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ABSTRACT
Introduction/rationale  Protein biomarkers may help 
enable the prediction of incident interstitial features on 
chest CT.
Methods  We identified which protein biomarkers in a cohort of 
smokers (COPDGene) differed between those with and without 
objectively measured interstitial features at baseline using a 
univariate screen (t-test false discovery rate, FDR p<0.001), 
and which of those were associated with interstitial features 
longitudinally (multivariable mixed effects model FDR p<0.05). 
To predict incident interstitial features, we trained four random 
forest classifiers in a two-thirds random subset of COPDGene: 
(1) imaging and demographic information, (2) univariate screen 
biomarkers, (3) multivariable confirmation biomarkers and (4) 
multivariable confirmation biomarkers available in a separate 
testing cohort (Pittsburgh Lung Screening Study (PLuSS)). We 
evaluated classifier performance in the remaining one-third of 
COPDGene, and, for the final model, also in PLuSS.
Results  In COPDGene, 1305 biomarkers were available 
and 20 differed between those with and without interstitial 
features at baseline. Of these, 11 were associated with feature 
progression over a mean of 5.5 years of follow-up, and of 
these 4 were available in PLuSS, (angiopoietin-2, matrix 
metalloproteinase 7, macrophage inflammatory protein 1 
alpha) over a mean of 8.8 years of follow-up. The area under 
the curve (AUC) of classifiers using demographics and imaging 
features in COPDGene and PLuSS were 0.69 and 0.59, 
respectively. In COPDGene, the AUC of the univariate screen 
classifier was 0.78 and of the multivariable confirmation 
classifier was 0.76. The AUC of the final classifier in COPDGene 
was 0.75 and in PLuSS was 0.76. The outcome for all of the 
models was the development of incident interstitial features.
Conclusions  Multiple novel and previously identified 
proteomic biomarkers are associated with interstitial features 
on chest CT and may enable the prediction of incident 
interstitial diseases such as idiopathic pulmonary fibrosis.

INTRODUCTION
Over the past several decades, it has been 
increasing recognised that subtle evidence 
of chronic lung injury is visible on CT scans 
of the chest.1 More specifically, based on 
their shared clinical and genetic associations, 

these areas of higher attenuation tissue, 
often referred to visually as interstitial lung 
abnormalities (ILAs), likely represent early 
or subtle evidence of pulmonary fibrosis in 
some people.2–4 Our group and others have 
demonstrated that these abnormalities can 
also be detected using a variety of automated, 
machine learning-based tools.5 6 Because 
these imaging findings are similar to but not 
exactly equivalent to visually defined ILA, 
we have termed them quantitative intersti-
tial features, and we have previously shown 
that they share the same clinical and genetic 
associations as ILA and idiopathic pulmonary 
fibrosis (IPF) such as lower lung function and 
the MUC5B promoter mutation, suggesting 
that they too may represent early evidence of 
fibrosis in some people.5 7–10

However, while the associations between 
interstitial features and clinical outcomes are 
well described, the prediction of interstitial 
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feature development is less so. Prediction of interstitial 
feature development is especially important because 
although interstitial features are considered a possible 
precursor to IPF, as noted above, interstitial features 
alone, even in the absence of advanced fibrosis, are 
associated with adverse clinical outcomes, and the only 
currently available pharmacologic interventions for 
pulmonary fibrosis slow its progression but do not reverse 
prior damage.4 5 7 8 Of particular interest for the predic-
tion of the development of interstitial features is the 
utility of peripheral protein biomarkers to predict inci-
dent disease, both because of their potential use for iden-
tifying high-risk clinical populations and because they 
may identify specific, targetable pathways that could be 
used to prevent disease development and progression.9 10 
In this study, we sought to identify peripheral protein 
biomarkers associated with interstitial features and use 
those biomarkers combined with baseline imaging and 
demographics to create machine learning models to 
predict their incident development.

METHODS
Study population
We performed the primary analyses using data from the 
COPDGene cohort and confirmatory analyses in the 
Pittsburgh Lung Screening Study (PLuSS) cohort. Both 
cohorts have been described in detail previously.11–13

Briefly, COPDGene is a multicentre, prospective, 
cohort study of over 10 300 ever smokers who at enroll-
ment were aged 45–80, had at least a 10 pack-year 
smoking history and did not have prior bronchiectasis 
or interstitial lung diseases (ILDs) such as IPF. Initial 
(baseline/phase 1) visits occurred between 2006 and 
2011, and 5-year follow-up (phase 2) visits occurred 

between 2013 and 2017. 10-year follow-up visits are 
currently ongoing and not included in these anal-
yses. At both phase 1 and phase 2 visits, participants 
underwent inspiratory and expiratory chest CT scans, 
prebronchodilator and postbronchodilator spirometric 
testing, 6 min walk distance measurements, question-
naires and genotyping of the MUC5B polymorphism 
(rs35705950).14 15 CT scans were obtained at inspiration 
(200 mAs) and after expiration (50 mA) with submilli-
meter slice reconstruction.11

PLuSS is a single-centre, prospective, cohort study of 
approximately 3800 ever smokers who at enrollment 
were aged 50–79, had at least a 12.5 pack-year smoking 
history and did not have a history of prior lung cancer. 
Participants underwent baseline inspiratory low-dose 
chest CT scans (40–60 mA with 2.5 mm reconstruc-
tion), spirometric testing and questionnaires between 
2002 and 2005. PLuSS participants were subsequently 
followed with serial CT imaging as indicated based 
on the study lung cancer screening protocol, as well 
as with spirometry, annual telephone surveys and/or 
mailed questionnaires.13 Although many participants 
in the PLuSS cohort had a several CT scans, in order 
to approximate the COPGene cohort, only participants 
first and last CT scan were included, and participants 
were excluded if they had less than 2 years of follow-up. 
Due to the use of previously obtained, anonymised data, 
patients were not involved in the design of this current 
study.

For both studies, only participants with complete base-
line clinical data, at least one follow-up CT imaging study, 
and baseline protein biomarker data were included 
(figure 1).

Figure 1  CONSORT diagram. CONSORT, Consolidated Standards of Reporting Trials; PLuSS, Pittsburgh Lung Screening 
Study.
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Patient and public involvement
The public was not involved in the design of this specific 
study. All data resulting from this work will be made 
publicly available via dbGaP (https://www.ncbi.nlm.nih.​
gov/gap/).

Image and biomarker analysis
The percentage of lung occupied by interstitial features 
was measured using a local density classification approach, 
which uses a previously described, k-nearest neighbours 
classifier-based approach that uses the local histogram 
measurements combined with the distance from the 
pleural surface.14 16 17 Peripheral protein biomarkers 
were measured in a subset of participants at the phase 
1 and phase 2 visits in the COPDGene study using the 
SOMASCan 1.3K assay (SomaLogic Operating Company, 
Boulder, Colorado, USA). This technique has been 
described in detail previously. Briefly, it is an aptamer-
based assay that enables the simultaneous measurement 
of a broad range of protein targets.18 For this study, only 
the measurements at phase 1 (baseline) were used and 
a total of 1305 protein biomarkers were available. In the 
PLuSS study, peripheral protein biomarkers were meas-
ured at baseline using the Myriad Rules-Based Medicine 
(RBM) system (Luminex xMap technology, Myriad-RBM, 
Austin, Texas, USA), and 116 protein biomarkers were 
available. Due to their non-normal distribution, all 
protein biomarker values were log-transformed.19

Statistical analysis
All the analyses, apart from the validation of the final 
machine learning prediction model described below, 
were performed using data from the COPDGene cohort. 
To identify peripheral protein biomarkers associated 
with interstitial features, we first performed a univar-
iate screen comparing those with interstitial features to 
those without interstitial features at the phase 1 visit. For 
the purposes of this analysis, participants were defined 
as having interstitial features if the percentage of their 
lung occupied by interstitial features was greater than the 
median percentage in the cohort. Student’s t-tests were 
used to compare the biomarker levels in those with and 
without interstitial features. In order to limit the number 
of biomarkers selected to a smaller, potentially clini-
cally relevant subset, only those with false discovery rate 
(FDR) p<0.001 were considered.20–22 Those biomarkers 
found to be significant were then each used in separate, 
multivariable, mixed effects models in order to deter-
mine which were associated with longitudinal changes 
in interstitial features from phase 1 to phase 2. These 
models included all the participants in the COPDGene 
cohort and were each adjusted for age, gender, race, 
current smoking status, pack-years, body mass index and 
forced vital capacity, as well as random effects for subject, 
clinical centre and CT scanner model. Biomarkers with 
FDR p<0.05 for this multivariable confirmation step were 
considered significant.22

To determine the utility of peripheral protein 
biomarkers to predict incident interstitial features, we 
selected the subset of individuals who were in the lowest 
tertile of interstitial features at baseline, and defined inci-
dent interstitial feature development as moving to the 
highest tertile of interstitial features at follow-up. We then 
trained four random forest classifiers: the first using only 
clinical and imaging features associated with the develop-
ment of pulmonary fibrosis (age, gender, smoking status, 
pack-years and baseline interstitial features) (termed the 
clinical/imaging model), the second using the clinical/
imaging values plus the protein biomarkers identified 
in the univariate screen (univariate screen model), the 
third using the clinical/imaging values plus the protein 
biomarkers from the multivariable confirmation (multi-
variable confirmation model) and the fourth using the 
clinical/imaging values plus the protein biomarkers from 
the multivariable confirmation that were also available 
in PLuSS (limited multivariable confirmation model).23 
These models were trained in a two-thirds random 
subset of COPDGene. The first three models were eval-
uated in the remainingone-third of COPDGene (ie, 
the testing portion). The final model was evaluated in 
both the testing portion of COPDGene and in PLuSS. 
10-fold cross-validation was used to tune model hyperpa-
rameters. Model performance was summarised using the 
area under the receiver operating characteristic curve 
(AUC), and feature importance was evaluated based on 
impurity (Gini importance).24 All continuous predictors 
were normalised, all statistical tests were two sided unless 
otherwise stated, and all analyses were performed in R 
V.4.0.3, implemented using RStudio.25 26

RESULTS
Of the 10 196 participants in COPDGene, 4550 had 
complete clinical follow-up data, 4541 had complete 
longitudinal imaging data and 411 had complete protein 
biomarker data. Of the 3755 PLuSS participants, 3409 had 
complete longitudinal clinical data, 1547 had complete 
longitudinal imaging data, and 95 had complete protein 
biomarker data (table  1 and figure  1). At the baseline 
visit, participants in the COPDGene cohort were gener-
ally younger (mean age=62.5±8.6) than in the PLuSS 
cohort (mean age=64.4±73.1). This subset of COPDGene 
had a slight female predominance (n=219 (53.3%)) 
compared with the PLuSS cohort where the minority of 
participants were female (n=21 (22.1%)).

Of the 1305 protein biomarkers available in the COPD-
Gene cohort, 20 were different between those with and 
without interstitial features at baseline. These included 
angiopoietin 2 (Ang2), apolipoprotein A-I (Apo-A1), 
matrix metalloproteinase 7 (MMP7), follicle stimu-
lating hormone, macrophage inflammatory protein 1 
alpha (MIP-1alpha), pulmonary and activation regu-
lated chemokine (PARC), pleiotrophin, cathepsin B, 
retinoic acid receptor responder protein 2 (RARRES2), 
coiled-coil domain-containing protein 80 (CCDC80), 

https://www.ncbi.nlm.nih.gov/gap/
https://www.ncbi.nlm.nih.gov/gap/
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Table 1  Baseline characteristics of the cohort

COPDGene

Subgroup Visit 1 Visit 2

n 411 411

Age (years) (mean (SD)) 62.5 (8.6) 68.0 (8.6)

Gender (%) Male 192 (46.7) 192 (46.7)

Female 219 (53.3) 219 (53.3)

Race (%) White 389 (94.6) 389 (94.6)

Black 22 (5.4) 22 (5.4)

Smoking status (%) Former smoker 282 (68.6) 312 (76.3)

Current smoker 129 (31.4) 97 (23.7)

Pack-years (mean (SD)) 41.9 (24.7) 42.7 (25.2)

Body mass index (kg/m2) (mean 
(SD))

29.2 (5.7) 29.1 (6.2)

Time from baseline visit (years) 
(mean (SD))

– 5.5 (0.7)

Percentage of lung occupied by 
interstitial features (median (IQR))

4.4 (2.9–6.9) 4.0 (2.2–6.5)

Percentage of lung occupied by 
emphysema (median (IQR))

0.9 (0.2–6.9) 0.4 (0.1–4.8)

Percentage of lung occupied by 
normal parenchyma (median (IQR))

92.7 (83.9–95.8) 93.6 (83.6–96.5)

PLuSS

Subgroup First visit Last visit

n 95 95

Age (years) (mean (SD)) 64.4 (6.6) 73.1 (6.2)

Gender (%) Female 21 (22.1) 21 (22.1)

Male 74 (77.9) 74 (77.9)

Race (%) American Indian/Alaskan 
Native

0 (0.0) 0 (0.0)

Asian 0 (0.0) 0 (0.0)

Black 5 (5.3) 5 (5.3)

Pacific Islander 0 (0.0) 0 (0.0)

White 90 (94.7) 90 (94.7)

Smoking status (%) Former smoker 43 (45.3) Unavailable

Current smoker 52 (54.7) Unavailable

Pack-years (mean (SD)) 76.0 (25.1) Unavailable

Body mass index (kg/m2) (mean 
(SD))

28.0 (5.3) 27.7 (5.1)

Time from baseline visit (years) 
(mean (SD))

– 8.8 (2.7)

Percentage of lung occupied by 
interstitial features (median (IQR))

14.4 (11.0–18.8) 14.8 (11.7–17.8)

Percentage of lung occupied by 
emphysema (median (IQR))

10.1 (6.9–12.6) 11.9 (7.7–13.8)

Percentage of lung occupied by 
normal parenchyma (median (IQR))

68.2 (62.7–72.6) 66.4 (62.8–71.1)
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cystatin-M, carbonic anhydrase 6, growth/differentia-
tion factor 15 (GDF-15), macrophage metalloelastase 
(MMP12), prothrombin, fatty-acid-binding protein, 
prostate-specific antigen, fibulin 3, leptin and galectin-9 
(table 2).

Of these 20 protein biomarkers identified in the univar-
iate screen, 11 were associated with longitudinal changes 
in interstitial features: Ang2, MMP7, MIP-1alpha, PARC, 
pleiotrophin, cathepsin B, RARRES2, GDF-15, MMP12, 
fibulin 3 and galectin-9 (table  3). Of these, four were 
available in the PLuSS cohort dataset: Ang2, MMP7, MIP-
1alpha and PARC.

Regarding the incident development of interstitial 
features, for COPDGene, individuals were defined 
as having incident interstitial features at follow-up if 
they were in the lowest tertile of interstitial features at 
baseline (≤3.5%) and in the highest tertile of intersti-
tial features at follow-up (>6.1%). Similarly for partic-
ipants in the PLuSS cohort, individuals were defined 
as having incident interstitial features at follow-up if 
they were in the lowest tertile of interstitial features 
at baseline (≤12.3%) and in the highest tertile of 
interstitial features at follow-up (>16.4%). The 
random forrest classifier trained using only imaging 
and clinical features showed relatively poor discrim-
ination for predicting incident interstitial features 
both in the testing subset of COPDGene and in 

PLuSS: AUC=0.69 and 0.59, respectively (figure 2). By 
contrast, the classifiers that included biomarker data 
all had relatively good discrimination for predicting 
incident interstitial features. For example, the classi-
fier trained using clinical and imaging features plus 
all 20 protein biomarkers from the univariate screen 
had an AUC=0.78 in the testing subset of COPD-
Gene, and the classifier trained using the clinical 
and imaging features plus the 11 protein biomarkers 
form the multivariable longitudinal associations had 
an AUC=0.76 in COPDGene. Finally, the classifier 
trained using the clinical and imaging features plus 
the 4 of those 11 protein biomarkers available in the 
PLuSS cohort had an AUC=0.75 in the testing subset 
of COPDGene and an AUC=0.76 in PLuSS (figure 3).

The relative feature importance for each of the 
four classifiers is shown in figure  4. Of note, while 
the imaging feature is consistently one of the most 
important features, several of the protein biomarkers 
are consistently among the more important features 
as well.

DISCUSSION
In this observational cohort study, we identified several 
peripheral protein biomarkers associated with the pres-
ence and progression of interstitial features, or subtle 

Table 2  Protein biomarkers that differ by percentage of interstitial features at baseline in COPDGene

Biomarker
Mean in those with less 
interstitial features

Mean in those with more 
interstitial features FDR p value

Angiopoietin 2 5.2 5.28 7.25×10−5

Apolipoprotein A-I 9.81 9.76 1.41×10−4

Matrix Metalloproteinase 7 7.76 7.88 2.08×10−4

Follicle stimulating hormone 7.43 7.77 6.69×10−5

Macrophage inflammatory protein 1 alpha 6.69 6.8 2.46*10−5

Pulmonary and activation regulated chemokine 8.8 8.93 2.46×10−5

Pleiotrophin 7.36 7.43 2.49×10−4

Cathepsin B 7.35 7.44 2.46×10−5

Retinoic acid receptor responder protein 2 7.97 8.03 5.03×10−5

Coiled-coil domain-containing protein 80 7.65 7.72 1.53×10−4

Cystatin-M 8.77 8.68 2.56×10−4

Carbonic anhydrase 6 8.47 8.32 4.40×10−4

Growth/differentiation factor 15 7.23 7.35 3.10×10−5

Macrophage metalloelastase 7.24 7.4 2.46×10−5

Prothrombin 11.92 11.88 2.40×10−4

Fatty-acid-binding protein 9.75 9.88 1.53×10−4

Prostate-specific antigen 6.88 6.66 1.53×10−4

Fibulin 3 7.46 7.51 5.35×10−4

Leptin 8.81 9.18 2.13×10−9

Galectin 9 7.13 7.23 2.02×10−4

FDR, false discovery rate.
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changes objectively measured on CT scans of the chest. 
In some people, these changes may represent early ILDs 
such as pulmonary fibrosis.5 In addition, we demon-
strated that these biomarkers can be used in conjunction 
with clinical and imaging features, such as the percentage 
of lung occupied by interstitial features on chest CT, 
to predict the incident development of new interstitial 
features over 5 years of follow-up.

One of the most interesting findings from this study is 
the performance of the machine learning classifier for 
predicting interstitial feature development in an entirely 
independent cohort and using only a limited number 
of protein biomarkers. This performance is particularly 
striking given the differences in clinical characteristics, 
imaging protocol and biomarker measurement system 
between the two cohorts: COPDGene and PLuSS.11 13 
While they are both research cohorts, COPDGene involves 
visits at 5-year time points, imaging using standard dose 
CT scans and protein biomarkers measured using SOMA-
logic.18 By contrast, PLuSS participants underwent low-
dose CT scans as indicated by lung cancer screening 
protocols and their protein biomarkers were measured 
using the Myriad-RBM system. These findings suggest 
that this type of approach may be robust to differences 
in data generation. This is of particular interest given the 

eventual hope to apply this type of work to more hetero-
geneous, clinically acquired data.

The specific protein biomarkers identified as being 
associated with interstitial features in this study are also 
of interest. Reassuringly, several of the biomarkers iden-
tified have been previously shown to be associated with 
ILDs such as pulmonary fibrosis. For example, MMP7 has 
been shown to be associated with both advanced pulmo-
nary fibrosis as well as similar, potentially early evidence 
of ILDs.10 27 28 However, while several of the proteins 
have been shown to be important in animal models or 
in later stage disease, less is known about their role in 
early disease. For example, PARC, which not only was 
associated with interstitial feature progression, but also 
was an important protein biomarker for interstitial 
feature prediction based on feature importance. It has 
been shown to be associated with pulmonary fibrosis in 
laboratory models and to be associated with pulmonary 
fibrosis in patients with rheumatological diseases such as 
systemic sclerosis and rheumatoid arthritis, but its role 
in early fibrosis is less clear.29 30 Similarly, MIP-1alpha has 
been shown to be important in pulmonary fibrosis, and, 
in fact, the use of a novel chemokine binding protein, 
evasin-1, has been shown in animal models to decrease 
bleomycin-induced pulmonary fibrosis.31 Our findings, 

Table 3  Longitudinal associations between protein biomarkers and interstitial features in COPDGene

CI FDR p value

Protein Change Lower Upper

Angiopoietin 2 2.55 1.466 4.436 1.86×10−2

Apolipoprotein A-I 0.824 0.36 1.884 1×100

Matrix metalloproteinase 7 3.121 2.237 4.353 2.06×10−9

Follicle stimulating hormone 0.755 0.6 0.952 3.47×10−1

Macrophage inflammatory protein 1 alpha 2.873 1.928 4.281 4.67×10−6

Pulmonary and activation regulated chemokine 3.045 2.068 4.484 3.92×10−7

Pleiotrophin 0.392 0.326 0.471 3.94×10−21

Cathepsin B 4.481 2.591 7.749 1.77×10−6

Retinoic acid receptor responder protein 2 3.656 1.721 7.767 1.52×10−2

Coiled-coil domain-containing protein 80 2.365 1.247 4.486 1.7×10−1

Cystatin-M 0.74 0.466 1.175 1×100

Carbonic anhydrase 6 0.735 0.55 0.982 7.54×10−1

Growth/differentiation factor 15 4.058 2.667 6.175 1.55×10−9

Macrophage metalloelastase 1.751 1.25 2.454 2.31×10−2

Prothrombin 0.376 0.149 0.95 7.76×10−1

Fatty-acid-binding protein 0.929 0.599 1.441 1×100

Prostate-specific antigen 1.075 0.822 1.407 1×100

Fibulin 3 10.291 5.322 19.9 1.13×10−10

Leptin 1.342 0.993 1.812 1×100

Galectin 9 2.239 1.475 3.399 3.16×10−3

Longitudinal change in protein biomarker effect size is expressed as the change between visits in interstitial features per a 1 unit change in 
protein biomarker level between the visits with adjustments for age, gender, race, current smoking status, pack-years, body mass index and 
forced vital capacity, as well as random effects for subject, clinical centre and CT scanner model.
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combined with this information, suggest that there may 
be a role for similar such therapies for the prevention 
of the progression or even the development of ILDs like 
pulmonary fibrosis. These results also add to the growing 
literature surrounding the use of precision medicine 
in multiple diseases such as pulmonary fibrosis, acute 
respiratory distress syndrome and severe COVID-19, all 
of which may share common biomarker risk factors in 
certain individuals.10 32

Finally, it should also be noted that even at the lowest 
amounts of interstitial features that is, among partici-
pants in the lowest tertile of interstitial features at base-
line, the percentage of interstitial features still predicts 
incident disease. This suggests that truly any evidence 
of abnormality may indicate susceptibility. This is partic-
ularly important as we begin to consider therapeutics 
for those patients with more subtle imaging changes 
such as quantitative interstitial features as well as visu-
ally apparent ILAs. It may be that combining imaging a 
few select biomarkers may help enable predicting those 
at highest risk for progression and therefore those most 
likely to benefit from novel and existing therapies.

Our study has several limitations. For example, 
although both cohorts are quite large, the actual number 
of individuals with complete data, especially biomarker 
data is quite small, especially after subsetting, poten-
tially making these findings more difficult to extend to 
a broader population. There were also many participants 
without sufficient longitudinal data, raising the concern 

for survival bias, and compared with our prior work using 
these cohorts the subset of individuals with complete 
data in this study were slightly older and more likely to 
be former rather than current smokers, raising concern 
for selection bias.17 33 The lack of racial diversity in both 
cohorts is also of concern. The COPDGene cohort only 
included participants who identified as either White or 
Black. The PLuSS cohort included other racial groups 
in the larger study, but only white and black partici-
pants had complete data available for this current work, 
potentially introducing selection bias. Similarly, for this 
work, we elected to not separate participants by gender, 
potentially limiting the utility of certain biomarkers 
such as prostate-specific antigen. Prior work on systemic 
sclerosis-associated ILD has suggested that the biolog-
ical profiles of the disease may differ between men and 
women.34 Future work will be required to determine if 
biomarker predictors may vary by gender and/or sex in 
early pulmonary fibrosis, and how such differences may 
impact outcome prediction. Other limitations included 
the definitions of disease and its progression. As is the case 
with any new disease measurement, it is difficult to define 
what an abnormal amount of interstitial features is, both 
cross-sectionally and in terms of progression.35 Because 
the aim of this study was to identify protein biomarkers 
that predicted incident disease, we defined new disease 
based on a relatively stringent threshold of moving from 
the lowest tertile of interstitial features to the highest 
tertile of interstitial features. Even with this definition, 

Figure 2  Receiver operating characteristic curves for random forest classifier trained using clinical and imaging features 
only. Receiver operating characteristic curves for (A) the random forest classifier trained using clinical/imaging features 
(age, gender, smoking status, pack-years and baseline interstitial features) applied to the testing subset of COPDGene. (B) 
The random forest classifier trained using clinical/imaging features (age, gender, smoking status, pack-years and baseline 
interstitial features) applied to all of the available complete data from PLuSS. AUC, area under the curve; PLuSS, Pittsburgh 
Lung Screening Study.
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the absolute change in interstitial features was relatively 
small. This, combined with our recent work on quantita-
tive emphysema and interstitial progression in which a 

very small increase in fibrotic appearing parenchyma was 
associated with a significant increase in mortality, suggests 
that even small amounts of parenchymal change may be 

Figure 3  Receiver operating characteristic curves for random forest classifier trained using clinical and imaging features 
plus protein biomarkers. Receiver operating characteristic curves for (A) performance of the random forest classifier trained 
using clinical/imaging features (age, gender, smoking status, pack-years and baseline interstitial features) plus the 20 protein 
biomarkers identified in the univariate screen, applied to the testing subset of COPDGene. (B) Performance of the random 
forest classifier trained using clinical/imaging features (age, gender, smoking status, pack-years and baseline interstitial 
features) plus the 11 protein biomarkers found in the multivariable confirmation step, applied to the testing subset of 
COPDGene. (C) Performance of the random forest classifier trained using clinical/imaging features (age, gender, smoking 
status, pack-years and baseline interstitial features) plus the four protein biomarkers found in the multivariable confirmation 
step in COPDGene that were available in PLuSS, applied to the testing subset of COPDGene. (D) Performance of the random 
forest classifier trained using clinical/imaging features (age, gender, smoking status, pack-years and baseline interstitial 
features) plus the four protein biomarkers found in the multivariable confirmation step in COPDGene that were available in 
PLuSS, applied to all available complete data in PLuSS. AUC, area under the curve; PLuSS, Pittsburgh Lung Screening Study.



Ash S, et al. BMJ Open Respir Res 2024;11:e002219. doi:10.1136/bmjresp-2023-002219 9

Open access

clinically important.36 However, it also raises the possi-
bility of over diagnosing disease progression. Also, the 
overall decrease in interstitial features between visits in 
COPDGene suggests that other processes such as survival 
bias and changes in image acquisition over time are also 
important to investigate. Additional work is needed to 
better define minimum clinically important differences 
for these measurements and to determine other clinical 
and image acquisition-related factors that affect their 
measurement over time.17 35

With regard to limitations of the biomarker analyses 
in particular, it would be difficult to generate these 
data clinically, potentially limiting the clinical utility of 
these findings. However, while it is clearly impractical to 
do complete SOMALogic-type analyses for all potential 
patients at this current time, it may be possible to measure 
just a few biomarkers as shown in the final classifier. This 
goal, limiting the number of biomarkers selected, was the 
rationale for using a more stringent FDR threshold for 
the univariate selection step. Although the use of varying 
FDR thresholds can be considered depending on the 
overall goal of the study and the test application, this may 
have resulted in identifying fewer relevant biomarkers 
than the optimal approach.21 22 Similarly, in order to limit 
the complexity of the final model created and potentially 
make these results more readily implemented clinically, 
genotype information was not included in these anal-
yses and its integration may help further refine machine 

learning-based prediction models. Also, while a model 
that only included clinical and biomarker predictors was 
considered, because the diagnosis of interstitial features 
in this study required CT imaging and the definition 
of ILD clinically does as well, a clinical and protein 
biomarker-based model that does not include imaging 
would be unlikely to be of utility in either the research or 
the clinical setting.37 Finally, there was a difference in the 
generation of data between the cohorts, especially with 
regard to CT scan protocol and cohort design, as well as 
how the biomarkers were measured, though the robust-
ness of the findings in spite of these differences could 
also be viewed as a potential strength. For example, the 
raw values of interstitial features varied widely between 
the two cohort. This was primarily due to differences in 
CT protocol and radiation dose, and work is ongoing 
to overcome this issue.38 Also, and as noted above, the 
interval between CT scans varied more for the PLuSS 
participants than the COPDGene participants. Future 
work will be needed to address these and the other afore-
mentioned issues as well as investigating if other imaging 
measures such as lung volume, densitometry and airway 
measures improve the performance of imaging-based 
prediction models.

In summary, we identified a number of peripheral 
protein biomarkers associated with the presence and 
progression of interstitial features, which in some people 
may represent early ILDs such as pulmonary fibrosis.5 In 

Figure 4  Variable importance for incident interstitial features prediction models. (A) Variable importance for the random 
forest classifier trained using only clinical/imaging features. (B) Variable importance for the random forest classifier trained 
using clinical/imaging features plus the 20 protein biomarkers identified in the univariate screen. (C) Variable importance for 
the random forest classifier trained using clinical/imaging features plus the 11 protein biomarkers found in the multivariable 
confirmation step. (D) Variable importance for the random forest classifier trained using clinical/imaging features plus the 
four protein biomarkers found in the multivariable confirmation step in COPDGene that were available in PLuSS. PLuSS, 
Pittsburgh Lung Screening Study.
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addition, we demonstrated that these biomarkers can be 
used in conjunction with clinical and imaging features, 
such as the percentage of lung occupied by interstitial 
features on chest CT, to predict the incident develop-
ment of new interstitial features over 5 years of follow-up. 
Although additional work is needed in clinical cohorts to 
replicate these findings, they may ultimately prove useful 
for identifying potential therapeutic targets to intervene 
specifically on early-stage disease, as well as for identifying 
those patients at the highest risk for pulmonary fibrosis 
before it becomes symptomatic and severe.
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