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Abstract

Background.—Few-shot learning (FSL) is a class of machine learning methods that require 

small numbers of labeled instances for training. With many medical topics having limited 

annotated text-based data in practical settings, FSL-based natural language processing (NLP) 

holds substantial promise. We aimed to conduct a review to explore the current state of FSL 

methods for medical NLP.

Methods.—We searched for articles published between January 2016 and October 2022 using 

PubMed/Medline, Embase, ACL Anthology, and IEEE Xplore Digital Library. We also searched 

the preprint servers (e.g., arXiv, medRxiv, and bioRxiv) via Google Scholar to identify the latest 

relevant methods. We included all articles that involved FSL and any form of medical text. 

We abstracted articles based on the data source, target task, training set size, primary method(s)/

approach(es), and evaluation metric(s).

Results.—Fifty-one articles met our inclusion criteria—all published after 2018, and most 

since 2020 (42/51; 82%). Concept extraction/named entity recognition was the most frequently 

addressed task (21/51; 41%), followed by text classification (16/51; 31%). Thirty-two (61%) 

articles reconstructed existing datasets to fit few-shot scenarios, and MIMIC-III was the most 

frequently used dataset (10/51; 20%). 77% of the articles attempted to incorporate prior 

knowledge to augment the small datasets available for training. Common methods included FSL 

with attention mechanisms (20/51; 39%), prototypical networks (11/51; 22%), meta-learning 
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(7/51; 14%), and prompt-based learning methods, the latter being particularly popular since 

2021. Benchmarking experiments demonstrated relative underperformance of FSL methods on 

biomedical NLP tasks.

Conclusion.—Despite the potential for FSL in biomedical NLP, progress has been limited. This 

may be attributed to the rarity of specialized data, lack of standardized evaluation criteria and 

the underperformance of FSL methods on biomedical topics. The creation of publicly-available 

specialized datasets for biomedical FSL may aid method development by facilitating comparative 

analyses.

Graphical Abstract

Keywords

few-shot learning; natural language processing; machine learning; biomedical informatics

1 Introduction

Few-shot learning (FSL), also referred to as low-shot learning, is a class of machine learning 

methods that attempt to learn to execute tasks using small numbers (i.e., few) of labeled 

training examples [1–3]. In supervised learning (i.e., learning from labeled data) settings 
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with limited training instances, the application of traditional machine learning methods 

typically leads to overfitting (i.e., the learner is incapable of generalizing the characteristics 

of the training data) [4, 5]. Learning from small numbers of training instances is challenging 

for machine learning models, although it is conceptually possible since humans are often 

capable of generalizing learned concepts with limited exposure or using only partial 

information [6] (e.g., recognizing numbers or pictures [3]). Thus, true replication of human 

behavior by artificial intelligence (AI) requires the development of models that can learn to 

generalize from small numbers of training instances—an objective that FSL aims to achieve.

For many natural language processing (NLP) tasks, particularly within the medical domain 

(e.g., for rare or novel diseases), the availability of labeled data is often limited. Even when 

large labeled datasets are created for targeted tasks, due to restrictions associated with data 

privacy and patient security, it can be difficult or impossible to release or share them if 

they originate from medical sources, such as electronic health records (EHRs). Oftentimes, 

the data available for manual annotation is insufficient. Limited data is often associated 

with specific subpopulations (e.g., racial minorities), and machine learning models often 

underperform for such subpopulations [7]. Even when sufficient data is available, manually 

annotating them can be time-consuming, error-prone, and costly. This is particularly true for 

medical free text as manual annotation requires the annotators to read and interpret texts 

prior to assigning labels, and reliable annotations can only be obtained from high-skilled 

annotators (e.g., doctors). Sometimes, multiple rounds of annotations are required on the 

same data, further increasing the costs of such annotation. With the application domain 

being healthcare, it is critical to develop machine learning strategies that can address these 

practical limitations while ensuring high performance.

Over recent years, deep neural network-based approaches (a.k.a., deep learning) have seen 

high adoption and have achieved state-of-the-art results in many supervised learning tasks, 

sometimes achieving human-level performances [8]. Such methods require large amounts of 

labeled training data, which restricts their utility to only tasks for which such large labeled 

datasets are available. In the absence of large, manually annotated datasets, dictionary or 

lexicon-based approaches are commonly used in biomedical NLP tasks, such as named 

entity recognition (NER). These lexicon-based approaches utilize lists of biomedical terms 

to identify relevant expressions in texts, usually via string matching techniques. Lexicon- 

and rule-based methods typically work well compared to deep learning methods for NER 

tasks when the number of annotated expressions is small, and the texts do not contain too 

many lexical variants (e.g., misspellings). However, these approaches are not very scalable. 

In cases where concepts are expressed using a variety of expressions (e.g., generic vs. 
brand names for medications) or concept expressions are ambiguous, these methods are less 

reliable. Rule-based systems can also become very complex and challenging to maintain as 

the number of rules increases, rendering them difficult to adapt to new domains or situations.

The limitations of lexicon-/rule-based and deep learning-based approaches necessitate the 

development of alternative methods, such as FSL, which can effectively learn from small 

amounts of labeled data. FSL methods can potentially adapt to new situations by fine-tuning 

models on few examples without having to modify existing rules. FSL has numerous 

potential applications within the biomedical NLP space. For example, FSL techniques 
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can be used to develop personalized medicine models that provide tailored treatment 

recommendations based on individuals’ medical history, genetic information, and limited 

available data for specific conditions. FS-based NLP methods may also be leveraged to 

reduce inequities in the application of artificial intelligence by enabling the optimization of 

models on data from minority groups (e.g. American Indian and Alaskan Native women) 

who are underrepresented in health systems. The problems that FSL methods attempt to 

solve are closely aligned with the practical challenges many medical NLP tasks face. 

While several FSL strategies have been explored for medical texts by distinct research 

communities (e.g., health informatics, computational linguistics), there is currently no 

review that summarizes the current state of the art. Also, no existing article has compiled the 

reported performances of FSL methods on distinct medical NLP data/tasks. We attempt to 

address these gaps in this review. Our specific contributions are highlighted below:

• We present the first comprehensive review of FSL for medical text, comprising 

51 articles.

• We characterize each reviewed article in terms of the type of task (e.g., text 

classification, NER), primary aim(s), dataset(s), evaluation metrics, and other 

relevant aspects to provide a systematic resource for the research community.

• We outline the commonly-used methods and current trends, and present 

suggestions for conducting evaluations.

• We illustrate the current limitations of FSL by benchmarking several prominent 

methods on medical NER tasks.

• We discuss primary challenges, current limitations, essential future research, and 

opportunities for progressing research in this space.

2 Background

2.1 Few-shot Learning in NLP

FSL research progress in NLP has been notably slower compared to other fields such as 

image processing, primarily due to more significant difficulties posed by natural language 

data and the lack of unified benchmarks in few-shot NLP [9]. Unlike images, text-based 

data may contain ambiguities and connotations that make generalization complicated. The 

presence of domain-specific terminologies, expressions, and associations in medical texts 

further exacerbates the difficulties of FSL [10]. As only small numbers of labeled examples 

are available in the training data, a typical FSL approach, including for NLP, is to develop 

innovative mechanisms of incorporating prior knowledge—knowledge that can be provided 

to the learner before training [11].

Using prior knowledge, FSL models can potentially generalize to new tasks effectively, and 

a small number of training instances may be sufficient for fine-tuning them for a given 

task [12]. Wang et al. [12] divide FSL methods into three categories based on how prior 

knowledge is incorporated: (i) data—approaches that attempt to incorporate prior knowledge 

by augmenting the training data; (ii) model—those that incorporate prior knowledge to 

constrain hypothesis space; and (iii) algorithm—those that use prior knowledge to guide 
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how parameters are obtained. The relative effectiveness of these categories for FSL-based 

NLP is not yet conclusively determined, but all these mechanisms are topics of ongoing 

research attention. Recent advances have seen the applications of FSL for parsing text 

[13], machine translation [14], and classification [15, 16], among others. Several application 

domains have also been explored for FSL in NLP, such as legal [17] and biomedical, the 

latter being the focus of this review. Before diving into our review of FSL-based biomedical 

NLP, below we outline, with visual examples, some key developments in FSL, and their 

application in NLP. We encourage the reader read the cited articles for in-depth explanations 

of the methods.

2.2 Few-shot Learning Approaches

2.2.1 Metric Learning—Metric learning is a class of FSL methods that employs 

distance-based metrics (e.g., nearest neighbor) to compute similarity or dissimilarity 

between data points. Given a support set (i.e., set of labelled examples for each of the 

classes, a.k.a. the training set), metric learning methods typically produce weighted nearest 

neighbor classifiers, such as via non-linear transformations in an embedding space. Features 

are extracted from the support set and the query set (i.e., set of samples on which the model 

attempts to generalize, a.k.a. the test set), to compute the distance between the instances in 

the embedding space. This distance function can be any distance metric such as Euclidean 

distance or cosine similarity. The labels of the examples in the support set that are closest to 

the query example based on the metric used are applied to the latter, imitating how humans 

use similar examples or analogies to learn. Figure 1 illustrate the architecture of metric 

learning method.

2.2.2 Matching Networks—Matching networks, another class of FSL methods, attempt 

to use two embedding functions—one for the support set and one for the query set—

to imitate how humans generalize the knowledge learned from examples. The matching 

network architecture uses memory-augmented neural networks [19, 20]) comprising an 

external memory and an attention mechanism for accessing the memory. The framework 

attempts to optimize the two embedding functions from the support set and the query 

set, and attempts to measure how well the trained model can generalize [21, 22]. Figure 

2 illustrates the functionality of matching networks in a simplified manner. A variant of 

matching networks utilizes active learning by adding a sample selection step that augments 

the training data by labeling the most beneficial unlabeled sample to incorporate model-level 

prior knowledge. Matching networks [21] are unique in FSL in that they were the first to 

train and test with K-Shot-N-Way settings, which is a popular way to represent data in FSL, 

where “-shot” applies to the number of examples per category, and the suffix “-way” refers 

to the number of possible categories.

2.2.3 Prototypical Networks—Prototypical networks [2], another class of FSL 

approaches, particularly attempt to address the issue of overfitting due to small training 

samples by generating prototype representations of classes from the training samples, 

similar to how humans summarize knowledge from examples. Prototypical networks are 

based on the concept that there exists an embedding in which several points cluster around 

a single prototype representation for each class. The aim is to learn per-class prototypes 
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based on sample averaging in the feature space. Prediction of unknown data samples can 

be performed by computing distances to the class prototypes (e.g., support set means) and 

choosing the nearest one as the predicted label. Figure 3 illustrates the functionality of a 

prototypical network.

2.2.4 Transfer Learning—Transfer learning is a commonly used approach in FSL that 

incorporates prior knowledge at the data level, as knowledge learned from data in prior tasks 

are transferred to new few-shot tasks [23]. At first, a base network is trained on the base 

dataset and task. Then, it is reused to transfer the learned features to a second target network 

for training or fine-tuning on the target dataset and task. Transfer learning is seen to work 

better when the features are general (i.e., applicable to both the base task and the target task 

[24]). Figure 4 shows how transfer learning works.

2.2.5 Meta-Learning—A more challenging subset of promising FSL approaches 

involves meta-learning (a.k.a., “learning to learn” [25]). It is a branch of metacognition, 

which is concerned with learning about one’s own learning and learning processes [26]. 

In contrast to classical learning frameworks, in the meta-learning framework, a model is 

trained using a set of training tasks, not data, and model performance is evaluated on a 

set of test tasks. Thus, the learner attempts to obtain prior knowledge by incorporating 

generic knowledge across different tasks (i.e., algorithm-level prior knowledge). A small 

number of labeled instances for the target task is then used to fine-tune the model. Figure 

5 illustrates the meta-learning framework using a simple example—an entity recognition 

model is trained on tasks involving news and music data, and is evaluated on a medical task.

3 Methods

3.1 Experimental Design

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis 

(PRISMA) protocol to conduct this review [27]. FSL for NLP is a relatively recent research 

topic, so we concentrated on a short time range for our literature search—January 2016 to 

October 2022. While there have been past research focusing on learning from small numbers 

of examples, in a preliminary search, we did not find any notable article specific to this 

topic before 2018. Consequently, we chose 2016 as the beginning of our date range—a 

two-year window to find any notable article missed during our initial search. We searched 

the following bibliographic databases to identify relevant articles: (1) PubMed/Medline, (2) 

Embase, (3) IEEE Xplore Digital Library, (4) ACL Anthology, and (5) Google Scholar, 

the latter being a meta-search engine, not a database. We included ACL Anthology (the 

primary source for the latest NLP research) and IEEE Xplore, in addition to EMBASE and 

PubMed/Medline, because much of the methodological progress in FSL has been published 

in non-medical journals and conference proceedings. At the time of searching (October 

2022), ACL Anthology hosted over 82,000, and IEEE Xplore hosted over 5.8 million 

articles, although most articles in the latter did not focus on NLP or medicine. Over recent 

years, preprint servers (e.g., arXiv, bioRxiv, and medRxiv) have emerged as major sources 

of the latest information regarding research progress in computer science and NLP. For 

example, description of the widely popular pretrained model RoBERTa is available via arXiv 
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[28]. We used Google Scholar primarily to search these preprint servers or published articles 

from other sources. Note that we also searched the ACM Digital Library1, but discovered no 

additional articles. Hence, we do not report it as a data source for our review.

3.2 Search Strategy

We applied marginally different search strategies depending on the database to account for 

the differences in their contents. We used three types of queries:

1. Queries focusing on the technical field of research (phrases included: 

‘natural language processing’, ‘text mining’, ‘text classification’, ‘named entity 

recognition’, and ‘concept extraction’);

2. Queries focusing on the learning strategy (phrases included: ‘few-shot’, ‘low-

shot’, ‘one-shot’, and ‘zero-shot’); and

3. Queries focusing on the domain of interest (phrases included: ‘medical’, 

‘clinical’, ‘biomedical’, ‘health’, and ‘health-related’).

All articles on PubMed and Embase fall within the broader biomedical domain, so we used 

combinations of the phrases in 1 and 2 above for searching these two databases, leaving 

out the phrases in 3. All articles in the ACL Anthology involve NLP, so we used phrases 

from 2 and 3 for this source. For IEEE Xplore and Google Scholar, the articles can be 

from any domain and on any topic, so we used combinations of all three sets of phrases 

for searching. PubMed, Embase, and IEEE only returned articles that entirely matched the 

queries; ACL Anthology and Google Scholar retrieved larger sets of articles and ranked 

them by relevance. For ACL Anthology, the articles retrieved were reviewed sequentially 

in decreasing order of relevance. For each query combination, we continued reviewing 

candidate articles until we came across at least two pages (about 20 articles) of no relevant 

articles, at which point we decided that no relevant articles would be found on the following 

pages. We used Google Scholar as an auxiliary search engine to identify potentially relevant 

articles indexed in such preprint servers and similar public sources (e.g., Open Review2).

3.3 Study Selection and Exclusion Criteria

All articles shortlisted from initial searches were screened for eligibility by three authors 

(YGe, YGuo, and AS). While it was always possible to identify the technical field/topic 

(NLP or not) from the titles and abstracts, to determine the domain, we had to review full 

articles because some articles included multiple datasets, and only a subset of these datasets 

were from the medical domain. We excluded articles if none of the datasets were related 

to medicine/health, or they did not explicitly focus on NLP in few/low-shot settings, and 

reviewed the remaining articles. Because of the relatively small number of articles that were 

eventually included in the review, we did not attempt to compare inter-reviewer agreements 

regarding article relevance. Instead, the authors discussed each included/excluded article to 

reach consensus.

1https://dl.acm.org/. Last accessed September 9, 2022.
2https://openreview.net/. Last accessed March 9, 2023.
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3.4 Data Abstraction and Synthesis

We abstracted the following details from each article, if available: publication year, data 

source, primary research aim(s), training set size(s), number of entities/classes, entity type 

for training, entity type for evaluation/testing, primary method(s), and evaluation metric. 

For articles including data from multiple sources, we only abstracted those related to 

health/medicine. In terms of primary aim(s), some articles reported multiple objectives, and 

we abstracted all the NLP-oriented ones (e.g., text classification, concept extraction). For 

training set sizes, we abstracted information about the number of instances used for training 

and, if applicable, how larger datasets were reconstructed to create few-shot samples. 

We also extracted the number of labels for each study/task; for NER/concept extraction 

methods, we identified the number of entities/concepts, and for classification, we identified 

the type of classification (multi-label or multi-class) along with the number of classes. We 

also noted the training domain(s) and test/evaluation domain(s) for each few-shot method, 

when applicable. Abstracting the primary approach(es) and evaluation methodology was 

more challenging due to the complexities of some of the model implementations, and we 

reviewed and summarized the descriptions provided in each article, including the strategies 

and performances reported for evaluations.

4. Results

4.1 Data Collection Results

Fifty-one articles met our inclusion criteria. Initial searches retrieved 1241 articles from 

PubMed, Embase, IEEE Xplore, and ACL Anthology, and an additional 459 from Google 

Scholar. Figure 6 presents the screening procedures and numbers at each stage. After initial 

filtering, we reviewed 70 full-text articles for eligibility, excluding 19 from the final review. 

The first included article was from 2018, and most articles (43/51; 84%) were from 2020 to 

2022, although only articles published prior to October 31 were included for 2022.

4.2 Study Characteristics

Table 1 summarizes some fundamental characteristics of each article (authors, year of 

publication, data source, research aims, training set sizes, number of entities/classes, and 

training and evaluation domains). In terms of training data sizes, 14/51 (27%) articles 

included zero-shot scenarios (i.e., prediction without any supervision) into their research 

scope, including two on zero-shot learning only. 1-shot, 5-shot, and 10-shot were the most 

common ‘shot’ settings, representing 17/51 (33%) of the reviewed articles. 9/51 (18%) 

reviewed articles used samples of larger datasets for training, often specified in percentages 

(e.g., 25%, 50%). 6/51 (12%) articles did not explicitly specify shot values. Two articles 

did not perform experiments in accordance with traditional few-shot scenarios, and divided 

all labels into three categories according to the frequency of occurrences (frequent group 

contained all labels occurring more than 5 times; few-shot group contained labels occurring 

1–5 times; zero-shot group included labels that never occurred in the training data), causing 

some labels to have large numbers of annotated samples. 10/51 (20%) articles involved 

cross-domain transfer, with different domains of training and test/evaluation data.

Ge et al. Page 8

J Biomed Inform. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Table 2 summarizes the proposed methods and their evaluations. Variants of neural network-

based (deep learning) algorithms, such as Siamese Convolutional Neural Networks) [42], 

were the most common. Only 4/51 (8%) articles proposed new datasets, and 3/51 (6%) 

presented benchmarks for comparing multiple few-shot methods. Evaluation strategies had 

considerably less diversity. Almost all evaluation methodologies for classification and NER 

tasks involved standard metrics such as accuracy, precision, recall, and F1-scores.

4.3 Data Characteristics

We grouped the datasets described into three categories: (i) publicly downloadable data; (ii) 

datasets from shared tasks; and (iii) new datasets specifically created for the target tasks. 

We found that datasets belonging to (ii) and (iii) were often difficult to obtain—shared task 

data unavailable after their completion, and specialized datasets often not made public (e.g., 
if they contained protected health information). Articles involving datasets from category 

(i) often reported performances on multiple datasets, consequently making the evaluations 

more comparable. However, overall, the overlap of datasets among distinct articles was 

relatively low, making comparative analyses difficult. The MIMIC-III (Medical Information 

Mart for Intensive Care) dataset [30] was the most frequently used across articles (10/51; 

20%), particularly for few-shot classification and NER tasks. This was likely due to the 

public availability of the dataset and the presence of many labels in it (7000) [31]. Six 

articles used datasets from shared tasks, of which 4 were from BioNLP [54, 62], one from 

the Social Media Mining for Health Applications (SMM4H) [48], and one from the Medical 

Document Anonymization (MEDDOCAN) shared task [52]. Only 4 articles created new 

datasets, reflecting the paucity of corpora built to support FSL for medical NLP.

4.3.1 Reconstruction of Datasets—32/51 (63%) reviewed articles reconstructed 

existing datasets for conducting experiments in fewshot settings (i.e., subsets of labeled 

instances were extracted from larger datasets). For multi-label text classification tasks, 

especially when the number of labels is large, and for few-shot NER tasks, reconstructing 

datasets can be complex. A popular way to represent data in FSL is K-Shot-N-Way, 

which means that each of N classes or entities contains K labeled samples. For multi-label 

classification tasks, each instance may have more than one label, often making it difficult to 

ensure that the reconstructed datasets included only K labeled samples for each class. The 

same challenge exists for NERt tasks as each text segment may have overlapping entities. 

12/51 (24%) articles did not construct special datasets to represent few-shot settings. 16% 

(8/51) used existing datasets with high class imbalances, and the few-shot algorithms were 

focused on sparsely-occurring labels.

The differing training data sizes across articles demonstrate that there are currently no 

unified standards for FSL datasets. However, for articles published between late 2021 to 

2022, we found that 80% (16/20) made explicit the specific number of shots, or used 

zero-shot instead of using the term ”few-shot” vaguely. This shift possibly demonstrates that 

the topic of FSL is gradually becoming standardized within the broader biomedical domain.
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4.4 Summary of Methodologies and Applications

Text classification and NER/concept extraction were the most common FSL applications 

(37/51 articles; 73%), only 14 (27%) focused exclusively on other tasks such as 

summarization or machine translation. Incorporating prior knowledge being a hallmark of 

FSL, we found that the reviewed articles employed a wide variety of strategies. Biomedical 

resources such as SNOMED-CT, Med-Mentions, EHRs, and UMLS were reported to 

be used to incorporate domain knowledge [47, 91]. 39/51 (77%) articles attempted to 

incorporate data-level prior knowledge to augment the small datasets available for training. 

19 of these chose to augment the training data with other available annotated datasets; or 

through transfer learning, aggregating and adjusting input-output pairs from larger datasets. 

For example, due to the scarcity of samples, Manousogiannis et al. [47] attempted to 

incorporate prior or domain knowledge into their approach by adding concept codes from 

MEDDRA (Medical Dictionary for Regulatory Activities). Five articles used pre-trained 

models learned from other tasks and then refined parameters on the given training data, and 

6 articles learned a meta-learner as optimizer or refined meta-learned parameters (algorithm-
level prior knowledge). Some articles incorporated prior knowledge from more than one 

source to increase within-domain generalizability.

4.4.1 Few-shot Text Classification—16/51 articles (31%) focused on few-shot 

classification; 56% (9/16) specified the approximate number of classes and half involved 

multi-label classification. Multi-label classification is a popular task because the associated 

datasets generally contain some very low-frequency classes. 11/16 (70%) articles 

incorporated data level prior knowledge. 11/16 (70%) classification articles proposed deep 

learning algorithms, and 5/16 (30%) were inspired by label-wise attention mechanisms. 3/16 

(20%) combined few-shot tasks with graphs, such as similarity or co-occurrence graphs, or 

hierarchical structures that encode relationships between labels for knowledge aggregation. 

While convolutional neural networks have been popular for FSL, transformer-based models 

such as BERT [117] and RoBERTa [28] rarely appeared in these articles. Only one article 

[66] mentioned applying BERT to generate instance embeddings and then passing top-level 

output representations into a label-wise attention mechanism.

4.4.2 Few-shot NER or Concept Extraction—14 reviewed articles were described 

as NER; 7 as concept extraction. Generally, articles that described themselves as concept 

extraction applied distinct methodologies compared to each other and involved task-specific 

configurations based on the characteristics of the data and extraction objectives. Five articles 

incorporated data level, two incorporated model level, and two incorporated algorithm level 

prior knowledge. 50% (7/14) of the articles described as NER employed transfer learning, 

with training and testing data from different domains. Articles commonly used the BIO 

(beginning, inside, outside) or IO tagging schemes. Two articles investigated both BIO and 

IO tagging schemes, concluding that systems trained using IO schemes outperform those 

trained using BIO schemes. Articles reported that the O (outside) tag was often ill-defined, 

as specific entities (e.g., time entities such as ‘today’, ‘tomorrow’) would be tagged as O if 

they were not the primary focus of the dataset, while the same entities would be tagged as B 

or I for other datasets. Five articles used BIO schemes, while one considered only the entity 

names without any tagging schemes. The NLP/machine learning strategies employed varied 
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substantially and included, for example, the application of fusion layers for combining 

features [87], biological semantic and positional features [91], prototypical representations 

and nearest neighbor classifiers [78], transition scorers for modeling transition probabilities 

between abstract labels [55, 73, 78], self-supervised methods [68, 73, 90], noise networks 

for auxiliary training [61, 90], and LSTM cells for encoding multiple entity type sequences 

[61].

4.4.3 Overview of Other Methods—7/51 (14%) articles applied meta-learning 

strategies, and 20/51 (39%) articles demonstrated the advantages of attention mechanisms 

in few-shot scenarios, such as handling the difficulty of recognizing multiple unseen 

labels. Among the latter, 5/20 used self-attention-related methods, and 4/20 used label-wise 

attention mechanisms. 11/51 (22%) articles reproduced prototypical networks or added 

enhancements to them. Only 1 article used matching networks, and 2 articles included them 

as baselines. Since its proposal by Liu et al. [118] in 2021, prompting has gained popularity 

in the field of few-shot learning. Among the 20 articles we reviewed from the second half 

of 2021 to the present, 4 articles proposed prompt-based learning methods with promising 

results. Based on the trends we observed from our review, it is likely that such methods will 

receive increasing attention in the near future.

4.5 Performance Metrics

14/51 (27%) articles used accuracy, and the reported values on medical datasets or 

datasets that included medical texts varied between 67.4% and 96%. Two-thirds (10/14) 

reported accuracies higher than 70%. For the 29/51 (57%) articles that reported F1-score, 

performance variations were even larger—from 31.8% to 95.7% (median: 68.6%). We 

were unable to determine in most cases if the performance differences were due to 

the effectiveness of the FSL methods, or if the dataset characteristics were primarily 

responsible.

For the vast majority of articles, reported performances on medical datasets were relatively 

low compared to nonmedical datasets. For articles that reported good performances, we 

investigated their methods as described and found that, in most cases, they did not mention 

how many training examples they used or had large (e.g., in the hundreds) training sizes. 

While these approaches may still be considered few-shot learning, comparing these reported 

performances with those obtained in truly low-shot settings (e.g., 5-shot) does not constitute 

a fair comparison. We also observed that some articles reporting high F1-scores included 

datasets from different domains and only reported aggregated performances rather than 

dataset-specific ones. In the next section, we present head-to-head comparisons of several 

FSL systems on the same datasets as part of the Discussion.

5 Discussion

5.1 Summary of Findings

In this review, we systematically compared 51 articles focusing on FSL for biomedical 

NLP. Similar to its progress in the general domain, FSL research in the medical domain 

has primarily been in computer vision [12]. Over two-thirds of the articles included in 
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our review were published in the 24 months preceding the review, which demonstrates the 

rapidly growing interest on the topic. Despite the relatively small number of articles that 

met our inclusion criteria, several observations were fairly consistent across articles: (i) 

under the same experimental parameters, the performances reported on medical data were 

worse than those reported on data from other domains [42, 73, 78]; (ii) incorporating prior 

knowledge via transfer learning or using specialized training datasets typically produced 

better results; and (iii) systems generally reported better performances on datasets with 

formal texts compared to those with noisy texts (e.g., from social media) [55, 68, 78].

Using just the information in the publications, we found it difficult to perform head-to-

head comparisons of the proposed methods due to the use of distinct or non-standardized 

evaluation strategies, training/test data, and experimental settings. For example, Chalkidis et 

al. [66] used 50 or fewer instances in their few-shot setting, while Rios and Kavuluru [16] 

used 5 or fewer, making it impossible to perform meaningful comparisons of their proposed 

methods. In the absence of specialized datasets for FSL, K-Shot-N-Way settings were 

commonly reported for simulating few-shot scenarios. In such synthetically created datasets, 

the number of instances for training is predetermined. Such consistency in characteristics 

is seldom the case with real-world text-based medical data. Though this design attempts 

to make a direct comparison between different methods or tasks easier, only speculative 

estimates can be made about how the proposed methods may perform if deployed in 

real-world settings. It was also typically impossible to compare the performances of FSL 

methods with the state-of-the-art systems reported in prior literature, as FSL methods were 

expected to underperform compared to methods trained using larger training sets.

Due to the absence of standardized datasets that enable head-to-head comparisons of all 

systems, we benchmarked several FSL methods with publicly available implementations on 

multiple datasets. We focused on the task of NER for this since that was the most commonly 

addressed task in our review. Figure 7 presents the performance comparisons between 4 

FSL NER models on 5 datasets. The results of 3 of the models (StructShot, NNShot and 

Few-shot Tagging) come from our previous article [119], while the Entity-Oriented LM 

[120] is a new prompt-based few-shot learning method and comes from our recent ongoing 

experiments. The benchmarking results demonstrated that all models achieve significantly 

lower performances compared to the state-of-the-art. More research is clearly required to 

develop FSL methods that are applicable in practical settings. The results also show how 

these models underperform for medical texts and specifically for noisy medical texts such as 

those from social media.

Few articles reported the creation of new datasets specialized for FSL or provided 

benchmarks that future research could use for comparison. The paucity of standardized 

datasets and the consequent need to reconstruct datasets for simulating few-shot scenarios 

is a notable obstacle to progress. Since FSL for biomedical NLP is an under-explored field, 

such datasets and benchmarks are essential for promoting future development. Goodwin 

et al. [77] echo this need for FSL datasets to advance biomedical NLP. FSL datasets 

specialized for biomedical NLP need to contain entities/classes that are naturally sparsely 

occurring, and the distribution of classes/entities need to reflect real-life data. These 

conditions are necessary for ensuring that developed systems can be compared directly, and 
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that the system performances reflect what is expected in practical settings. Reconstructed 

datasets often use randomly sampled subsets for evaluation, making direct comparisons 

between systems difficult (since the specific training and test instances may not be known), 

and increasing the potential for biased performance estimates.

5.2 Recommendations and Best Practices for Evaluation

In light of the weaknesses and inconsistencies in FSL system evaluations discussed in the 

review, below we provide three key recommendations.

1. When reconstructing existing datasets to simulate few-shot settings, the specific 

training and testing instances used should be made explicit. Ideally, the average 

and standard deviation over multiple runs should be reported along with the 

instances involved in each run.

2. Whenever possible, the natural distribution of the data should be used in the 

experiments. This means that if the proportion of the positive classes/entities 

is extremely low compared to the negative classes, the experimental setting 

must incorporate that difficulty. Performances reported over artificially balanced 

datasets, particularly in few-shot settings, are not achievable in real-life settings.

3. Learning curves of performances should be presented, particularly when 

simulating few-shot settings. This means that performances (using standard 

metrics such as F1-score and accuracy) should be reported for 1-shot, 5-shot, 

10-shot, … , 10%, 20%, … 100% of the training data. It is expected that 

FSL systems will perform better in low-shot settings while traditional machine 

learning systems will outperform them when large training datasets are available. 

Knowledge of the data size at which traditional systems overtake FSL systems is 

crucial for potential future users of the system.

5.3 Future Directions

Our review showed that FSL for biomedical NLP is still very much in its infancy, and 

reported performances are typically low with high variance. Importantly, the review enabled 

us to identify future research activities that will be most impactful in moving this sub-field 

of research forward. We outline these in the following subsections.

5.3.1 Specialized Datasets for Few-shot Learning—To improve the state of the 

art in FSL for medical text, the most crucial activity currently is perhaps the creation of 

specialized, standardized, publicly available datasets. Ideally, such datasets should replicate 

real-world scenarios and pose practical challenges for FSL. The creation of such datasets 

will enable the direct comparison of distinct FSL strategies, and of FSL methods with 

traditional methods (e.g., deep neural networks). Public datasets have helped progress NLP 

and machine learning research over the years, such as through shared tasks [48]. Our 

review, however, did not find any current shared task that provides specialized datasets for 

FSL-based biomedical NLP.

5.3.2 System Comparisons and Benchmarking—FSL methods for NLP comprise 

a wide variety of approaches [12]. Facilitated by standardized datasets, articles need to focus 
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on comparing distinct categories of FSL for biomedical NLP tasks and identify promising 

methods that need exploration. Benchmarking articles can customize existing datasets and 

compare distinct FSL methods on identical evaluation sets, similar to the experiments 

reported in this paper. Researchers proposing new FSL methods for biomedical NLP should 

also take the steps necessary to enable head-to-head comparisons and reproducible research, 

following the guidelines presented in the earlier subsection.

5.3.3 Opportunities—The paucity of research in this space means there are many 

potential opportunities. Domain-independent FSL methods have benefited by incorporating 

prior knowledge to compensate for the low numbers of training instances [12]. FSL methods 

for biomedical NLP can follow the same path. Over the years, medical NLP researchers have 

created many resources to support NLP methods, such as the Unified Medical Language 

System (UMLS) [121, 122]. However, limited efforts have been made to innovatively 

incorporate such knowledge in FSL methods. Effectively incorporating prior knowledge 

by utilizing such domain-specific knowledge sources is a particularly attractive opportunity.

In the recent review by Wang et al. (2020) [12], the authors specified multi-modal data 

augmentation as a potential opportunity for improving the state-of-the-art in FSL. The 

same opportunity also exists in the medical domain. To enable FSL systems to achieve 

performance levels suitable for deployment, future research may focus on augmenting 

information derived from medical texts with other information, such as images and 

ontologies. Existing FSL techniques for medical free-text data usually incorporate prior 

knowledge from one single modality (text), and it is generally not possible to incorporate 

information from other types of data, such as images. Multi-modal strategies that combine 

knowledge from several sources (e.g., texts, images, knowledge bases, ontologies) may 

enable FSL methods to achieve the performance levels needed to be applicable in real-world 

medical settings. Intuitively, multi-modal learning models are more akin to human learning. 

Unsurprisingly data augmentation methods in NLP have recently seen growing interest 

[123]. Notwithstanding this recent rise, this space is still comparatively under-explored, 

possibly due to the difficulties in augmentation of natural language data in general, and 

medical free text in particular.

The widespread popularity and usage of large language models (LLMs) such as GPT and 

biomedical domain-specific BERT models presents the unique opportunity to evaluate the 

capability of LLMs in few-shot settings. Nori et al [124] take a step in this direction and find 

that GPT-4 outperforms GPT-3.5 for biomedical NLP tasks. Most LLM-based approaches, 

however, fall outside the inclusion timeframe of this review, and future reviews should 

investigate this emerging space.

5.4 Responsible AI, Ethics, and Privacy in the Context of FSL

We end this review by providing a brief discussion of how the concepts of responsible 

AI, ethics, and privacy apply to the emerging field of FSL. Responsible AI calls for 

the development of AI systems that promote common good, and take great care to 

identify and evaluate any potential harms [125, 126]. Specifically within the field of 

medicine, responsible AI demands, among other things, that machine learning models 

Ge et al. Page 14

J Biomed Inform. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are not biased against any subpopulation even if data for such populations are limited. 

Minority subpopulations (e.g., racial/ethnic minorities) are often underrepresented in clinical 

data, leading to the development of systems that are biased and/or suboptimal for these 

subpopulations. FSL methods have the potential of alleviating these problems by being 

able to effectively learn from small samples. Recent years have seen the growing usage 

of pretrained models, including LLMs, which add another layer of complexity from the 

perspective of bias and equity. The underlying data used to train such pretrained models are 

primarily from the majority population, and minority populations are underrepresented. FSL 

systems relying on such pretrained models are likely to be impacted by the biases encoded 

in such models. Ideally, as FSL research matures, such methods will produce performances 

comparable to state-of-the-art machine learning approaches that learn from big data (e.g., 
deep neural networks), without suffering from the problems of bias. Our review and 

benchmarking experiments, however, demonstrate that substantial research advances are 

required in order to move the state of the art in FSL to that level.

FSL approaches also present risks and opportunities from the perspective of privacy and 

security. On one hand, due to small data sizes, FSL models may be relatively more 

vulnerable to inference attacks, leaking personal information in training data and harming 

user privacy [126]. On the other hand, with the promised flexibility of FSL, it is possible 

to build light-weight FSL systems that only require the user’s data to train and can 

operate locally on the user’s device accurately [127, 128]. Such personalized deployment 

alleviates the issue of user information leakage because the data and model would never 

need to leave the devices. The principles of responsible AI apply across the spectrum of 

machine learning research, and the specific considerations are unique to the research being 

conducted. Consequently, as FSL research in this space evolves, researchers must ensure that 

ethical implications are carefully considered—particularly from the perspective of privacy, 

security and equity.

6 Conclusion

FSL approaches have substantial promise for NLP in the medical domain, as many medical 

datasets naturally have low numbers of annotated instances. Some promising approaches 

have been proposed in the recent past, most of which focused on classification or NER. 

Meta-learning and transfer learning were commonly used strategies, and a number of articles 

reported on the benefits of incorporating attention mechanisms. Typical performances of 

FSL-based medical NLP systems are not yet good enough to be suitable for real-world 

application, and further research on improving performance is required. The lack of public 

datasets specialized for FSL, and the absence of standard evaluation frameworks present 

obstacles to progressing research on the topic, and future research should consider creating 

such datasets and benchmarks for comparative analyses.
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Highlights

• Comprehensive review of few-shot learning for medical text, comprising 51 

artcles

• Systematc resource of research aims, datasets, evaluaton metrics, and 

methodology

• Best practce recommendatons for evaluaton of few-shot methods for medical 

text

• Benchmarking of medical named entty recogniton using several few-shot 

methods

• Current state of the feld, open research opportunites, and challenges 

associated
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Figure 1: 
Architecture for metric learning: the support set is used to generate embeddings using 

the embedding function f1. The embeddings of the query set, also generated using f1, are 

compared with the support set embeddings using a suitable distance function f2. Depending 

upon the task, the label of the most similar (or dissimilar) support set samples is assigned to 

the query set samples.
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Figure 2: 
Architecture for matching networks: a small support set contains some instances with their 

labels (one instance per label in the figure). Given a query, the goal is to calculate a value 

that indicates if the instance is an example of a given class. For a similarity metric, two 

embedding functions, f() and g(), need to take similarity based on the feature space. The 

function f(), which is a neural network, is applied first, and then the embedding function g() 

is applied to each instance to process the kernel for each support set. (Note: example uses 

the DASH 2020 Drug Data [18]).
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Figure 3: 
Architecture for prototypical networks: a class’s prototype is the mean of its support set in 

the embedding space. Given a query, its distance to each class’s prototype is computed to 

decide its label. (Note: example uses the DASH 2020 Drug Data [18]).
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Figure 4: 
Architecture for transfer learning: in the context of few-shot learning, transfer learning 

involves using a base task to train the base classifier (f()). In this example, the base 

classifier is trained on the task of addiction/recovery detection (text classification). The 

learned embeddings from the base classifier are used to produce embeddings with data-level 
prior knowledge. The embeddings are used to train the target classifier (g()) on a different, 

but related text classification task: illicit drug detection.
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Figure 5: 
Architecture for meta-learning: each task mimics the few-shot scenario and can be 

completely non-overlapping. Support sets are used to train; query sets are used to evaluate 

the model. In this example, several text classification tasks on different datasets (and label 

sets) are used to train the meta-learner. Finally, the test task (medical domain) is used for 

generalizing the meta-learner to the test task.
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Figure 6: 
PRISMA flow diagram depicting the number of articles at each stage of collection and the 

filtering process.
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Figure 7: 
F1-scores for four FSL NER models on five different medical texts datasets. Further details 

are reported in a recent publication [119].
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Table 2:

A summary table showing primary few-shot approaches and evaluation methodologies.

Study Task Primary approach(es) Evaluation metric(s)

Rios et al. [16] Multi-label Text 
Classification

Neural architecture suitable for handling few- and zero-shot 
labels in the multi-label setting where the output label space 
satisfies two constraints: (1) the labels are connected forming a 
DAG; (2) each label has a brief natural language descriptor.

R@k (Recall@k), P@k 
(Precision@k), Macro-F1 

scores

Rios et al. [31] Multi-label Text 
Classification

Semi-parametric neural matching network for diagnosis/
procedure code prediction from EMR narratives.

Precision, Recall, F1-
scores, AUC (PR), AUC 
(ROC), P@k, R@k

Hofer et al. [10] NER

Five improvements on NER tasks when only 10 annotated 
examples are available: 1. Layer-wise initialization with 
pre-trained weights (single pre-training); 2. Hyperparameter 
tuning; Combining pre-training data; Custom word embeddings; 
Optimizing out-of-vocabulary (OOV) words.

F1-score

Pham et al. [39] Neural Machine 
Translation (NMT)

A generic approach to address the challenge of rare word 
translation in NMT by using external phrase-based models to 
annotate the training data as experts. A pointer network is used to 
control the model-expert interaction. The trained model is able to 
copy the annotations into the output consistently.

BLEU score, 
SUGGESTION 
(SUG), SUGGESTION 
ACCURACY (SAC)

Yan et al. [42] Text Classification

Short text classification framework based on Siamese CNNs 
and few-shot learning, to learn the discriminative text encoding 
for helping classifiers distinguish obscure or informal sentences. 
The different sentence structures and different descriptions of a 
topic are learned by few-shot learning strategy to improve the 
classifier’s generalization.

Accuracy

Manousogiannis et 
al. [47] Concept Extraction

A simple few-shot learning approach, based on pre-trained 
word embeddings and data from the UMLS, combined with the 
provided training data.

Relaxed and strict 
Precision/Recall/F1-scores

Gao et al. [49] Relation 
Classification

Propose FewRel 2.0, a new task containing two real-world issues 
that FewRel ignores: few-shot domain adaptation, and few-shot 
none-of-the-above detection.

Accuracy

Lara-Clares et al. 
[51] NER

Hybrid Bi-LSTM and CNN model to recognize multi-word 
entities. Learns high level features from datasets using a few-shot 
learning model. Wikipedia2vec is used for automatic extraction 
and classification of keywords.

F1-score

Ferré et al. [53] Entity 
Normalization

A new neural approach (C-Norm) which synergistically 
combines standard and weak supervision, ontological knowledge 
integration and distributional semantics.

The offcial evaluation tool 
of the BB-norm task: a 
similarity score and a strict 
exact match score.

Hou et al. [55] Slot Tagging 
(NER)

Introduction of a collapsed dependency transfer mechanism into 
CRF to transfer abstract label dependency patterns in the form 
of transition scores. The emission score of CRF is computed as 
the word similarity with respect to each label representation. A 
Label-enhanced Task-Adaptive Projection Network (L-TapNet) 
based on TapNet is used to compute the similarity by leveraging 
label name semantics in representing labels.

F1-score

Sharaf et al. [57] Neural Machine 
Translation (NMT)

Framing the adaptation of NMT systems as a meta-learning 
problem. The model can learn to adapt to new unseen domains 
based on simulated offline meta-training domain adaptation tasks.

BLEU, SacreBLEU (to 
measure case-sensitive de-
tokenized BLEU)

Lu et al. [59] Multi-label Text 
Classification

A simple multi-graph aggregation model that fuses knowledge 
from multiple label graphs encoding different semantic label 
relationships to incorporate aggregated knowledge in multi-
label zero/few-shot document classification. Three kinds of 
semantic information are used: pre-trained word embeddings; 
label description; pre-defined label relations.

Recall@K, nDCG@K

Jia et al. [61] NER

Creation of distinct feature distributions for each entity type 
across domains, which improves transfer learning power, as 
compared to representation networks that do not explicitly 
differentiate between entity types.

F1-score
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Study Task Primary approach(es) Evaluation metric(s)

Chalkidis et al. [66] Multi-label Text 
Classification

Hierarchical methods based on Probabilistic Label Trees (PLTs); 
Combines BERT with LWAN; Use of structural information 
from thelabel hierarchy in LWAN. Leverages label hierarchy to 
improve few and zero-shot learning.

R-Precision@K (a top-K 
version of R-Precision 
of each document), 
nDCG@K

Lwowski et al. [68] Text Classification

A self-supervised learning algorithm to monitor COVID-19 
Twitter using an autoencoder to learn the latent representations. 
Knowledge transfer to COVID-19 infection classifier by fine-
tuning the Multi-Layer Perceptron (MLP) using fewshot learning.

Accuracy, Precision, 
Recall, F1-score

Hou et al. [9]

Dialogue Language 
Understanding 
with two sub-tasks: 
Intent Detection 
(classification) and 
Slot Tagging 
(sequence labeling)

A novel few-shot learning benchmark for NLP (FewJoint). 
Introduces few-shot joint dialogue language understanding, 
which additionally covers the problems of structure prediction 
and multi-task reliance.

Intent Accuracy, Slot F1-
score, Sentence Accuracy

Chen et al. [70] Natural Language 
Generation (NLG)

The design of the model architecture is based on two aspects: 
content selection from input data and language modeling to 
compose coherent sentences, which can be acquired from prior 
knowledge.

BLEU-4, ROUGE-4 (F-
measure)

Vaci et al. [72] Concept Extraction

Used a combination of methods to extract salient information 
from electronic health records. First, clinical experts define the 
information of interest and subsequently build the training and 
testing corpora for statistical models. Second, built and finetuned 
the statistical models using active learning procedures.

Precision, Recall, F1-score

Huang et al. [73] NER

The first systematic study for few-shot NER. Three distinctive 
schemes (and their combinations) are investigated: (1) meta-
learning to construct entity prototypes; (2) supervised pre-
training to obtain generic entity representations; (3) self-
supervised training to utilize unlabeled in-domain data.

F1-score

Chen et al. [74] Classification

A classification and diagnosis method for Alzheimer’s patients 
based on multi-modal feature fusion and small sample learning. 
The compressed interactive network is then used to explicitly 
fuse the extracted features at the vector level. Finally, the KNN 
attention pooling layer and the convolutional network are used to 
construct a small sample learning network to classify the patient 
diagnosis data.

Accuracy, F1-score

Yin et al. [75]
Sequence Tagging 
(Event trigger 
identification)

Combination of a prototypical network and a relation network 
module to model the task of biomedical event trigger 
identification. In addition, to make full use of the external 
knowledge base to learn the complex biological context, a self-
attention mechanism is introduced.

F1-score

Goodwin et al. [77] Abstractive 
Summarization

Highly-abstractive multi-document summarization conditioned 
on user-defined query using BART, T5, and PEGASUS.

ROUGE-1, ROUGE-2, 
ROUGE-L F1-scores, 
BLEU-4, Repetition Rate

Yang et al. [78] NER
Uses an NER model trained under supervision on source domain 
for feature extraction. Structured decoding is used with nearest 
neighbor learning instead of expensive CRF training.

F1-score

Hartmann et al. [82] Concept Extraction

A universal approach to multilingual negation scope resolution: 
zero-shot cross-lingual transfer for negation scope resolution 
in clinical text. Exploits data from disparate sources by data 
concatenation, or in an MTL setup.

Percentage of correct 
spans (PCS), F1-score over 
scope tokens

Fivez et al. [86] Name 
Normalization

Propose truly robust representations, which capture more 
domain-specific semantics while remaining universally 
applicable across different biomedical corpora and domains. 
Use conceptual grounding constraints which more effectively 
align encoded names to pretrained embeddings of their concept 
identifiers.

For synonym retrieval: 
Mean average precision 
(mAP) over all synonyms. 
For concept mapping: 
Accuracy (Acc) and Mean 
reciprocal rank (MRR) of 
the highest ranked correct 
synonym.

Lu et al. [87] Rumor Detection1
A few-shot learning-based multi-modality fusion model named 
for COVID-19 rumor detection. Includes text embedding 
modules with pre-trained BERT model, a feature extraction 
module with multilayer Bi-GRUs, and a multi-modality feature 

Accuracy
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fusion module with a fusion layer. Uses a metalearning based 
few-shot learning paradigm.

Ma et al. [89] Drug-response 
Predictions

Applied the few-shot learning paradigm to three context-transfer 
challenges: transfer of a predictive model learned in one tissue 
type to the distinct contexts of other tissues; transfer of a 
predictive model learned in tumor cell lines to patient-derived 
tumor cell (PDTC) cultures in vitro; transfer of a predictive 
model learned in tumor cell lines to the context of patient-derived 
tumor xenografts (PDXs) in mice in vivo.

Accuracy, Pearson’s 
correlation, AUC

Kormilitzin et al. [90] NER

Self-supervised training of deep neural network language model 
using the cloze-style approach. Synthetic training data with 
noisy labels is created using weak supervision. All constituent 
components are combined into an active learning approach.

Accuracy, Precision, 
Recall, F1-score

Guo et al. [91] Extract Entity 
Relations

A Siamese graph neural network (BioGraphSAGE) with 
structured databases as domain knowledge to extract biological 
entity relations from literature.

Precision (P-value), Recall 
(R-value), F1-score

Lee et al. [92]
Fact-Checking 
(Text 
Classification)

Propose evidence-conditioned perplexity, a novel way of 
leveraging the perplexity score from LMs for the few-shot fact-
checking task.

Accuracy, Macro-F1-score

Fivez et al. [96] Name 
Normalization

A scalable few-shot learning approach for robust biomedical 
name representations. Training a simple encoder architecture in 
a few-shot setting using small subsamples of general higher-level 
concepts which span a large range of fine-grained concepts.

Spearman’s rank 
correlation coefficient

Xiao et al. [97] Relation 
Classification

Adaptive prototypical networks with label words and joint 
representation learning based on metric learning for FSRC, which 
performs classification by calculating the distances in the learned 
metric space.

Accuracy

Ziletti et al. [98] Medical Coding 
(classification)

Combines traditional BERT-based classification with task-aware 
representation of sentences, a zero/few-shot learning approach 
that leverages label semantics.

Accuracy

Ye et al. [99] Cross-task 
Generalization

Present CROSSFIT, a few-shot learning challenge to acquire, 
evaluate and analyze cross-task generalization in a realistic 
setting. Additionally, introduce the NLP Few-shot Gym, a 
repository of 160 few-shot NLP tasks gathered from open-access 
resources.

Average Relative Gain 
(ARG)

Aly et al. [100]
NER and 
classification 
(NERC)

Present the first approach for zero-shot NERC by using 
transformers with cross-attention to leverage naturally occurring 
entity type descriptions. The negative class is modeled by: 
(1) description-based encoding, and (2) independent (direct) 
encoding (3) class-aware encoding.

F1-score

Wright et al. [101]

Exaggeration 

Detection1 
(Information 
Extraction)

Propose multi-task Pattern Exploiting Training (MT-PET) to 
leverage knowledge from auxiliary cloze-style QA tasks for few-
shot learning. Present a set of labeled press release/abstract pairs 
from existing expert-annotated studies on exaggeration in the 
press releases of scientific papers suitable for benchmarking the 
performance of machine learning models.

Precision, Recall, F1-score

Lee et al. [102] NER

Present a simple demonstration-based learning method for 
NER, which lets the input be prefaced by task demonstrations 
for in-context learning, and perform a systematic study on 
demonstration strategy regarding what to include, how to select 
the examples, and what templates to use.

F1-score

Wang et al. [103] Classification
Propose a prompt-based learning approach, which treats 
the assertion classification task as a masked language auto-
completion problem.

Comprehensiveness, 
Sufficiency (for measuring 
to what extent the 
model adheres to human 
rationales.)

Yan et al. [104] NER

Proposes a text mining pipeline for enabling the FAIR 
neuroimaging study. In order to avoid fragmented information, 
the Brain Informatics provenance model is redesigned based on 
NIDM (Neuroimaging Data Model) and FAIR facets.

Precision, Recall, F1-score

Lin et al. [105] Information 
Extraction

Proposes a literature mining-based approach for research 
sharing-oriented neuroimaging provenance construction. A joint 

Precision, Recall, F1-score
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extraction model based on deep adversarial learning, called AT-
NeuroEAE, is proposed to realize the event extraction in a few-
shot learning scenario.

Riveland et al. [106] Classfication

Present neural models of one of humans’ most astonishing 
cognitive feats: the ability to interpret linguistic instructions 
in order to perform novel tasks with just a few practice 
trials. Models are trained on a set of commonly studied 
psychophysical tasks, and receive linguistic instructions 
embedded by transformer architectures pretrained on natural 
language processing.

Accuracy

Navarro et al. [107]
Abstractive 

summarization2

Fine-tuned several state-of-the-art (SOTA) models in a newly 
created medical dialogue dataset of 143 snippets, based on 
27 general practice conversations paired with their respective 
summaries.

ROUGE scores

Das et al. [108] NER

Present CONTAINER, a novel contrastive learning technique that 
optimizes the intertoken distribution distance for Few-Shot NER. 
Instead of optimizing class-specific attributes, CONTAINER 
optimizes a generalized objective of differentiating between 
token categories based on their Gaussian-distributed embeddings.

F1-score

Ma et al. [109] NER

Leveraging the semantic information in the names of the labels as 
a way of giving the model additional signal and enriched priors. 
Propose a neural architecture consisting of two BERT encoders, 
one for document encoding and another for label encoding.

F1-score

Parmar et al. [110]
Multi-Task 

Learning2

Explores the impact of instructional prompts for biomedical 
MTL. Introduce BoX, a collection of 32 instruction tasks for 
Biomedical NLP across various categories. Propose a unified 
model (In-BoXBART) using this meta-dataset, that can jointly 
learn all BoX tasks without any task-specific modules.

ROUGE-L, F1-score

Boulanger et al. 
[111] NER

Use the generative capacity of LLMs to create unlabelled 
synthetic data. Semi-supervised learning is used for NER in a 
low resource setup.

F1-score

Yeh et al. [112] Relation Extraction

Present a simple yet effective method to systematically generate 
comprehensive prompts that reformulate the relation extraction 
task as a cloze-test task under a simple prompt formulation. In 
particular, experiment with different ranking scores for prompt 
selection.

F1-score

Pan et al. [113] Question 
Answering

Supervised pretraining on source-domain data to reduce sample 
complexity on domain-specific downstream tasks. Zero-shot 
performance on domain-specific reading comprehension tasks is 
evaluated by combining task transfer with domain adaptation to 
fine-tune a pre-trained model with no labelled data from the 
target task.

F1-score

Wadden et al. [114] Scientific Claim 
Verification

Present MULTIVERS, which predicts a fact-checking label and 
identifies rationales in a multitask fashion based on a shared 
encoding of the claim and full document context using weakly-
supervised domain adaptation.

Precision, Recall, F1-score

Li et al. [115] Relation 
Classification

Learn a prototype encoder from relation definition text in a 
way that is useful for relation instance classification. Use a 
joint training approach to train both a prototype encoder from 
definition and an instance encoder.

Accuracy

Zhang et al. [116] Natural Language 
Inference (NLI)

An instance discrimination based approach to bridge semantic 
entailment and contradiction understanding with high-level 
categorical concept encoding (PairSupCon).

Clustering Accuracy

1
Denotes papers where a new non-biomedical FSL dataset is introduced.

2
Denotes papers where a new FSL dataset specific to the biomedical domain is introduced.
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