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Abstract 
Automated technologies are attractive for enhancing the robust manufacturing of tissue-engineered products for clinical translation. In this work, 
we present an automation strategy using a robotics platform for media changes, and imaging of cartilaginous microtissues cultured in static 
microwell platforms. We use an automated image analysis pipeline to extract microtissue displacements and morphological features as non-
invasive quality attributes. As a result, empty microwells were identified with a 96% accuracy, and dice coefficient of 0.84 for segmentation. 
Design of experiment are used for the optimization of liquid handling parameters to minimize empty microwells during long-term differentiation 
protocols. We found no significant effect of aspiration or dispension speeds at and beyond manual speed. Instead, repeated media changes 
and time in culture were the driving force or microtissue displacements. As the ovine model is the preclinical model of choice for large skel-
etal defects, we used ovine periosteum-derived cells to form cartilage-intermediate microtissues. Increased expression of COL2A1 confirms 
chondrogenic differentiation and RUNX2 shows no osteogenic specification. Histological analysis shows an increased secretion of cartilaginous 
extracellular matrix and glycosaminoglycans in larger microtissues. Furthermore, microtissue-based implants are capable of forming mineralized 
tissues and bone after 4 weeks of ectopic implantation in nude mice. We demonstrate the development of an integrated bioprocess for culturing 
and manipulation of cartilaginous microtissues and anticipate the progressive substitution of manual operations with automated solutions for the 
manufacturing of microtissue-based living implants.
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Graphical Abstract 

Significance Statement
A major bottleneck in skeletal tissue engineering towards preclinical testing, is providing robust automated platforms able to manufacture 
large quantities of tissue modules, while ensuring high quality microtissue populations. In the present study, we developed a robotic based 
process for the production of “cartilage intermediate” microtissue populations. Combined with the development of a fully automated 
image-based detection and segmentation of microtissues in the microwell platform. This work paves the way for the mitigation of unmet 
clinical challenges through the adoption of robotics -based manufacturing for organoid/microtissue based skeletal implants and living 
materials.

Introduction
Spheroids are small 3D structures built by spontaneous aggre-
gation of single cells and they are increasingly used both for 
drug screening applications1 and in the field of regenerative 
medicine.2 As the cells produce their own extracellular ma-
trix and microenvironment, the spheroids can be considered 
microtissues.3 When complex organization and function 
appear, the term organoid can be used.4,5 Compared to 2D 
monolayer cultures, 3D cultures allow cell growth, matrix 
deposition, and matrix organization in all directions, which 
is a more natural environment for cells. In tissue engineering 
applications, they are ideal as building blocks to create large 
and complex tissues from the bottom up.6 Because of their 
small size, there are no diffusion limitations on nutrients or 
growth factors, allowing a more precise control of differen-
tiation.7 The current bottleneck in this field is the creation 
of tissues with sufficient volume and a robust quality profile. 
To further harness the properties of these cellular building 
blocks, scalable manufacturing and production in a controlled 
manner are required to ensure a predefined quality profile.8

Microtissue production is achieved by means of different 
methods including the hanging drop method, drop-seeding 

cells on low adherence substrates, spinning bioreactors, 
microfluidics, magnetic aggregation, or the use of nonadherent 
microwells as reviewed in Liu et al.4 Dynamic cultures are 
easily scalable but harsh on the cells and microtissue size 
control is difficult.9,10 The use of biomaterials both for the 
creation of spheroids and for downstream steps allows ver-
satile and controlled tissue production, differentiation, and 
growth.11,12 Hydrogels can be produced in-house with tunable 
shapes, sizes, mechanical, and biological properties, making it 
an attractive option for research purposes.13 Due to a limited 
number of relevant clinical-grade biomaterials, the use of sac-
rificial hydrogels14 or scaffold-free approaches is also prom-
ising. However, these platforms lack scalability and are prone 
to production errors.

On the other hand, many commercial microwell systems are 
available, including EZSPHERE, AggreWell, Elplasia plate, 
SpheroFilm, SphericalPlate 5D, and 3D Petri Dish. Currently, 
microtissue production in microwell platforms requires 
manual handling and pipetting, which is prone to errors, 
including microtissue escape from microwells, followed 
by uncontrolled agglomeration and thus, batch failure. 
Monitoring of microtissue cultures and their morphometric 
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quality profiles can be done noninvasively through im-
aging. Software is already available to segment and analyze 
microtissues in hydrogel microwells and floating cultures, 
even enabling the selection of desirable microtissues and 
studying their fusion kinetics.15-19 Commercial microwell sys-
tems are typically produced from polycaprolactone (PCL) or 
polydimethylsiloxane (PDMS) in different microwell shapes, 
which interact with light, creating complex backgrounds in 
brightfield images. Manual segmentation using, for example, 
fiji20 or napari21 is time-consuming and person dependent, but 
well suited for small datasets and varying input images.22-25 
Automated segmentation is fast, reproducible, and can be 
done with minimal supervision. Yet, for complex images, we 
still need methods for automated segmentation to monitor 
microtissue cultures.

Recently, the use of chondrogenic microtissues and organoid 
assemblies has shown promising results in long-bone defect 
regeneration through endochondral ossification following 
the paradigm of developmental engineering.26-28 Periosteum-
derived cell aggregates form transient cartilage microtissues 
in chondrogenic medium (CM) containing BMP2, BMP6, 
GDF5, bFGF2, and TGFβ1.29 Bone-forming potency was 
shown ectopically in nude mice for both individual spheroids 
as larger constructs and a proof-of-concept was provided for 
the successful healing of a murine critical-sized long bone de-
fect.30 The critical next step is bridging the gap toward large 
animal models in a preclinical phase. For long bone defects, 
ovine models are well suited regarding biological similarity, 
long bone dimensions, and mechanical loading during normal 
behavior.31 A transition to preclinical studies and industrial 
translation requires a significant scale-up of this bottom-up 
strategy beyond what is possible by manual methods.

A well-characterized process and automated manufacturing 
line are imperative toward successful translation.32-36 In re-
cent years, significant progress has been made in automating 
several aspects of tissue-engineered advanced therapy medic-
inal product (TE-ATMP) manufacturing. Benchtop pipetting 
robots are used to standardize sample preparation37,38 and 
microwell platform production.39 Multidevice platforms 
have been developed for high content screening of 2D  
expansion40-42 and differentiation,43-46 thus showing the fea-
sibility and advantages of automating manual processes. For 
more complex 3D tissues, robotic culture either generates 
highly variable organoids45 or a low quantity of controllable-
size organoids.12,47 Furthermore, robotic platforms using 
microtissues to create complex tissue constructs are 
appearing.48-51 Yet, robotic production of microtissues, with 
noninvasive methods for monitoring, for these applications 
is hardly investigated. Apart from their intended use, aca-
demic high-content screening facilities can also be explored as 
manufacturing facilities as a bridge between lab-scale manual 
microtissue production and large-quantity preclinical scale.

In this study, we tested our high-content screening facility as 
a platform to automate microtissue production. Specifically, 
we examined the integration of robotics to automate media 
changes and noninvasive brightfield imaging for cartilaginous 
microtissue differentiation in parallel with automated ana-
lytics essential for robust manufacturing of TE ATMPs.52-54 
Moreover, Design of experiment (DOE), goal-oriented statis-
tical approaches for defining factor importance toward prede-
fined critical quality attributes, have been used successfully in 
ATMP research.55,56 DOE approaches are used for optimizing 
differentiation protocols,29,57-59 3D scaffolds design,60-62 and 

scale-up of cell expansion.63-65 In this work, we extend the 
DOE approach to scalable microtissue production.29,66,67 We 
combine a full factorial DOE approach with noninvasive au-
tomated image segmentation and analytics to optimize ro-
botic media changes of cartilaginous bone-forming spheroids 
in static microwell culture platforms.

Materials and Methods
Cell Expansion
Periosteum biopsies were obtained from sheep tibia. After di-
gestion, the cells were cultivated for 8 passages in an expan-
sion medium containing DMEM (Gibco) supplemented with 
1% antibiotic-antimycotic (Invitrogen) and 10% FBS (South 
Afrika FBS, BioWest, France).

Microtissue Formation
The commercially available microwell platform (AggreWell 
800 or AggreWell 400, STEMCELL Technologies Inc., 
Canada) was coated with Anti-Adherence Rinsing Solution 
(STEMCELL Technologies Inc.) to avoid cell attachment, 
centrifuged to ensure homogeneous coating, and washed with 
basal medium prior to cell seeding. Sheep periosteum-derived 
cells (sPDCs) were harvested with TrypLE Express (Life 
Technologies, UK) and seeded at 300 000 cells per 2 mL CM. 
As the platforms differ in the size of their microwells (1200 
microwells, size 400 µm vs 300 microwells, size 800 µm), 
the resulting microtissues are formed through self-assembly 
of 250 or 1000 cells for aggrewell400 and aggrewell800, re-
spectively. The cells self-aggregate and were differentiated for 
21 days in a serum-free CM containing low glucose DMEM 
(Gibco) supplemented with 1% antibiotic-antimycotic 
(Invitrogen), 1 × 10−3 M ascorbate-2 phosphate, 1 × 10−7 M 
dexamethasone, 40 µg mL−1 l-proline, 20 × 10−7 M of Rho-
kinase inhibitor Y27632 (Axon Medchem), ITS + Premix 
Universal Culture Supplement (containing 6.25 µg mL−1 in-
sulin, 6.25 µg mL−1 transferrin and 6.25 ng mL−1 selenious 
acid, 1.25 µg mL−1 bovine serum albumin, and 5.35 µg mL−1 
linoleic acid; Corning), 100 ng mL−1 BMP2 (INDUCTOS), 
100 ng mL−1 GDF5 (PeproTech), 10 ng mL−1 TGF-β1 
(PeproTech), 1 ng mL−1 BMP-6 (PeproTech), and 0.2 ng mL−1 
basic FGF-2 (R&D systems). Half of the medium was replaced 
with fresh medium on day 3, 7, 10, 14, and 17.

Robotic Handling, Automated Medium Changes 
and Imaging
The Stem Cell Laboratory Automation (STELLA) platform, 
funded by the NextGenQBio Hercules Foundation grant, was 
used to create and perform automated protocols for medium 
change and imaging. It is equipped with 2 liquid handlers 
(Biomek NX MC and Biomek NXp—Span8; Beckman 
Coulter), one SCARA robotic arm, one Cytomat 10C 
Automated Incubator and one Cytomat Microplate Hotel 
(Beckman Coulter), one High-content Imaging System Image 
eXpress (Molecular Devices), 2 Plate Delliders (Beckman 
Coulter), one CapitAll IS Automated Capper/Decapper 
(Thermo Fisher), one Asymptote Freezer (Grant), and one 
Sigma 6K15 Centrifuge (Sigma), all inside a BSL2 sterile en-
closure. This system enables our group to perform fully auto-
mated plate handling, medium change, and imaging based on 
a design of experiment (DOE) to explore the best conditions 
for automated pipetting in which the microaggregates are not 
displaced or aspirated. Briefly, Aggrewell plates containing 
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the microaggregates were manually placed in the incubator 
24 hours prior to the automated sequence starts. Plates were 
then manually moved from the incubator to the Span8 liquid 
handler where different liquid aspiration and dispensing, 
needle height, and position were tested according to the DOE. 
In between the first and second DOE, needle placement was 
optimized using gelatin microcarriers (CultiSpher S, Percell), 
which have similar characteristics as living microtissues.

Automated Image Analysis
Brightfield images of microtissues cultured in Aggrewell were 
taken manually with an inverted DMi1 microscope (2.5×, 
0.07 NA lens, Leica). A custom-made image processing work-
flow was implemented to automatically segment microtissues 
and extract quantitative morphological information.

Microtissue segmentation was performed by the pixel clas-
sification algorithm of ilastik66 software (v. 1.3.3). Brightfield 
images were annotated with 2 classes (microtissues and 
background). One image per timepoint per condition was 
annotated to train the default ilastik classifier (Random Forest 
with 100 trees and all image filters selected). The training 
dataset for pixel classification consisted of 4 images where a 
total of 80 microtissues were manually labeled according to 
a specific pattern. Images were divided into 4 quadrants and 
the pixels were assigned to the 2 classes for 6 wells of each 
quadrant.

The ilastik classifier generated probability maps of each 
class that were converted to .tif files and transformed into 
individual objects in cellProfiler68 software (v 4.2.1). First, 
individual (primary) objects were identified by global Otsu 
thresholding of the microtissue class and declumping to dis-
tinguish touching objects. Later, the identified objects were 
filtered by diameter, compactness, eccentricity, and area to re-
move small or irregular objects.68 Finally, several morpholog-
ical features of the filtered objects (ie, area and shape) were 
measured.

Besides segmenting microtissues, another image processing 
workflow was run in parallel to detect the microwells and 
localize microtissues in the culture plate. The ilastik classifier 
was also trained to segment the microwell boundaries from 
the background. The probability maps generated by ilastik 
were analyzed with the Python library OpenCV69 detect the 
boundary points of each microwell. Then, the sp package in 
R70 was used to match microtissue locations to microwell 
locations. Microwells were considered empty if the centroid 
of no microtissue laid within the boundary points.

Particle Distribution Analysis
Following microtissue morphological measurements, separate 
datasets were created for each platform × timepoint combina-
tion, thus including microtissues identified in a 24-well plate. 
Spherical shape was assumed to calculate a predicted volume 
per microtissue (mm³) from the projected area measurement. 
The microtissues were ordered based on their size, followed 
by the calculation of the cumulative volume and the iden-
tification of particle distribution parameters. D90 represents 
the individual microtissue volume where 90% will be smaller. 
Similarly, D50 represents the volume where 50% is larger 
and 50% is smaller, while D10 represents the smallest por-
tion where 10% is smaller. The span is a particle distribution 
measurement of variability for non-normal distributions with 
potential outliers, calculated as span = (D90−D10)/D50. 
Finally, the predicted tissue volume, as a yield measurement, 

was calculated as the number of theoretical microwells per 
well times the average volume per microtissue, corrected for 
the number of empty microwells.

Formation of Macro-Construct
Custom round-bottom macrowells were created in 3% agarose 
(w/v; Invitrogen) and sterilized using UV. Macroconstructs 
were created by collecting microtissues from 3 wells. 
Microtissues were gently flushed out from their microwells 
on day 21, concentrated, and added to the macrowells to sed-
iment for 1 hour. Aggrewell400 implants consist of ~3600 
microtissues, while the aggrewell800 implants consist of ~900 
microtissues, yet both are the result of 9 × 105 cells at day 0. 
CM, as previously described, was added, and the constructs 
were incubated for 24 hours at 37 °C, 5% CO2, and 95% 
humidity to fuse into a coherent implant.

In Vivo Ectopic Implantation
In vivo bone forming potency assessment was performed 
through ectopic implantations in female immune-
compromised mice (Rj:NMRInu/nu, age 6-20 weeks). An 
incision was made on the back of the mice under general an-
esthesia (ketamine/xylazine) by intraperitoneal injection to 
create 2 pockets at the shoulder region per mouse. Implants 
were removed from the agarose macrowell, and washed in 
1xDPBS. Four constructs per condition were implanted 
subcutaneously in the back at the shoulder region of 4 dif-
ferent female immune-compromised mice (Rj:NMRInu/nu), 
with one implant per condition per mouse. The incision was 
closed by staples followed by postoperative administration of 
buprenorphine as pain relief. After 4 weeks, the mice were 
sacrificed by cervical dislocation. Then, the implants were 
taken out and fixed for 4 hours in 4% paraformaldehyde 
(PFA).

Micro-CT
3D quantification of mineralized tissue in PFA-fixed explants 
was done through micro-CT (Pheonix Nanotom M, GE 
Measurement, and Control Solutions). Explants were scanned 
with a diamond target, mode 0, 500 ms exposure time, 1 frame 
average, 0 image skip, 2400 images, and a 0.1-mm aluminium 
filter. Samples were scanned with a voxel size of 3 µm. CTAn 
(Bruker micro-CT, BE) was used for all image processing and 
quantification of mineralized tissue based on automatic Otsu 
segmentation, 3D space closing, and despeckle algorithm. The 
percentage of mineralized tissue was calculated with respect 
to the total explant volume. CTvox (Bruker micro-CT, BE) 
was used to create 3D visualization.

DNA Quantification, RNA Isolation and Gene 
Expression Analysis
DNA content was quantified from cell lysate using the DNA 
assay kit QuantiT dsDNA HS kit (Invitrogen) according to 
the manufacturer’s protocol. RNA was isolated from the ly-
sate with the RNeasy Mini Kit (Qiagen) according to the 
manufacturer’s protocol and quantified with NanoDrop 2000 
(Thermo Fisher Scientific). RevertAid H Minus First Strand 
cDNA Synthesis Kit (Thermo Fisher Scientific) was used for 
reverse transcription. One microgram oligo(dT18) was added 
to 11 µL RNA for 5 minutes at 65 °C, the reaction mixture 
(4 µL 5× reaction buffer, 1 µL ribolock ribonuclease inhib-
itor, 2 µL dNTPmix (10 × 10−3 m), and 1 µL RevertAid H 
Minus M-MuL VRT) was added, cDNA was generated using 
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the Applied Biosystems Veriti 96-Well Fast Thermal Cycler 
(60 minutes at 42 °C followed by 10 minutes at 70 °C) and 
diluted in RNase-free water to 5 ng mL−1. Fast SYBR Green 
Master Mix (Thermo Fisher Scientific), 5 ng mL−1 cDNA, and 
specifically designed primers were used to perform Quantitative 
reverse transcription polymerase chain reaction consisting of 
a denaturation step at 95 °C, followed by 40 cycles of 95 °C, 
3 seconds and 60 °C, 20 seconds. For quality control, a 
melting curve was generated between 60 °C and 99 °C. Gene 
expression data are presented relative to the housekeeping 
gene hypoxanthine-guanine phosphoribosyltransferase and 
relative to day 0 monolayer culture.

Histological Stainings
Microtissues were gently flushed out from their microwells, 
concentrated, and fixed in 2% PFA overnight, embedded in 
3% agarose, dehydrated, and embedded in paraffin overnight. 
Ectopic explants were fixed in 4% PFA for 4 hours, decalci-
fied in ethylenediaminetetraacetic acid/PBS (pH 7.5) for 10 
solution changes at 4 °C, dehydrated, and embedded in par-
affin overnight, and sectioned at 5 µm thickness. Before his-
tological staining, the slides were deparaffinized in Histoclear 
(Laborimpex).

For Safranin O/Fast green (Sigma) staining, sections 
were deparaffinized and dehydrated, counterstained with 
Hematoxylin (Merck, cat 6525) for 1 minute, briefly dipped 
in acid alcohol (1% HCL in 70% EtOH), rinsed in water, 
stained with 0.03% Fast Green (KLINIPATH, cat 80051) and 
then dipped in 1% glacial acetic acid followed by 7-minute 
staining in 0.25% SafraninO (KLINIPATH, cat 640780). 
Then the samples were washed in tap water, dehydrated with 
an ethanol series, cleared in histoclear, and mounted in Pertex 
for microscopy imaging. For Alcian blue staining, sections 
were deparaffinized, rehydrated, and stained with filtered 
Alcian blue solution for 30 minutes at room temperature. 
After washing, the slides were counterstained by Nuclear 
Fast Red for 5 minutes before washing, dehydrating, and 
mounting. Quantitative analysis and average intensity meas-
urement were performed in Fiji (ImageJ) through the decon-
volution plugin.

Ethical Statement
All procedures on animal experiments were approved by the 
local ethical committee for Animal Research, KU Leuven. 
The animals were housed according to the regulations of the 
Animalium Leuven (KU Leuven).

Statistical Analysis
All statistical analyses were performed using standard function 
in R (R core team). Statistical significance was defined at P < .05. 
Pairwise comparisons were done through a 2-sided, unpaired 
t test. Factor analysis was done by analysis of variance for the 
model: empty microwells = aspiration× dispension+ time. 
Data are presented as mean and standard deviation from 4 
samples. Symbols used are *P < .05, **P < .01, ***P < .001, 
and ****P < .0001.

Results
Automating Media Changes Requires Multifactorial 
Optimization
Bottom-up tissue engineering requires the expansion of large 
cell quantities, followed by the production and long-term 

differentiation of homogeneous microtissues as building 
blocks. As shown in Fig. 1a, the scalability of microtissue pro-
duction remains a bottleneck toward large implants. While 
static microwell platforms generate homogeneous microtissue 
populations, they require careful liquid handling to avoid 
microtissue displacement (Fig. 1b). We applied a liquid hand-
ling station, as shown in Fig. 1c, that is, part of an enclosed 
screening platform to explore the parameters that influ-
ence microtissue production speed, homogeneity, and yield. 
As shown in Fig. 1d, 2 alternative 24-well platforms were 
investigated: (1) aggrewell800 (A800; 300 microwells, 800 µm 
square, 1000 cells/microtissue) and aggrewell400 (A400; 
1200 microwells, 400 µm square, 250 cells/microtissue), 
generating larger versus smaller microtissues. A full facto-
rial experiment was designed as illustrated in Fig. 1e, and 
detailed in Fig. 3a, comparing 2 levels of media dispension 
speed, 4 levels of media aspiration speed for the 2 microwell 
platforms. Through noninvasive microscopic analysis, the ef-
fect of repeated media changes was monitored.

Automated Image Analysis Pipeline
Microwell platforms enable the creation of homogeneous 
microtissues, yet their shape creates complex images through 
brightfield microscopy, hindering direct segmentation from 
the microwell platform. As a result, noninvasive monitoring 
over time remains challenging. We created a pipeline con-
necting machine learning-based image segmentation through 
pixel classification software (ilastik66) and object detection 
and data extraction software (cellprofiler67) to statistical data 
analysis scripts (R). These different modules are connected 
through jupyter notebooks written in python. All software is 
freely available and is gathered in one Docker container.

The process, described in Fig. 2a--2f, starts with images 
containing any number of microtissues in square-shaped 
microwells. The images must be taken with identical settings 
to generate optimal results. In a first step, a pixel classifica-
tion algorithm is trained in ilastik to predict whether a pixel 
belongs to a microtissue or background, resulting in a prob-
ability map. Then, a second pixel classification algorithm 
is trained to generate a mask of the microwell pattern. In 
cellprofiler, the microtissue probability map is thresholded, 
followed by object identification, thus segmenting individual 
microtissues. These microtissues are then described in relevant 
morphometric parameters including object shape (eg, loca-
tion, area, diameter, and roundness) and location. Individual 
microwell contours are identified from the microwell pattern 
mask. For each microtissue, we calculated whether it is in a 
microwell or floating in-between. As a result, we could cal-
culate which microwells are empty, and which contain more 
than one microtissue. Hence, microtissue displacements and 
empty microwells can be quantified and visualized per well 
(Fig. 2g--2l). The quality of the segmentation resulted in a dice 
coefficient of 0.885 for the training dataset, and 0.836 for the 
validation dataset. The amount of correctly identified empty 
microwells was 94% and 96%, respectively. As shown in 
Supplementary Fig. S1e, S1f, the number of empty microwells 
per well correlates to changes in roundness and size, making 
the percentage of empty microwells a fitting read-out to 
optimize liquid handling parameters. Moreover, as shown 
inSupplementary Fig. S1a--S1d, dotplots and density plots 
show size distributions within one image. Through a jupyter 
notebook, this pipeline can be used in batch mode to process 
hundreds of images containing thousands of microtissues. 

https://academic.oup.com/stcltm/article-lookup/doi/10.1093/stcltm/szad091#supplementary-data
https://academic.oup.com/stcltm/article-lookup/doi/10.1093/stcltm/szad091#supplementary-data
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The data presented here contain information from 144 indi-
vidual images and 51471 microtissues. Assuming a spherical 
shape in 3 dimensions, we can estimate microtissue volume 
from the 2D projection. With this approach, we performed 
particle analysis for the size distribution of individual 
microtissues over time as shown in Table 1. Projected volume 
calculations were used to investigate the effect of initial cell 
seeding density on the variability and final cartilage tissue 
volume produced. On average, we found that microtissues 
increased in size over time in both platforms. The variation in 
size, which is represented as the span measurement, indicates 
less size variability in A800 compared to A400. Furthermore, 
the total predicted tissue volume produced in one well is cal-
culated as the sum of microtissue volumes, corrected for the 
percentage of microtissue displacement. We found that both 
platforms result in similar volume yields, here represented per 
300 000 cells seeded per well.

Automation and Optimization of Liquid Handling 
Parameters
Automated production of high volumes of microtissues is 
a major bottleneck in bottom-up tissue engineering (Fig. 
1a). Automated medium changes could improve the scal-
ability and homogeneity, yet one of the greatest challenges 

in long-term culture of microtissues in static well plates is 
their sensitivity to liquid handling. As illustrated in Fig. 1b, 
the microtissues can easily be displaced, leading to premature 
uncontrolled fusion into larger irregular tissues that compli-
cate downstream processes. We used the automated liquid 
handling station as shown in Fig. 1c to maximize dispension 
and aspiration speeds for both small (A400) and large (A800) 
microwell platforms (Fig. 1d). In this way, the automated 
liquid handling station minimized microtissue displacement 
and time needed for media changes.

In the first design of experiment (DOE), we assessed the 
effect of aspiration speed, dispension speed, and needle 
depth in A400 through a 23 full factorial design as shown 
inSupplementary Fig. S2a--S2e. In this experiment, we found 
no significant (P < .05) effects for the tested factor levels, but 
the data showed an indicative effect (P < .1) for both the 
dispension speed alone as the interaction of dispension speed 
with needle depth (Supplementary Fig. S2e). Both aspiration 
speed and needle depth were not significant in the range tested, 
but we noticed dripping for a 1 mm needle depth. Parameter 
testing requires a high amount of living microtissues, me-
dium, and time. However, we found that gelatine beads, 
which are commonly used as a growth surface in suspension 
cultures, can be used as substitutes for living microtissues 

Figure 1. Experimental intention and experimental design. (a) A current bottleneck for microtissue-based long bone implants is a sufficient production 
of microtissues as building blocks. (b) Microtissue displacement as an effect of long-term culture. (c) Robotic media changes can be automated using a 
robotic liquid handling station. (d) Brightfield microscopy image showing a 1600 μm × 1600 μm field of view in microwell platforms A400 and A800. (e) 
Parameters of the experimental design. A400 = Aggrewell400 with 400 μm square microwells, A800 = Aggrewell800 with 800 μm square microwells. 
Created with BioRender.com.

https://academic.oup.com/stcltm/article-lookup/doi/10.1093/stcltm/szad091#supplementary-data
https://academic.oup.com/stcltm/article-lookup/doi/10.1093/stcltm/szad091#supplementary-data
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(Supplementary Fig. S2g). Because of the observed interac-
tion between dispension speed and needle depth, we further 
optimized needle position by varying the needle depth and 

the distance from the edge of the well (Supplementary Fig. 
S2f). Because of the surface tension, the liquid has a concave 
shape. As a result, the needle can be placed further from the 

Figure 2. Image analysis pipeline. (a) Representative raw images of large and small microwells with high and low microtissue movement. (b) For 
each image, the microwell grid was segmented and (c) a microtissue probability map of all pixels was generated. (d) Individual spheroid objects were 
identified and (e) overlayed on the microwell grid. (f) Microtissue size distribution in a well. (g-l) 24 well plate digitalization for A400 and A800 and 
individual well tracking over time. Each microwell is colored according to whether it contains a microtissue or not.

https://academic.oup.com/stcltm/article-lookup/doi/10.1093/stcltm/szad091#supplementary-data
https://academic.oup.com/stcltm/article-lookup/doi/10.1093/stcltm/szad091#supplementary-data
https://academic.oup.com/stcltm/article-lookup/doi/10.1093/stcltm/szad091#supplementary-data
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microtissues when placed more toward the side of the well. 
However, at 90% or more, the needle touches the well plate, 
disrupting the entire 24-well plate. An optimum was reached 
by placing the needle 2 mm below the liquid surface at 85% 

from the well center. As the needle followed the liquid level, a 
minimal number of spheroids were moved.

A second DOE with 2 mixed factorial designs was set up 
as shown in Fig. 3a. As we suspected the larger microtissue 

Figure 3. Design of Experiment (DE) setup and results. (a) Experimental design with the tested factors levels. (b-e) Main effects plots. (f, g) Statistical 
significance of main and interaction effects for A400 and A800 platforms. (h-j) Interaction plots for A400 and (k-m) interaction plots for A800.
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platform (A800) to be less sensitive, we decreased the 
dispension speed of the smaller microtissue platform (A400), 
but kept the same for A800. Aspiration speed was not signifi-
cant in the first DOE, so we increased the speed up to 500 µL/
second, which is approximately 5× manual speed. On day 7, 
14, and 21 brightfield images were taken to assess microtissue 
displacement and the cumulative effect over time. The auto-
mated image analysis pipeline was used for segmentation and 
data extraction as explained in Fig. 2a--2f. The main effects 
in Fig. 3b--3e show a significant average increase in empty 
microwells over time for both platforms. Dispension speed 
has no significant effect, but in A800, a significant effect was 
observed for aspiration speed. Especially for 100 µL/second, 
a high empty microwell percentage was measured. However, 
upon inspection of the distribution in the 24-well plate shown 
in Fig. 2j--2l, most wells with high levels of microtissue 
displacements locate in the bottom half of the well plate. As 
seen from the interaction effects in Fig. 3k, the 100 µL/second 
condition in the A800 platform is not in line with higher or 
lower aspiration speeds.

Differentiation Potential of sPDCs
sPDCs were harvested and expanded in vitro for 8 passages. 
Supplementary Fig. S3a shows continued linear growth 
over 40 days. Supplementary Fig. S3b--S3e shows con-
tinued expression of periosteal progenitor markers, while 
osteoprogenitor markers RUNX2 and BMP2 show a slight 
decrease and connective tissue marker TGFβ shows a signifi-
cant increase after passaging. To assess the differentiation po-
tential of the sPDC, gene expression analysis and histological 
stainings were performed on day 21 microtissue populations 
(n = 3 wells). Fig. 4a recapitulates the experimental time-
line. In Fig. 4b, 4c, we see a downregulation of prolifera-
tion and progenitor genes, CD200, and PDGF after 21 days 
compared to the same cells before differentiation. At the same 
time, Fig. 4d--4h shows that chondrogenic markers BMP2, 
BMP4, TGFb1, and COL2A1 were upregulated while oste-
ogenic marker RUNX2 was downregulated in microtissue 
populations cultured in either platforms. Only TGFb1 
showed a significant difference between the A400 and A800 
platform. Also, as an identical amount of starting cells were 
seeded per well (300 000 cells/well), the DNA content shown 
in Fig. 4i after 21 days is the same for both platforms. We then 
analyzed the individual microtissues on a tissue level through 
immunohistochemistry (Fig. 4j--4l). Cells are homogeneously 

present throughout the microtissue with a thin layer on the 
outside. Alcian blue staining shows the secretion of cartilag-
inous glycosaminoglycans (GAG) in the extracellular matrix 
(Fig. 4k), but the intensity of GAG and sulphated GAGs, 
shown in Fig. 4l, was higher in larger microtissues. This was 
also confirmed with histological quantification as shown in 
Fig. 4p.

After 21 days, microtissues from 3 separate wells were 
collected, concentrated, and allowed to self-assemble for 
24 hours, resulting in a construct that could be implanted 
ectopically for 4 weeks in nude mice to assess bone-forming 
potential. Micro-computed tomography (µCT) shows min-
eralization of all implants, but no cortical bone formation 
or bone marrow compartments (Fig. 4m). H&E staining 
shows remainders of microtissue shapes that are not yet 
remodeled (Fig. 4n). Yet, the explants stain positive for Fast 
Green (Fig. 4o), consistent with the mineralization seen in 
µCT. Quantification of explant size and mineralization in 
Fig. 4r, 4s show no significant differences between A400 and 
A800 implants, consistent with a similar implant volume as 
predicted in Table 1.

Discussion
The use of microtissues and organoids as building blocks 
for the bottom-up engineering of larger tissues is rap-
idly increasing in tissue engineering.71,72 While this strategy 
shows promise, there is still a lack of automated technologies 
supporting robust culture and differentiation processes. These 
are hampered by complex manual protocols and limited non-
invasive quality measurements. Therefore, to support trans-
lation of regenerative medicine, robust biomanufacturing 
processes are necessary.73-75 The development of such 
technologies will also enable the implementation of Quality 
by Design principles by linking measurable microtissue char-
acteristics to the final product quality.76 The bottom-up TE 
approach inherently aspires to embed quality attributes that 
have been already present in the microtissue population 
within the final larger tissue products.

In this work, we explored the use of an academic high-
content screening facility as a platform for robotics-based, 
long-time differentiation of ovine cartilaginous microtissues 
in nonadherent microwells. Here, we combined robotic media 
changes with automated brightfield-image–based noninvasive 
analysis. We applied this to run design of experiment (DOE) 

Table 1. Summary statistics on microtissue size distribution and percentages of empty microwells.

Platform Day Microtissues 
identified

Microwells 
per well

Percentage 
empty 
microwells

Percentage 
filled 
microwells

Volume per 
microtissue 
(mm³)

D10 
(mm³)

D50 
(mm³)

D90 
(mm³)

Span Predicted 
tissue volume 
(mm³)

A400 7 14867 1200 8.82 91.18 0.0015 0.0009 0.0017 0.0033 1.4571 1.6014

14 13210 1200 16.38 83.62 0.0017 0.0010 0.0020 0.0054 2.2674 1.7358

21 12647 1200 21.11 78.89 0.0021 0.0012 0.0024 0.0070 2.4076 1.9432

A800 7 4014 300 10.62 89.38 0.0059 0.0033 0.0068 0.0160 1.8612 1.5851

14 3574 300 26.80 73.20 0.0066 0.0036 0.0084 0.0162 1.5071 1.4487

21 3158 300 29.23 70.77 0.0093 0.0048 0.0118 0.0318 2.2735 1.9731

Particle distribution parameters D10, D50, and D90 are derived from the ordered cumulative size distribution and indicate the microtissue size cutoff 
point where 10%, 50%, and 90% of microtissues respectively are below this size. The span, calculated as span = (D90−D10)/D50 is used to describe 
the distribution range. The predicted tissue volume per well is calculated as the amount of theoretical microwells per well times the average volume per 
microtissue, corrected for the amount of empty microwells.

https://academic.oup.com/stcltm/article-lookup/doi/10.1093/stcltm/szad091#supplementary-data
https://academic.oup.com/stcltm/article-lookup/doi/10.1093/stcltm/szad091#supplementary-data
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Figure 4. Biological characterization of microtissues and ectopic explants. (a) Protocol overview and timeline. (b-g) mRNA quantification of 
differentiation markers. (i) DNA quantification on day 21. Histological staining of microtissues on day 21 showing (j) hematoxylin-eosin, (k) Alcian 
blue, and (l) safranin O. Scale bars = 200 μm. (m) Mineralisation after 4 weeks ectopic implantation of microtissue constructs measured by microCT. 
Histological staining of explants showing (n) hematoxylin-eosin, and (o) safraninO-fastgreen staining of representative explants. Scale bars = 1 mm. 
(p) Glycosaminoglycan (GAG) quantification. (q) Sulphated glycosaminoglycan (sGAG) quantification. (r) Explant volumes. (s) Explant percentage 
mineralisation.
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aiming at the optimization of liquid handling parameters to 
enable long differentiation processes. It has previously been 
shown that automating methods using robotics is an efficient 
way to reduce human error and operator-dependent varia-
bility in laboratory operations.77 One of the challenges for 
culturing microtissues in nonadherent well plates is that over 
time they are prone to move, leading to uncontrolled fusion 
and the development of large agglomerates.25 This can result 
in tissue heterogeneity and influence the synchronization of 
differentiation cascades over time leading also to the develop-
ment of nondifferentiated tissue locations.19 By introducing 
robotic medium changes, we investigated the effect of needle 
positioning, dispension, and aspiration speed in ranges close 
to and beyond manual speed and found no statistically sig-
nificant effect. Therefore, robotic media changes can be 
time-saving. Still, a continued mapping of the design space in 
relation to the critical product profile will include also other 
factors such as media change frequency and volumes. We did 
detect a significant time dependence, which we attribute to the 
manual handling of the microwell plates between incubator, 
microscope, and media change station. Further integrating ro-
botic plate handling and imaging is thus considered to be the 
next step. To date the adoption of robotics for cell therapy 
and regenerative medicine applications has been carried out 
for the expansion of single-cell populations such as adult 
MSC expanded in bioreactor systems.42 Moreover, robotics-
based expansion and differentiation of induced pluripotent 
stem cells toward retinal pigment epithelial cells showed a 
high level of cell purity and functionality.78,79 In this work, 
we take a step further as we explore a bioprocess problem 
related to nonadherent microtissue protocols, as opposed to 
protocols encompassing adherent cell and organoid types, 
which has been largely unexplored.

The definition of biological critical quality attributes 
by morphometrics, spectroscopic techniques, or secreted 
proteins could be the next step to ensure a predictive 
outcome upon implantation.80-85 On line, noninvasive 
monitoring techniques, such as the current approach, can 
produce large quantities of data on the process and bi-
ology that can be used as input for machine learning 
algorithms. Automated imaging technologies have been 
implemented to characterize 2D cell culture processes such 
as expansion of MSCs86,87 but also for the automated im-
aging of spheroid and microtissue structures.15-18,25,88 The 
use of automated image analysis can contribute to further 
minimizing human error and variability which can also 
greatly improve the manufacturing process as it feeds back 
to the process parameters used during manufacturing.89 In 
this work, the automated brightfield image segmentation 
and characterisation of microtissues were achieved with 
supervised opensource software linked through jupyter 
notebooks and a docker environment for reproducibility 
and ease of use. For example, users can train a classifier to 
identify patterns in the segmented microtissue images for 
predictive maintenance.90 A machine learning classifier can 
predict the failure of the microtissue manufacturing process 
and support informed decision-making in the early stages of 
cell culture. Ultimately, this can help process design and en-
hance process control and ultimately contribute to process 
optimization.91-94 As these microtissue populations serve 
as active raw materials for living implants, morphological 
properties are important considerations for the appropriate 
selection of downstream bio-assembly methods.95,96

Finally, for implants targeting the healing of long-bone 
fractures, the ovine model is frequently used and would 
be the animal of choice to validate TE products before the 
transition to a clinical trial.97,98 Hence, we used ovine per-
iosteal cells to assess their differentiation potential and 
bone-forming capacity. We see encouraging differentia-
tion and the formation of cartilaginous microtissues that 
mineralize upon implantation showing regions of bone 
with blood vessel invasion. Compared to human perios-
teal cell microtissues,19 the ovine periosteal microtissues 
display lower tissue maturation kinetics. Ectopic implan-
tation shows the onset of bone formation, yet we observe 
a slower cartilage-to-bone transition, with a lack of bone 
marrow compartments and a large portion of mineralizing 
cartilage.72,99 Further investigation of these implants at 
orthotopic sites, such as critical size segmental tibial defects, 
will be required in future studies.

In conclusion, a stepwise automation of manual tasks, and 
eventual fully automated biomanufacturing of cartilaginous 
microtissue populations is becoming increasingly feasible, en-
abling next steps toward the translation process. Here, we 
show how robotic media changes combined with multifacto-
rial DOE, noninvasive imaging, and automated image anal-
ysis can be used to optimize large-scale biomanufacturing 
of microtissue building blocks, while being compatible with 
noninvasive quality monitoring.
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