Discotope-2.0, and Ellipro, on the blind test set Epitope3D, on 
residues with RSA above 15%. 

Method AUC BAC MCC 

CALIBER-Boosting,ESM IF1 0.7 0.63 0.15 
BepiPred-3.0 0.67 0.63 0.16 
Epitope3D 0.59 0.61 0.45 
Seppa-3.0 0.55 0.52 0.02 
Discotope-2.0 0.51 0.5 -0.01 
Ellipro 0.49 0.44 -0.06 

groups, CALIBER outperformed BepiPred-3.0 ( Figure 3E, Supp. Mat. 
Table S6). 

CALIBER website 
CALIBER is accessible as a website. There are three valid input 
formats: protein sequences, PDB IDs and a zip of PDB files. The 
user can choose the desired model (BiLSTM/GCN/Boosting), the 
encoding (random initializing embedding/ESM-2/ESM-IF1), and 
the dataset that the model was trained on (not all the combi-
nations are possible -only the ones reported here). Two output 
files are generated: 1) CSV file with four columns - protein name, 
AA letter, amino acid position, score by the model, 1/0 to predict 
epitope/non-epitope, 2) A FASTA file where the residue predicted 
as non-epitope are in lower case and those that are predicted as 
epitope in upper case. In addition, a graphical diagram is shown 
when each residue predicted to be part of an epitope is marked. 
The user can set the threshold (see default thresholds Supp. Mat. 
Table S4) and the 2 files will be regenerated according to the 
selected threshold, as well as the graphical diagram (Figure 2D). 

DISCUSSION 
One of the most important debates in machine learning is 
whether insight beyond the observed data improves the quality 
of predictions [49]. While often, the answer is positive, it is not 
always the case. In the case of B cell epitope prediction, we 
compared models for both linear and conformational epitopes. 
In both cases, the biological insight had a minimal contribution 
to the accuracy of the prediction. In conformational epitopes, 
including the 3D structure of the protein and the epitope in 
a GCN had practically no effect on the accuracy. The simple 
sequence-based classifier, the random initialization embedding-
based BiLSTM model, was better than all current SOTA models for 
linear epitopes. In conformational epitopes, the GCN practically 
did not improve the sequence-based models. 

While the reported accuracy of CALIBER is better than existing 
methods, it is far from being enough to replace experiments at

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae084#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae084#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae084#supplementary-data


CALIBER | 9

this stage. There may be a few reasons for that. First, most epitope 
datasets are not curated and contain multiple errors that may 
affect the accuracy. Moreover, reported epitopes are a mixed bag 
of experimental methods and binding affinities, so it is unclear 
whether one can treat all reported epitopes similarly. This is clear 
for example from the fact that combining different origins of 
epitopes reduces the prediction accuracy. 

The concept of epitope prediction contains an inherent limi-
tation. An epitope is a part of the protein that an antigen can 
bind. However, this definition is inherently problematic, since 
it depends on the antibody tested, and given the appropriate 
antibody almost any external residue may be part of an epitope. 
Thus, a better definition of an epitope should be proposed to 
increase the prediction accuracy. 

Epitope prediction can be used in different contexts in either 
testing or screening modes. In the testing model, one has a 
candidate epitope and is using prediction to test its probability. 
Screening can be important to validate targets for vaccines or 
interventions [50]. While the total accuracy of the current models 
is not high enough for screening, the top 1% results of CALIBER 
have an accuracy of 0.73 for conformational epitopes, suggesting 
that the vast majority of the top scores positions of CALIBER are 
in epitopes. 

CONCLUSIONS 
We have shown here that a similar prediction model can be 
developed for both linear and nonlinear B cell epitopes. This is 
based on three main elements that were each tested separately 
in the past: A) a learned representation of the AAs, B) a Recurrent 
Neural Network to learn the relation between following AA, and 
C) a prediction on each residue whether it belongs to an epitope, 
instead than a prediction on the entire epitope. These elements 
were combined to produce CALIBER a fast predictor for whether a 
given residue is part of an epitope. 

Key Points 
• A BiLSTM with long-range interactions reaches better 

than the current SOTA prediction for linear and confor-
mational epitopes. 

• The addition of biologically induced amino acid embed-
dings or distance between AA does not improve accuracy. 

• A first model is proposed that simultaneously predicts 
linear and conformational epitopes. 
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