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Data processing solutions to render metabolomics more
quantitative: case studies in food and clinical
metabolomics using Metabox 2.0
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Abstract

In classic semiquantitative metabolomics, metabolite intensities are affected by biological factors and other unwanted variations.
A systematic evaluation of the data processing methods is crucial to identify adequate processing procedures for a given experi-
mental setup. Current comparative studies are mostly focused on peak area data but not on absolute concentrations. In this study,
we evaluated data processing methods to produce outputs that were most similar to the corresponding absolute quantified data.
We examined the data distribution characteristics, fold difference patterns between 2 metabolites, and sample variance. We used 2
metabolomic datasets from a retail milk study and a lupus nephritis cohort as test cases. When studying the impact of data normal-
ization, transformation, scaling, and combinations of these methods, we found that the cross-contribution compensating multiple
standard normalization (ccmn) method, followed by square root data transformation, was most appropriate for a well-controlled
study such as the milk study dataset. Regarding the lupus nephritis cohort study, only ccmn normalization could slightly improve the
data quality of the noisy cohort. Since the assessment accounted for the resemblance between processed data and the corresponding
absolute quantified data, our results denote a helpful guideline for processing metabolomic datasets within a similar context (food
and clinical metabolomics). Finally, we introduce Metabox 2.0, which enables thorough analysis of metabolomic data, including data
processing, biomarker analysis, integrative analysis, and data interpretation. It was successfully used to process and analyze the data
in this study. An online web version is available at http://metsysbio.com/metabox.
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Introduction a semiquantitative manner. However, the inability to compare or

Metabolomic analysis is widely accepted as a reliable technol-
ogy for investigating biochemical activities within a cell or tis-
sue of a living organism, and it has been used to address var-
lous questions in biology, drug metabolism, food and nutrition,
natural products, and biomedicine [1-3]. Typically, the metabolite
level in a sample can be determined quantitatively or semiquan-
titatively. Metabolomic quantitative analysis (absolute quantifica-
tion) aims to ensure the comparability of metabolite concentra-
tions from measurements obtained at different times or locations.
On the other hand, semiquantitative analysis (relative quantifica-
tion) determines the ratio of metabolite intensity from different
samples [4, 5]. Therefore, the absolute concentrations of metabo-
lites represent a benchmark dataset that allows an unbiased com-
parison across different studies. Due to the limited availability of
reference standards, most metabolomic studies are conducted in

correlate the results from different studies remains one of the
major limitations of semiquantitative analysis [6]. This is a pri-
mary roadblock in the development of metabolomics research. It
is therefore essential to encourage the metabolomics community
to increase focus on quantitative analyses.

Data processing (DP) plays an important role in semiquanti-
tative and quantitative analyses; the procedures include impu-
tation, normalization, transformation, scaling, and combinations
thereof [7]. To date, numerous DP methods have been proposed
in metabolomic studies [7-10], each with distinct advantages and
pitfalls. Therefore, thorough method evaluations are crucial to
pinpointing the best-performing process for a given metabolomic
study. Many studies have evaluated and compared DP strategies
based on different perspectives, including the normality structure
of the data, changes in global variations, reduction of intragroup
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distance, univariate or multivariate analysis, consistent ranks of
putative markers, and classification accuracy [11-15]. DP methods
are context dependent and not determined by a sole criterion.

Since quantitative analysis is not applicable in every
metabolomic study, choosing proper DP schemes for polish-
ing the peak areas is crucial to best estimate the true metabolite
levels. This study aimed to employ another strategy to assess the
performance of well-known DP methods. The most desirable DP
scheme is the one that yields identical statistical results between
the processed data and its quantitative companion. The results
obtained constitute a useful and unbiased reference for DP rec-
ommendations. The impact of DP method on data distribution,
fold-difference patterns between metabolite pairs, and sample
variance need to be studied. The DP schemes investigated in
this study covered internal standard (IS)-based normalization,
transformation, scaling, transformation followed by scaling, and
combinations. We used 2 metabolomic datasets representing
different types of data: data relating to a food product with
definitive markers and clinical metabolomic data with indistinct
variations.

Last, we introduced an updated version of the R package
Metabox [16] to consolidate a state-of-the-art set of methods for
metabolomic analysis from several R packages. Metabox 2.0 en-
ables the in-depth analysis of metabolomic data covering the DP
steps, biomarker identification, integrative analysis of multiple
data types, and functional interpretation. The software is assem-
bled with ready-to-use R functions that are highly flexible for pro-
gramming tasks and have broad application potential. This tool
was used for all processing steps and analyses in this study.

Materials and methods

Metabolomic datasets

Quantitative and semiquantitative metabolomic data were ob-
tained from our recent studies [17, 18]. The first dataset (study
I) included the nutrient metabolite composition of various retail
milk samples purchased in Thailand [18]. In this study, the anal-
ysis was focused on 16 fatty acids (FAs) from 4 milk types: whole
bovine milk (n = 13), bovine lactose-free milk (n = 6), soy milk
(n = 7), and almond milk (n = 3). Each sample was analyzed in
triplicate. The dataset contained 10 quality control (QC) samples
pooled from a mixture of all the milk samples. The FAs were ac-
quired using gas chromatography coupled to a time-of-flight mass
spectrometer (GC-TOFMS; Pegasus BT; Leco Corp., St. Joseph, MI,
USA).

The second dataset (study II) contained information on urine
samples collected from Ramathibodi Hospital, Thailand [17]. This
was done with approval from the Faculty of Medicine Ethics Com-
mittee, Ramathibodi Hospital, Mahidol University, Bangkok, Thai-
land. The urine samples were acquired from 53 healthy subjects
(N) and 63 patients with lupus nephritis (LN). The metabolites
of the kynurenine pathway (KP) were measured using an ultra-
performance liquid chromatography platform coupled to a Xevo
TQ-S tandem mass spectrometer (LC-MS/MS) and interfaced by
an electrospray ionization source (Waters, Milford, MA, USA).

The mass spectrometry (MS) data from both studies were
preprocessed and quantified as described in previous publica-
tions [17, 18]. The concentration of each FA was normalized by
its molecular weight (umol), allowing quantitative comparison
across studies. The concentration of KP metabolites was normal-
ized by the concentration of urinary creatinine. This follows the
standard practice of adjusting the concentration of a metabolite

to creatinine filtration in nephrotic syndromes [19, 20]. Addition-
ally, missing value imputation was performed on the milk dataset
before data analysis. A minimum value of each metabolite was
imputed to a metabolite with missing values higher than 30%
groupwise. This step was needed because of the true-negative ab-
sence of metabolites under specific conditions, as defined by con-
centrations that were below the detection limit [21]. If applicable,
the nondetected metabolites at random (the percentage of non-
detected metabolites <30%) were then imputed by the random
forest (RF) method.

Data processing schemes

This study evaluated the DP schemes commonly applied in a
general metabolomic workflow [7]. This included normalization,
transformation, scaling, and their combinations.

Cross-contribution compensating multiple
standard normalization

Cross-contribution compensating multiple standard normaliza-
tion (ccmn) is an IS-based normalization in which metabolite
abundances are estimated proportionately to a known IS quantity
[22]. Additionally, it considers systematic error and study factors
asindependent sources of variation on ISs; important information
is unaffected by normalization [22]. In contrast to a closely related
method, such as normalization using an optimal selection of mul-
tiple internal standards (nomis), this method removes unwanted
systematic variation based on the variability of single or multiple
1Ss [23].

Data transformation

Transformation aims to reduce data skewness, fix heteroscedas-
ticity, and turn multiplicative metabolite relationships into ad-
ditive relationships [24]. Six transformation methods were as-
sessed in this study, including cube root (cube), logarithm (log2
and log10), generalized log (glog2 and glogl0), and square root
(sqrt) transformations (Supplementary Table S1). Transforma-
tions can reduce the differences between large and small values,
whereby large values are scaled down much more than small val-
ues [24]. These transformations lead to a depletion in right skew-
ness, which is an observed characteristic of omics data such as
metabolomic and transcriptomic data [25]. The cube and glog
transformations accept zero and negative values, whereas the
sqrt transformation can only manage zero values. In contrast, log
transformations can only handle nonzero and nonnegative val-
ues. The glog transforms the data using a specific parameter for
each dataset [26]. Additionally, it focuses on stabilizing data vari-
ance (i.e., keeping the variance constant and independent from
the mean) [26, 27].

Data scaling

Scaling reduces the fold difference between metabolite concen-
trations based on scaling factors [24]. This is unlike the pseudo-
scaling effect of transformations. Here, a scaling factor is deter-
mined explicitly for a particular metabolite. This study compared
6 scaling methods: auto, level, pareto, power, range, and vast scal-
ing (Supplementary Table S1). The auto, pareto, range, and vast
scaling estimates are scaling factors that are based on data dis-
persion. In contrast, level scaling is based on the mean value [24].
Power scaling performs an average subtraction in combination
with the sqrt transformation [28].
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Analysis workflow

Different DP schemes were investigated using study I [18] and
study II [17] datasets that comprised both quantitative (the ab-
solute levels) and semiquantitative (the peak areas of metabo-
lites) results. Key DP schemes were performed to evaluate their
effect on the peak area data, which included (A) no processing
(raw area), (B) transformation, (C) scaling, (D) transformation fol-
lowed by scaling, (E) IS-based normalization by the ccmn method,
and (F) ccmn normalization combined with transformation, scal-
ing, or a combination of both (Fig. 1). The ccmn normalization
was performed using the normalize_input_data_byqc function from
the R package Metabox 2.0 (RRID: SCR_024,443). The function
was implemented from the CRMN R package for normalization of
metabolomics data [22]. Heptanoic methyl ester and anthranilic
acid Ci3 were used as an IS in study I and study II, respectively.
Known amounts of ISs were added to samples before sample
preparation, so that metabolite peak areas were normalized with
respect to the responses of the ISs.

In total, 97 processed datasets were analyzed, and unprocessed
data were considered. We evaluated the influence of the DP meth-
ods and their combinations on different aspects, including nor-
mality, skewness, coefficient of variation (CV), the trend of fold
differences, sample heterogeneity, and multivariate analysis out-
puts.

The normality test and measures of skewness were computed
by the Shapiro-Wilk normality test [29] and the skewness func-
tion of the e1071 R package [30], respectively. A P value >0.05 indi-
cates a normal distribution, and the symmetric skewness ranges
from —0.5 to 0.5. The CV for a metabolite is the ratio of the stan-
dard deviation to the mean within a group. The fold and direc-
tional differences of a metabolite from a reference were calcu-
lated. Since most DP methods strongly affect highly abundant
metabolites, the metabolite with the highest level was used as
a reference point. An across-group relative log abundance (RLA)
plot was applied to explore the grouping structure, outliers, and
variation within each group. Each metabolite was standardized
by subtracting the median from across all groups [31]. A principal
component analysis (PCA) was performed to visualize the major
variations in the data regarding the biology of interest.

Moreover, the effects of various DP methods on the partial least
squares—discriminant analysis (PLS-DA) in comparison to the ab-
solute concentration (CONC) data were examined. The variable
importance in projection (VIP) of a metabolite indicates its degree
of contribution to the variance in the PLS model [32]. The similar-
ity between the resulting VIPs from the CONC data, raw area data,
and processed data was computed. The similarity between the 2
approaches, x and y, was calculated using Euclidean distance ac-
cording to the following equation (1):

n

Similarity (x,y)= 1— | (xi— yi) 1

i

For method x, we denoted the VIP score of the it" metabolite as
x;, wherei=1, 2, ..., the number of metabolites (n). The same def-
inition was applied to method y. Hierarchical clustering of the VIP
scores was performed to infer the grouping of the DP schemes. The
ComplexHeatmap R package [33] was used for clustering analysis.
All DP tasks, PCA, PLS-DA, and plot generation were performed us-
ing the R package Metabox 2.0 DP and analysis pipeline.

Data processing solutions using Metab

Implementation of Metabox 2.0

Metabox 2.0 is a standard R package developed from R version
4.2.0, providing a substantial update to the first Metabox version
[16]. An extensive collection of R packages for metabolomic anal-
ysis is included (Supplementary Table S1). We enclosed the se-
quences of DP and analysis tasks in R functions. A graphical user
interface (GUI) is implemented with the R package Shiny [34]. An
overview of the analysis pipelines is illustrated in Supplementary
Fig. S1.

Data processing and analysis pipeline

This analysis pipeline supports DP and consecutive data analy-
ses, including essential statistical analyses and biomarker discov-
ery (Supplementary Fig. S1A). The DP module includes all ma-
jor metabolomic DP tasks, starting with missing value imputa-
tion, normalization, transformation, and data scaling. A collec-
tion of commonly used methods is integrated into Metabox 2.0
(Supplementary Table S1). Three types of imputation methods are
provided, including single value, local similarity, and global struc-
ture approaches [21]. The normalization module covers IS-, QC
sample- and data-based approaches, which aim to eliminate un-
wanted errors while maintaining crucial biological variation [8,
31]. IS-based and QC sample-based normalization rely on spike-
in ISs and the intensity of QC samples, respectively [8]. Meanwhile,
the data-driven normalization summarizes a sample-specific fac-
tor for the adjustment [31]. The transformation methods for de-
creasing right skewness and scaling methods based on either data
dispersion or mean value are included. When performing both
data transformations and scaling, the differences in magnitude
between large and small metabolite values are adjusted, so that
those metabolites are comparable. In total, there are 10 impu-
tations, 3 IS-based normalizations, 2 QC sample-based normal-
izations, 12 data-driven normalizations, 6 transformations, and 6
scaling methods.

The statistical analysis module comes with a collection of uni-
variate analysis methods. These are statistical hypothesis testing
methods and post hoc tests covering parametric and nonparamet-
ric tests, a pairwise correlation analysis, and linear mixed model-
ing from the Imm2met package [7] (Supplementary Table S2). For
multivariate analysis, both unsupervised and supervised multi-
variate analyses are included, incorporating PCA, PLS-DA, and or-
thogonal PLS-DA (OPLS-DA) implemented from the ropls package
[35].

The biomarker analysis module supports regression and clas-
sification analyses using the PLS or RF approach. We incorporate
recursive variable elimination within a repeated double cross-
validation (repCV) approach from the MUVR package [36] to iden-
tify informative metabolites. The algorithm addresses prediction
accuracy, model overfitting, and optimally relevant metabolites.

Data integration pipeline

Metabox 2.0 supports the joint analysis of multiple data types,
such as omics and other phenotypic data (Supplementary Fig.
S1B). The multiblock PLS-DA (MBPLSDA) pipeline from the mb-
pls package [37] is assimilated into the integrative analysis mod-
ule, focusing on the multivariate modeling of concatenated data
blocks by considering the specific data structure of each block.
This method allows the estimation of both variable and block im-
portance.
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Figure 1: Analysis workflow. Different DP schemes were performed in this study, including (A) no processing, (B) transformation, (C) scaling, (D)
transformation followed by scaling, (E) normalization by ccmn, and (F) consisting of ccmn + transform, ccmn + scale, and ccmn + transform + scale.
The methods of each DP scheme are listed, and the number shown represents all combinations of these methods. The DP schemes were applied to
semiquantitative or peak area data (blue), and the method evaluations were then performed. This included effects on data properties and PLS-DA. For
each dataset, the resulting VIPs from PLS-DA were compared to those of the quantitative data (red).

Data interpretation pipeline

This pipeline includes well-established methods for functional
interpretation in the context of metabolic pathways and chemi-
cal classes (Supplementary Fig. S1C). The set enrichment analysis
and overrepresentation analysis can be performed with a com-
prehensive collection of methods from the piano package [38], as
implemented in Metabox 1.0 [16]. Moreover, integrated pathway
overrepresentation analysis uses Fisher's method to combine P
value outputs from the hypergeometric test. The KEGG database
[39]is used for pathway information, whereas chemical classes of
metabolites are based on the HMDB chemical taxonomy [40].

Results

The effects of data processing on the
semiquantified fatty acids in milk samples

All 16 FAs were quantified in whole and lactose-free bovine milk
(Supplementary Fig. S2). However, some FAs, including C10:0 and
C14:1, were not detected in the plant-based milk products (soy
milk and almond milk). C6:0, C14:0, C22:0, and C24:0 were not
present in almond milk. C8:0, C12:0, C15:0, C16:1, and C17:0 were

detectable in soy milk but absent in almond milk. These metabo-
lites were imputed by their minimum value prior to DP. As re-
ported by Jariyasopit et al. [18], C16:0 (palmitic acid) and 2 un-
saturated FAs (UFAs) (C18:1 cis-9 [oleic acid] and C18:2n-6 or
C18:2 [linoleic acid]) were at their highest concentrations (mg/L) in
bovine milk, almond milk, and soy milk, respectively. The amount
of C18:1 cis-9 in almond milk was markedly high (14,230.98 +
4057.15 pmol).

Effects on data properties

Initially, we explored the effects of each DP scheme on the ba-
sic properties of the milk dataset. For each DP scheme, we con-
sidered the number of normally distributed, positively skewed,
and negatively skewed metabolites and the CV in each sample
group (Supplementary Table S3). All FAs in the QC samples were
normally and symmetrically distributed for the CONC data. Most
FAs in bovine milk and soy milk were right-skewed (i.e., a few
FAs were highly abundant), while the FAs in bovine lactose-free
milk were mostly normally distributed. The largest and smallest
CVs were present in soy milk and almond milk, respectively. Sim-
ilar aspects were observed in the peak area data. The PCA plot
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showed that the ccmn method was the main factor contributing
to separation among the DP schemes, with and without this nor-
malization (Fig. 2A). The number of normally distributed metabo-
lites in the almond milk dramatically increased after normaliza-
tion, and most FAs became slightly negatively skewed. The ba-
sic properties of the quantified and raw area data were closer to
those of the unnormalized datasets. Each DP scheme resulted in
an apparent cluster. The transformations increased the number
of normally distributed metabolites in bovine milk. The area pro-
cessed by the scaling scheme was separated from those altered by
the transform + scale and the transformation, with and without
normalization. All scaling methods returned similar data proper-
ties, with power scaling being slightly different. After power scal-
ing, the area data had the same data properties as those after
sqrt + auto, level, pareto, range, or vast scaling (Fig. 2B). All glog-
and log-based transformations produced similar data properties.
However, the cube-, sqrt-, and log-based transformations were at-
tributed to slightly different data properties, particularly the dis-
tribution of metabolites in bovine milk. As such, we noticed a sep-
aration among the cube, sqrt, and both log-based transformation
schemes.

Effects on multivariate analysis

PLS-DA was performed on 97 processed datasets, the absolute FA
concentration and peak area datasets. Cluster analysis of the re-
sulting VIPs revealed grouping of the CONC data, raw area data,
ccmn, ccmn + pareto, ccmn + power, and ccmn + sqrt processed
data (Supplementary Fig. S3). These DP schemes formed a sep-
arate branch from the DP, involving log-based transformations,
auto, range, or vast scaling. The VIP scores of the data that had
undergone ccmn + power and ccmn + sqrt processing were iden-
tical. Moreover, they were similar to the VIPs from the quantified
data (Fig. 3A and Supplementary Table S4, similarity = 80.32%).
The VIPs from the unprocessed area data were approximately 20%
different from the original CONC data. In contrast, when using
the glog-, log-, auto-, range-, and vast-based DP methods, the VIP
similarity was reduced to below 40%. Any DP counting in the vast
method led to a low similarity of approximately 10% or less. The
ccmn + cube + vast was the least alike (similarity = 4.16%).

C18:1 cis-9 and C18:2n-6, the important plant UFAs [41], were
the discriminant metabolites (VIP >1.5) obtained from the PLS-DA
on the CONC and raw area data (Supplementary Fig. S3). More-
over, both UFAs were identified from the data processed by sqrt or
cube transformation, level, pareto, or power scaling. VIP scores in-
creased slightly when ccmn normalization was applied together
with sqrt, cube, pareto, or power. Combining these transforma-
tion and scaling methods led to lower VIPs, particularly the VIP of
C18:2. C16:0 was an additional discriminant for the plant UFAs in
the ccmn-normalized data. The DP schemes involving vast scaling
failed to identify C18:1 cis-9 and C18:2n-6, as their VIPs were less
than 1.0. The number of FAs with VIP >1.0 was increased by glog-
or log-based transformation, yet it diminished the importance of
the plant UFAs in the PLS model.

The PCA plots showed a clear partitioning of the almond milk,
soy milk, and bovine milk, except for the ccmn + cube + vast pro-
cessed data (Fig. 3B). This DP task mitigated the variance between
soy milk and almond milk. Since C18:1 cis-9 and C18:2n-6 were the
important plant UFAs, a clustering of plant-based milk products
was observed. Meanwhile, the whole and lactose-free bovine milk
were clustered together because their FA profiles were similar
(Supplementary Fig. S2). The key distinction between these bovine
milk types was the absence of lactose in lactose-free bovine milk

Data pro

>ssing solutions using Meta

[18]. The variability explained by the first and second principal
components (PCs) was 99.32%, 97.87%, 92.35%, and 84.05% for the
CONC, raw area, ccmn + sqrt, and ccmn + cube + vast processed
data, respectively. Though the observed variation of ccmn + sqrt
was less than that of the raw area data, the original structure of
variation was more preserved with ccmn + sqrt processing. The
milk dataset possessed intragroup variability, which was still vis-
ible after processing with ccmn + sqrt (Supplementary Fig. S4A).
However, this within-group variation was inflated, and the plant-
based samples displayed a right-skewed distribution after apply-
ing ccmn + cube + vast.

For the CONC and peak area data, the mean level of the
CV (mCV) in each milk type was as follows: soymilk > bovine
milk > bovine lactose-free milk > QC sample > almond milk
(Supplementary Fig. S4B). The ccmn + sqrt method could lessen
metabolite dispersion, in contrast to the ccmn + cube + vast. In
sequential order, it enlarged the mCV of the QC, bovine lactose-
free milk, bovine milk, soy milk, and almond milk samples. In ad-
dition, the trend of the fold differences between C18:1 cis-9 and
the other FAs in all milk types was substantially altered by ccmn
+ cube + vast (Supplementary Fig. S4C). Specifically, the C18:1 cis-
9 abundance became less than the FAs C8:0, C10:0, C14:1, C15:0,
C16:1, and C17:0 in both bovine milk types, as opposed to the orig-
inal CONC data. The amount of C18:1 cis-9 was higher than that of
C16:01in the bovine milk samples and lower in the almond milk. In
the case of the ccmn + sqrt method, overall fold differences were
maintained and comparable to the original CONC data.

Effects on multivariate analysis in the absence of
highly abundant metabolites

The absolute amounts of C18:1 cis-9 and C18:2 were relatively high
compared to those of the other FAs (Supplementary Fig. S2). They
were the main discriminants between almond milk, soy milk, and
plant-based and bovine milk in the PLS-DA (Fig. 3). The previous
section showed a case study involving variables with strong rela-
tive responses of a biological factor (milk types). We continued our
evaluation of the milk dataset, excluding the major metabolites
C18:1 cis-9 and C18:2. This was to represent a case study without
extreme relative responses.

From VIP clustering, the CONC, raw area, ccmn-normalized,
and pareto-scaled data were grouped and formed the closest
linkage to a cluster containing either the cube, sqrt, or power
processing alone or in combination with ccmn normalization
(Supplementary Fig. S5). Elements in this group included ccmn
+ pareto, with/without cube or sqrt transformation, and ccmn +
sqrt + power. These DP schemes formed a distant branch from
the DP tasks embracing auto, level, range, vast scaling, or log-
based transformations. In particular, the percentage of VIP sim-
ilarity was less than 40%. The VIPs from glog? + vast processed
data were the most dissimilar (Supplementary Table S5, similar-
ity = 31.54%), and only C24:0 was the discriminative metabolite
from this method (Supplementary Fig. S6A). The most similar VIP
scores were the VIP scores of the peak area (similarity = 83.28%),
whereas the VIPs from the data processed by the ccmn + power
or ccmn + sqrt processing were slightly less identical (similarity =
80.35%). The discriminant metabolites C16:0 and C4:0 were com-
monly observed from the CONC, area, and ccmn + sqrt processed
data. C14:0 was the additional discriminant for the CONC and
ccmn + sqrt processed data, while C18:0 was identified for the
peak area data.

The apparent separation between plant-based and bovine milk
was observed from the PCA plots, except for the area and glog2 +
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vast processed data (Supplementary Fig. S6B). Even without the
plant UFAs, the clustering of plant-based and bovine milk types
persisted. This was because of the differences in FA composi-
tions as reported by Jariyasopit et al. [18]. Both bovine milk types
were more enriched with saturated FA compared to plant-based
milk products (Supplementary Fig. S2). The data structure of the
CONC data was more preserved in the ccmn + sqrt processed
dataset. Meanwhile, the PCA plots of the area data with (Fig. 3B)
and without the plant UFAs (Supplementary Fig. S6B) were com-
parable. The cumulative variance explained by PC1 and PC2 for
the CONC, area, ccmn + sqrt, and glog? + vast processed data
was 97.43%, 99.47%, 97.40%, and 83.56%, respectively. Although
we noticed a clustering of plant and bovine milk types by the glog2
+ vast method, high variance was introduced within the QC and
bovine milk samples. Accordingly, we detected a substantial im-
pact on the data distribution, outliers (Supplementary Fig. S6C)
and metabolite deviation from its mean (Supplementary Fig. S6D).
In contrast to ccmn + sqrt, fold difference tendencies between
C16:0 and the other FAs, in all milk types, were markedly influ-
enced after applying glog? + vast (Supplementary Fig. S6E).

Data processing effects on the semiquantified
metabolites in urine samples

Similar aspects were performed to evaluate and compare the ef-
fects of the DP methods on 8 KP metabolites in urine samples
(study II). For CONC and raw area data, almost all metabolites
were positively skewed, and the mCV of the LN samples was
slightly higher than that of the normal samples (Supplementary
Table S6). The basic properties of the quantified and ccmn-
normalized data were closer than those of the other datasets.
However, the combined ccmn with transformation, or transform
+ scale, was not the major factor influencing the separation, as
observed in study I (Supplementary Fig. S7). When applying the
transformation, scaling, or transform + scale schemes, the DP ef-
fect on the urine data properties appeared consistent with the
milk sample data.

We observed clustering of VIPs from the sqrt, pareto, power,
ccmn + cube, ccmn + sqrt, ccmn + pareto, ccmn + power, and area
data (Supplementary Fig. S8). They formed a distinct branch from
the DP schemes, including glog, log, auto, level, range, and vast.
Meanwhile, the VIPs from the CONC and the ccmn-normalized
data were distinguished from those of the other methods. The
VIP scores from the unprocessed peak areas were 55.53%, iden-
tical to the CONC data (Supplementary Table S7). The VIP scores
of the ccmn-normalized data were the closest to those of the
quantified data (Supplementary Fig. S9A, similarity = 62.36%).
In contrast, the ccmn + level DP led to the least similar VIPs
(similarity = 41.62%). Tryptophan was the discriminant metabo-
lite (VIP >1.2) observed in the CONC data, raw areas, and ccmn-
processed data. Kynurenic acid was identified as an important
metabolite in both the CONC and the ccmn-normalized data. Pi-
colinic acid (VIP >1.6) was the discriminative metabolite observed
in the datasets that applied the DP glog, log, auto, level, range, or
vast methods (Supplementary Fig. S8). From the CONC data, this
metabolite possessed a low VIP weight (VIP = 0.03). In contrast,
3-hydroxykynurenine was only reported from the CONC data (VIP
= 1.52) and was absent in the other datasets.

The urine samples from healthy subjects and LN patients
mainly overlapped (Supplementary Fig. S9B) and showed high
within-group variation (Supplementary Fig. S9C). However, the
clustering of different subject groups was largely due to trypto-
phan (Supplementary Fig. S9A). This metabolite was reported as

a potential biomarker for chronic kidney diseases [17]. The ccmn
method improved the explained variance in the first PC (PC1 =
81.02%) compared to the raw area data (PC1 = 74.78%). In con-
trast, when using the ccmn + level method, we observed large
influences on the sample distribution, metabolite variation, and
fold differences between tryptophan and the other metabolites
(Supplementary Fig. S9C-E). When using this method, the PC1 and
cumulative variance were 41.77% and 61.56%, respectively.

IS-based normalization performance is
dependent on the type of biological factors

Two commonly used IS-based normalization methods, ccmn and
nomis, were further evaluated using milk and urine datasets. The
milk dataset has a definitive biological effect, whereas the urine
samples comprise many unknown individual variations. In this
assent, the informative variation of milk samples was retained by
the ccmn method, unlike the nomis method (Fig. 4A). The vari-
ances explained by the first and second PCs were 95.97% and
92.20% for the ccmn- and nomis-normalized data, respectively.
The first PC presented the differences between almond milk and
soy milk for the ccmn-processed data. This aspect was invisible in
the nomis-normalized data. In the case of the urine dataset, we
observed that the ccmn method performed similarly to the nomis
method (Fig. 4B). The groups of healthy and LN samples were
slightly separated. Within the LN group, variation was slightly
reduced after normalization. Subject-specific variations and the
presence of outliers are common in clinical metabolomics. More-
over, the ccmn method only assumes linear relationships between
measured metabolites and experimental factors, which is not al-
ways the case in metabolomics [22]. Therefore, the metabolite and
IS interferences in the urine matrix may not be thoroughly cor-
rected by the ccmn method.

Metabox 2.0: enhancing metabolomic data
analysis, integration, and interpretation

Metabox 2.0 is implemented as a standard R package. The cur-
rent version has undergone significant redesign and updates
since Metabox 1.0 [16], highlighting the analysis of metabolomic
data from DP steps to biomarker identification and allowing
the joint analysis of multiple data types, such as LC- and GC-
MS metabolomes, metabolomic and transcriptomic datasets, or
metabolomic and clinical data. Three analysis pipelines are or-
ganized as separate modules (Fig. 5 and Supplementary Fig. S1).
A series of scripts for a particular task is encoded in a ready-to-
use R function, allowing the implementation of customized work-
flows. The key features of this version include (i) a collection of
state-of-the-art methods for end-to-end metabolomic data anal-
ysis, (ii) normalization methods for cohort- and laboratory-scale
metabolomic studies, (iii) univariate analysis for 1 or multiple fac-
tors, (iv) multivariate modeling for both classification and regres-
sion, (v) machine learning (ML)-based biomarker analysis with
minimizing model overfitting and false-positive rates, (vi) cross-
domain data integration, (vii) data interpretation in the context
of metabolic pathways and chemical classes, (viii) various kinds
of plots for data exploration, and (ix) an intuitive GUI for bench
biologists (Fig. 5). This GUI version supports typical analysis and
allows broader usability as a hosted web application on the server.
The integrative exploration of multiomic levels in biological net-
works is excluded in this version because it requires the preinstal-
lation of a specific graph database system.

For metabolomic analysis, this tool serves as an alternative to
closely related software such as MetaboAnalyst [42], IMAP [43],
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Figure 4: Effects of the ccmn and nomis normalization methods on the (A) milk data and (B) urine data. Color coding indicates sample groups,
including the types of milk, the urine samples from healthy subjects (N), and patients with lupus nephritis (LN).

NOREVA [28], XCMS Online [44], MZmine 3 [45], and OUKS [46].
Comparison of the main features with other tools is summa-
rized in Supplementary Table S8. Metabox 2.0 covers more DP
methods and is equipped with a tool for integrative analysis of
omic and nonomic data. It is an open-source R package freely
accessible from our GitHub [47] under the GPL-3 license. Fur-
thermore, an online web version is publicly available from our
website [48].

Discussion

In the field of metabolomics, quantitative analysis is important
for understanding cellular metabolism because the abundances
of metabolites affect both free energy and metabolic reactions
[49]. Nonetheless, a number of obstacles, including the absence
of standardized methods and the accessibility of reference stan-
dards, lead the majority of metabolomics research to be con-
ducted using a semiquantitative analysis. Although semiquan-
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titative analysis does not provide the true value of a metabo-
lite's concentration, it is still useful for the discovery of important
metabolites in many studies [3]. Often, the potential bias or tech-
nical errors introduced by this approach can be removed or min-
imized through techniques in analytical chemistry and bioinfor-
matics [2, 7]. The major limitation of semiquantitative compared
to quantitative analysis is that it is challenging to compare re-
sults across different studies, leading to difficulty translating the
potential metabolites into practice, especially in clinical research
[50].

Quantitative analysis is ideal in metabolomics research; how-
ever, the absolute quantification of all metabolites can be chal-
lenging. A good DP scheme for raw data processing is essen-
tial to improve semiquantitative data such that it resembles
quantitative data. In this study, we characterized and compared
the semiquantified metabolites after different DP treatments to
their quantified counterparts. We covered 3 common scenarios
in metabolomics, including a dataset with apparent markers, a
dataset with a known biological effect, and a dataset with obscure
variations.

The results consistently indicated that normalization and
transformation had an impact on the data distribution, skewness,
and CV, while scaling only influenced the CV of the data. Apart

from 1 exception, power scaling behaved like the sqgrt + scale
scheme. This is because the method relies on the square root of
metabolite intensity along with a mean subtraction [28]. However,
these data properties could not directly reflect the final results
of statistical analyses (e.g., how many significant metabolites are
identified or how much class discrimination is improved by a spe-
cific DP method). An understanding of data distribution could
guide the choice of subsequent statistical analysis. The change in
the CV is an indicator of DP performance in reducing group vari-
ation [51].

The use of milk and urine sample datasets represented 2 sides
of the story. As a food product, the milk samples were produced
in well-controlled environments, while the urine study data were
not, even though there were strict inclusion and exclusion crite-
ria in the study cohort. Interindividual variations (e.g., dietary, ge-
netic, and demographic background) were the key unwanted vari-
ations in clinical metabolomics [7]. Accordingly, we observed that
the PLS-DA result from the milk area data resembled its CONC
data more than that of the urine study data. The raw peak areas,
excluding the 2 plant UFAs, resulted in the most similar result
to the CONC data without any processing task. Due to the numer-
ous unknown sample matrices, the ccmn method performed sim-
ilarly to nomis normalization in the urine dataset. Overall, ccmn



normalization improved the quality of semiquantitative data in
every case in our study and is therefore recommended. Further-
more, the ccmn method can segregate IS interference because of
the correlation with the factors under study [22, 31]. As such, it
can avoid the risk of losing informative variations in the nomis.

The normalization process aims to remove systematic errors
and unrelated biological variations (if applicable). However, it can-
not scale for magnitude differences among metabolites. When
considering the milk sample dataset, which included plant UFAs,
the ccmn + sqrt method was suggested. This was because the
dataset had a distinct biological factor, and the sqrt transforma-
tion had the least effect on the variance structure compared to the
other transformation methods. In descending order, the effect size
ranged from the log family, cube transformation, and sqrt method.
The performance of the scaling methods, power, and pareto was
relatively comparable and had a smaller effect on the data vari-
ance than the other methods. The vast-scaled milk and level-
scaled urine produced the most divergence among VIP results
from the CONC data. This is because vast scaling is more suit-
able for datasets with small induced fluctuations [11, 24], which
is not the case in this study. The FAs with a large variation were
considered less important, while a low-deviated metabolite be-
came more significant after vast scaling. In contrast to level scal-
ing, this approach is suggested for a study that involves large rel-
ative responses of a biological factor [11, 24]. This method failed
when using the urine sample data because the signal-to-noise ra-
tio was low. Transformation by log family is a commonly used ap-
proach in omic data analysis. Its transformation is stronger than
cube and sqrt methods (i.e., transformed data are more divergent
from the original). The log transformation performs well for data
with constant relative standard deviation [24]. However, it is not
always the case in metabolomics, where variance gets larger with
an increasing intensity level. The log transformation tends to re-
duce the large variance for large values, but it rather inflates the
variance of metabolites close to zero [52]. In this study, its per-
formance was modest for both milk and urine sample datasets
(VIP similarity = 35-45%). By using the log transformation, one
needs to balance the trade-off between obtaining more discrimi-
nant metabolites and gaining more false positives.

Class separation in multivariate models such as PCA and PLS-
DA is attributed to metabolites with high loadings, which are usu-
ally proportional to the concentration or magnitude of fold change
[24, 52, 53]. These dominant sources of variation could be infor-
mative markers or obscure dominators. We showed that, with the
presence of very high concentrations of plant UFAs (C18:1 cis-9
and C18:2), they were always the main discriminants between al-
mond milk, soy milk, and plant-based and bovine milk. Without
both plant UFAs, the second most abundant FAs (C16:0, C4:0, and
C14:0) became the key source of variation between plant-based
and bovine milk types. However, vast, range, and auto greatly min-
imized the importance of plant UFAs and resulted in a higher load-
ing for metabolites with low measured levels. Different transfor-
mation and scaling methods adjust scale-size effects to a certain
degree, allowing low-concentration metabolites to be more impor-
tant [24]. If a low-abundant metabolite could reflect the variation
of interest, it is worth considering the separation of very high-
abundant metabolites to enable exploration of low-concentration
regions.

In summary, our study showed that the ccmn or the ccmn
+ sqrt method yielded the most similar PLS-DA results between
the quantified and semiquantified equivalents. Given that ccmn
outperformed the other methods in this study, various research
projects are under way to improve the normalization strategy, that
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is, the use of quality control metabolites [31], quality control sam-
ples [8], subject-specific characteristics [7], and nonlinear model-
ing [8, 9, 22]. The transform + scale and normalize + transform
+ scale schemes could not enhance the quality of the semiquan-
titative data in many cases. This may be because of an excessive
alteration in the data variance by both transformation and scal-
ing.

Many studies have compared different strategies for
metabolomics data processing [11-15]. However, this is the
first study to use quantitative data as a reference point for DP
evaluation. Our findings are based on the closest representation
of genuine metabolite patterns, which could be a valuable guide
for the DP procedure. In practice, the CONC data are not always
available for comparison. Therefore, method evaluations, such
as those performed in this and the other studies, are highly
advised prior to any statistical analysis (e.g., the changes in CV,
the fold difference trends, the unsupervised patterns of the PCA
score plot, and the clustering of multivariate analysis outputs).
Most bioinformatics tools, such as Metabox 2.0, MetaboAnalyst
[42], NOREVA [28, 51], and OUKS [46], provide various features to
facilitate DP evaluations and comparisons.

Conclusion

This study reported the effects of DP schemes on data proper-
ties and variance structure. Normalization and transformations
altered the data normality, skewness, and CV, whereas data scal-
ing only changed the CV. The PCA and the results of PLS-DA were
compared between the absolute abundances and the processed
peak areas to observe the outcome of different DP schemes on
the data variance. The ccmn + sqrt outperformed for the datasets
with apparent markers and a known biological effect. Further-
more, the raw area may be used if the samples are from a well-
defined experiment and have a known matrix effect. Although
the resulting VIPs from the raw peak of urine metabolites were
slightly over 50% identical to the absolute levels, IS-based normal-
ization, such as ccmn, was the best option to improve this clin-
ical metabolomics data. Choosing a strong DP method (e.g., log
transformation, auto, range, vast, and level scaling) needs care-
ful consideration. These methods have less tolerance for out-
liers and tend to amplify noise. Our study used another aspect
of the DP criteria. The best DP choice allowed the semiquanti-
tative data to mimic the quantitative data. Additionally, we dis-
cussed the bioinformatics toolbox, Metabox 2.0, which contains
significant updates on the DP tasks, biomarker identification, and
integrative analysis, and served as a tool for all analyses in this
study.

Availability of Source Code

Project name: Metabox 2.0

Project homepage: https://metsysbio.com/metabox/index.html
Operating system(s): Platform independent

Programming language: R

Other requirements: None

License: GNU General Public License (v3)

RRID: SCR_024,443

Additional Files

Supplementary Fig. S1. Metabox 2.0 analysis pipelines. Metabox
2.0 provides 3 analysis pipelines: (A) data processing and anal-
ysis, (B) data integration, and (C) data interpretation. For each
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pipeline, the analysis module and its major tasks are presented
in blue boxes. The data processing and analysis pipeline includes
separated modules for data processing, statistical analysis, and
biomarker analysis. A comma-separated values (CSV) file is the
required input format. The output contains a report file, related
figures, and tables.

Supplementary Fig. S2. The absolute concentration of 16 FAs in
the milk samples.

Supplementary Fig. S3. Clustering of VIPs from absolute concen-
tration, unprocessed milk, and processed milk data by different
DP schemes.

Supplementary Fig. S4. Comparisons of the selected DP schemes
to the absolute concentration and unprocessed milk data repre-
sented by (A) across-group RLA plots, (B) CV plots, and (C) fold
differences of oleic acid to the other fatty acids. The CV of each
metabolite is indicated by color coding from green to red. The
large CV (CV >1.0) is represented as a dark gray dot. The average
CV (mCV) of each group is shown.

Supplementary Fig. S5. Clustering of VIPs from absolute concen-
tration, unprocessed milk, and processed milk data without the
plant UFAs by different DP schemes.

Supplementary Fig. S6. Comparisons of the selected DP schemes
to the absolute concentration and unprocessed milk data without
the plant UFAs represented by (A) clustering of VIPs, (B) PCA plot,
(C) across-group RLA plots, (D) CV plots, and (E) fold differences of
palmitic acid to the other fatty acids. The CV of each metabolite
is indicated by color coding from green to red. The large CV (CV
>1.0) is represented as a dark gray dot. The average CV (mCV) of
each group is shown.

Supplementary Fig. S7. PCA score plots based on the data
properties of absolute concentration, raw area, and processed
urine datasets. (A) Major separation based on DP schemes and
(B) major separation based on transformation methods. The
data properties included normality, skewness, and coefficient of
variation.

Supplementary Fig. S8. Clustering of VIPs from absolute concen-
tration, unprocessed urine, and processed urine data by different
DP schemes.

Supplementary Fig. S9. Comparisons of the selected DP schemes
to the absolute concentration and unprocessed urine data rep-
resented by (A) clustering of VIPs, (B) PCA plot, (C) across-group
RLA plots, (D) CV plots, and (E) fold differences of tryptophan
to the other KP metabolites. The CV of each metabolite is in-
dicated by color coding from green to red. The large CV (CV
>1.0) is represented as a dark gray dot. The average CV (mCV)
of each group is shown. Healthy group (N) and lupus nephritis
group (LN).

Supplementary Table S1. List of DP methods in Metabox 2.0.
Supplementary Table S2. List of univariate analysis in Metabox
2.0.

Supplementary Table S3. Data properties of the absolute concen-
tration, area and processed milk data.

Supplementary Table S4. Similarity of VIPs from the area, and
processed milk data compared to the absolute concentration data.
Supplementary Table S5. Similarity of VIPs from the milk data set
excluded the plant UFAs.

Supplementary Table S6. Data properties of the absolute concen-
tration, area and processed urine data.

Supplementary Table S7. Similarity of VIPs from the area, and
processed urine data compared to the absolute concentration
data.

Supplementary Table S8. Comparison of Metabox 2.0 with other
open source tools.

Data Availability

R code used for this article and intermediary files are available
from the GigaScience database, GigaDB [54]. The metabox2 pack-
age and its full source code are also available from GitHub [47].
The datasets used in this article have been submitted to the
Metabolomics Workbench repository [55], study I (ST002902), and
study 1I (ST002874).

Abbreviations

ccmn: cross-contribution compensating multiple standard nor-
malization; CONC: absolute concentration; CUBE: cube root; CV:
coefficient of variation; DP: data processing; FA: fatty acid; GC-
TOFMS: gas chromatography coupled to a time-of-flight mass
spectrometer; GLOG: generalized logarithm; GUI: graphical user
interface; IS: internal standard; KEGG: Kyoto Encyclopedia of
Genes and Genomes; KP: kynurenine pathway; LC-MS/MS: liquid
chromatography platform coupled to tandem mass spectrometer;
LN: lupus nephritis; LOG: logarithm; MBPLSDA: multiblock partial
least squares discriminant analysis; ML: machine learning; MS:
mass spectrometry; nomis: normalization using an optimal se-
lection of multiple internal standards; OPLS-DA: orthogonal par-
tial least squares—discriminant analysis; PC: principal component;
PCA: principal component analysis; PLS-DA: partial least squares—
discriminant analysis; QC: quality control; repCV: repeated double
cross-validation; RF: random forest; RLA: relative log abundance;
sqrt: square root; UFA: unsaturated fatty acid; VIP: variable im-
portance in projection.

Competing Interests

The authors declare that they have no competing interests.

Funding

KW, AW, and S.X. acknowledge support from the Program Man-
agement Unit for Human Resources & Institutional Development,
Research and Innovation, through Khon Kaen University Cholan-
glocarcinoma Research Institute (No. 630000050069) for the de-
velopment of Metabox 2.0. The project was supported by Mahidol
University, Grant No. (I0) R016420001 (to S.K.). The running server
for the online version is supported by the Program Management
Unit for Human Resources & Institutional Development, Research
and Innovation, Grant No. B36G660007 (to S.K.). This projectis par-
tially supported by the Research Excellence Development (RED)
program, Faculty of Medicine Siriraj Hospital, Mahidol University.

Authors’ Contributions

KW, AL, and SXK. conceived and designed the study. K. W. and A.L
developed the software. KW, A.I, and SXK. performed data anal-
ysis. O.F. and S.K. supervised the analyses, gave scientific discus-
sion, and assisted in manuscript preparation. A.'W. and S.X. pro-
vided the resources for the study. K.W. and S.K. wrote the origi-
nal draft. KW, AL, S.F, OF, AW, and SK. edited the manuscript.
All authors reviewed the manuscript and approved the submitted
version.



Acknowledgments

K.W. thanks Dr. Narumol Jariyasopit for technical advice regarding
the milk metabolomic datasets. Dr. Jonathan Robinson is acknowl-
edged for the comments and constructive discussions.

References

1.

10.

11

12.

13.

14.

Kim S, Kim J, Yun EJ, et al. Food metabolomics: from farm to
human. Curr Opin Biotechnol 2016;37:16-23. https://doi.org/10
.1016/§.copbio.2015.09.004.

Khoomrung S, Wanichthanarak K, Nookaew I, et al
Metabolomics and integrative omics for the development
of Thai traditional medicine. Front Pharmacol 2017;8:474.
https://doi.org/10.3389/fphar.2017.00474.

Wishart DS. Metabolomics for investigating physiological and
pathophysiological processes. Physiol Rev 2019;99(4):1819-75.
https://doi.org/10.1152/physrev.00035.2018.

Tebani A, Afonso C, Bekri S. Advances in metabolome informa-
tion retrieval: turning chemistry into biology. Part I: analytical
chemistry of the metabolome. ] Inher Metab Dis 2018;41(3):379-
91. https://doi.org/10.1007/510545-017-0074-y.

Noack S, Wiechert W. Quantitative metabolomics: a phantom?
Trends Biotechnol 2014;32(5):238-44. https://doi.org/10.1016/j.ti
btech.2014.03.006.

Yang Q, Zhang A-H, Miao J-H, et al. Metabolomics biotechnology,
applications, and future trends: a systematic review. RSC Adv
2019;9(64):37245-57. https://doi.org/10.1039/CIRA06697G.
Wanichthanarak K, Jeamsripong S, Pornputtapong N, et al. Ac-
counting for biological variation with linear mixed-effects mod-
elling improves the quality of clinical metabolomics data. Com-
put Struct Biotechnol J 2019;17:611-8. https://doi.org/10.1016/j.
€sbj.2019.04.009.

Fan S, Kind T, Cajka T, et al. Systematic error removal using
random forest for normalizing large-scale untargeted lipidomics
data. Anal Chem 2019;91(5):3590-6. https://doi.org/10.1021/acs.
analchem.8b05592.

Rong Z, Tan Q, Cao L, et al. NormAE: deep adversarial learn-
ing model to remove batch effects in liquid chromatogra-
phy mass spectrometry-based metabolomics data. Anal Chem
2020;92(7):5082-90. https://doi.org/10.1021/acs.analchem.9b054
60.

Yu H, Sang P, Huan T. Adaptive box-cox transformation: a
highly flexible feature-specific data transformation to improve
metabolomic data normality for better statistical analysis.
Anal Chem 2022;94(23):8267-76. https://doi.org/10.1021/acs.an
alchem.2c00503.

Gromski PS, Xu Y, Hollywood KA, et al. The influence of
scaling metabolomics data on model classification accuracy.
Metabolomics 2015;11(3):684-95. https://doi.org/10.1007/s11306
-014-0738-7.

Di Guida R, Engel J, Allwood JW, et al. Non-targeted UHPLC-MS
metabolomic data processing methods: a comparative investi-
gation of normalisation, missing value imputation, transforma-
tion and scaling. Metabolomics 2016;12:93. https://doi.org/10.1
007/s11306-016-1030-9.

Cuevas-Delgado P, Dudzik D, Miguel V, et al. Data-dependent
normalization strategies for untargeted metabolomics—a case
study. Anal Bioanal Chem 2020;412(24):6391-405. https://doi.or
g/10.1007/500216-020-02594-9.

Wu Y, Li L. Sample normalization methods in quantitative
metabolomics. ] Chromatogr A 2016;1430:80-95. https://doi.org/
10.1016/j.chroma.2015.12.007.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Data processing solutions using Metabox 2.0 | 13

Chen ], Zhang P, Lv M, et al. Influences of normalization
method on biomarker discovery in gas chromatography-mass
spectrometry-based untargeted metabolomics: what should be
considered? Anal Chem 2017;89(10):5342-8. https://doi.org/10.1
021/acs.analchem.6b05152.

Wanichthanarak K, Fan S, Grapov D, et al. Metabox: a toolbox for
metabolomic data analysis, interpretation and integrative ex-
ploration. PLoS One 2017;12(1):¢0171046. https://doi.org/10.137
1/journal.pone.0171046.

Anekthanakul K, Manocheewa S, Chienwichai K, et al. Pre-
dicting lupus membranous nephritis using reduced picolinic
acid to tryptophan ratio as a urinary biomarker. iScience
2021;24(11):103355. https://doi.org/10.1016/j.is¢1.2021.103355.
Jariyasopit N, Khamsaeng S, Panya A, et al. Quantitative analy-
sis of nutrient metabolite compositions of retail cow’s milk and
milk alternatives in Thailand using GC-MS. ] Food Compos Anal
2021;97:103785. https://doi.org/10.1016/].jfca.2020.103785.
Goldstein SL. Urinary kidney injury biomarkers and urine cre-
atinine normalization: a false premise or not? Kidney Int
2010;78(5):433-5. https://doi.org/10.1038/ki.2010.200.

Waikar SS, Sabbisetti VS, Bonventre JV. Normalization of urinary
biomarkers to creatinine during changes in glomerular filtration
rate. Kidney Int 2010;78(5):486-94. https://doi.org/10.1038/ki.201
0.165.

Kokla M, Virtanen J, Kolehmainen M, et al. Random forest-
based imputation outperforms other methods for imputing
LC-MS metabolomics data: a comparative study. BMC Bioinf
2019;20(1):492. https://doi.org/10.1186/s12859-019-3110-0.
Redestig H, Fukushima A, Stenlund H, et al. Compensation
for systematic cross-contribution improves normalization of
mass spectrometry based metabolomics data. Anal Chem
2009;81(19):7974-80. https://doi.org/10.1021/ac901143w.
Sysi-Aho M, Katajamaa M, Yetukuri L, et al. Normalization
method for metabolomics data using optimal selection of mul-
tiple internal standards. BMC Bioinf 2007;8(1):93. https://doi.or
g/10.1186/1471-2105-8-93.

Van Den Berg RA, Hoefsloot HC, Westerhuis JA, et al. Centering,
scaling, and transformations: improving the biological informa-
tion content of metabolomics data. BMC Genomics 2006:7:142.
https://doi.org/10.1186/1471-2164-7-142.

LiB, Tang]J, Yang Q, et al. Performance evaluation and online re-
alization of data-driven normalization methods used in LC/MS
based untargeted metabolomics analysis. Sci Rep 2016;6:38881.
https://doi.org/10.1038/srep38881.

Parsons HM, Ludwig C, Glinther UL, et al. Improved classification
accuracy in 1- and 2-dimensional NMR metabolomics data us-
ing the variance stabilising generalised logarithm transforma-
tion. BMC Bioinf 2007;8(1):234. https://doi.org/10.1186/1471-210
5-8-234.

Durbin BP, Hardin JS, Hawkins DM, et al. A variance-stabilizing
transformation for gene-expression microarray data. Bioinfor-
matics 2002;18(Suppl 1):5105-10. https://doi.org/10.1093/bioinf
ormatics/18.suppl_1.5105.

Yang Q, Wang Y, Zhang Y, et al. NOREVA: enhanced nor-
malization and evaluation of time-course and multi-class
metabolomic data. Nucleic Acids Res 2020;48(W1):W436-48. ht
tps://doi.org/10.1093/nar/gkaa258.

Royston JP. Algorithm AS 181: the W Test for normality. J R Stat
Soc Ser C Appl Stat 1982;31(2):176-80. https://sci2s.ugr.es/keel/
pdf/algorithm/articulo/royston1982.pdf.

Meyer D, E Dimitriadou, K Hornik, et al. e1071: Misc Functions
of the Department of Statistics, Probability Theory Group (For-


https://doi.org/10.1016/j.copbio.2015.09.004
https://doi.org/10.3389/fphar.2017.00474
https://doi.org/10.1152/physrev.00035.2018
https://doi.org/10.1007/s10545-017-0074-y
https://doi.org/10.1016/j.tibtech.2014.03.006
https://doi.org/10.1039/C9RA06697G
https://doi.org/10.1016/j.csbj.2019.04.009
https://doi.org/10.1021/acs.analchem.8b05592
https://doi.org/10.1021/acs.analchem.9b05460
https://doi.org/10.1021/acs.analchem.2c00503
https://doi.org/10.1007/s11306-014-0738-7
https://doi.org/10.1007/s11306-016-1030-9
https://doi.org/10.1007/s00216-020-02594-9
https://doi.org/10.1016/j.chroma.2015.12.007
https://doi.org/10.1021/acs.analchem.6b05152
https://doi.org/10.1371/journal.pone.0171046
https://doi.org/10.1016/j.isci.2021.103355
https://doi.org/10.1016/j.jfca.2020.103785
https://doi.org/10.1038/ki.2010.200
https://doi.org/10.1038/ki.2010.165
https://doi.org/10.1186/s12859-019-3110-0
https://doi.org/10.1021/ac901143w
https://doi.org/10.1186/1471-2105-8-93
https://doi.org/10.1186/1471-2164-7-142
https://doi.org/10.1038/srep38881
https://doi.org/10.1186/1471-2105-8-234
https://doi.org/10.1093/bioinformatics/18.suppl_1.S105
https://doi.org/10.1093/nar/gkaa258
https://sci2s.ugr.es/keel/pdf/algorithm/articulo/royston1982.pdf

14

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

| GigaScience, 2024, Vol. 13

merly: E1071), TU Wien. 2023; R package version 1.7-14. https:
//CRAN.R-project.org/package=e1071.

Livera AMD, Sysi-Aho M, Jacob L, et al. Statistical
methods for handling unwanted variation in metabolomics
data. Anal Chem 2015;87(7):3606-15. https://doi.org/10.1021/ac
502439y.

Farrés M, Platikanov S, Tsakovski S, et al. Comparison
of the variable importance in projection (VIP) and of the
selectivity ratio (SR) methods for variable selection and inter-
pretation. ] Chemom 2015;29(10):528-36. https://doi.org/10.100
2/cem.2736.

Gu Z. Complex heatmap visualization. iMeta 2022;1(3):e43. http
s://doi.org/10.1002/imt2.43.

Chang W, J Cheng, J Allaire, et al. shiny: Web Application Frame-
work for R. 2022; R package version 1.7.4. https://CRAN.R-proje
ct.org/package=shiny.

Thévenot EA, Roux A, Xu Y, et al. Analysis of the human
adult urinary metabolome variations with age, body mass in-
dex, and gender by implementing a comprehensive workflow
for univariate and OPLS statistical analyses. ] Proteome Res
2015;14(8):3322-35. https://doi.org/10.1021/acs.jproteome.5b00
354.

Shi L, Westerhuis JA, Rosén J, et al. Variable selection and vali-
dation in multivariate modelling. Bioinformatics 2019;35(6):972-
80. https://doi.org/10.1093/bioinformatics/bty710.
Brandolini-Bunlon M, Pétéra M, Gaudreau P, et al. Multi-block
PLS discriminant analysis for the joint analysis of metabolomic
and epidemiological data. Metabolomics 2019;15(10):134. https:
//doi.org/10.1007/s11306-019-1598-y.

Véremo L, Nielsen J, Nookaew I. Enriching the gene set analy-
sis of genome-wide data by incorporating directionality of gene
expression and combining statistical hypotheses and methods.
Nucleic Acids Res 2013;41(8):4378-91. https://doi.org/10.1093/na
r/gkt111.

Kanehisa M, Goto S, Sato Y, et al. KEGG for integration and in-
terpretation of large-scale molecular data sets. Nucleic Acids
Res 2012;40(Database issue):D109-14. https://doi.org/10.1093/

nar/gkro8s.
Wishart DS, Guo A, Oler E, et al. HMDB 5.0: the
Human  Metabolome  Database for 2022. Nucleic

Acids Res 2022;50(D1):D622-31. https://doi.org/10.1093/nar/
gkab1062.

He M, Qin C-X, Wang X, et al. Plant unsaturated fatty acids:
biosynthesis and regulation. Front Plant Sci 2020;11:390. https:
//doi.org/10.3389/fpls.2020.00390.

Pang Z, Chong J, Zhou G, et al. MetaboAnalyst 5.0: narrowing
the gap between raw spectra and functional insights. Nucleic
Acids Res 2021;49(W1):W388-96. https://doi.org/10.1093/nar/gk
ab382.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Zhou D, Zhu W, Sun T, et al. iIMAP: a web server for
Metabolomics Data Integrative Analysis. Front Chem
2021;9:659656. https://doi.org/10.3389/fchem.2021.659656.
Huan T, Forsberg EM, Rinehart D, et al. Systems biology guided
by XCMS online metabolomics. Nat Methods 2017;14(5):461-2.
https://doi.org/10.1038/nmeth.4260.

Schmid R, Heuckeroth S, Korf A, et al. Integrative analysis of
multimodal mass spectrometry data in MZmine 3. Nat Biotech-
nol 2023;41(4):447-9. https://doi.org/10.1038/s41587-023-01690
-2.

Plyushchenko IV, Fedorova ES, Potoldykova NV, et al. Omics un-
targeted key script: R-based software toolbox for untargeted

metabolomics with bladder cancer biomarkers discovery case
study. ] Proteome Res 2022;21(3):833-47. https://doi.org/10.102

1/acs.jproteome.1c00392.

Metabox 2.0. 2023. https://github.com/kwanjeeraw/metabox2.
Accessed 31 January 2024.

Metabox 2.0 Online. 2023. https://metsysbio.com/metabox/. Ac-
cessed 31 January 2024.

Bennett BD, Kimball EH, Gao M, et al. Absolute metabolite con-
centrations and implied enzyme active site occupancy in Es-
cherichia coli. Nat Chem Biol 2009;5(8):593-9. https://doi.org/10
.1038/nchembio.186.

Jariyasopit N, Khoomrung S. Mass spectrometry-based analysis
of gut microbial metabolites of aromatic amino acids. Comput
Struct Biotechnol J 2023;21:4777-89. https://doi.org/10.1016/j.cs
bj.2023.09.032.

Li B, Tang J, Yang Q, et al. NOREVA: normalization
and evaluation of MS-based metabolomics data. Nucleic
Acids Res 2017;45(W1):W162-70. https://doi.org/10.1093/nar/gk
x449.

Waaijenborg S, Korobko O, Willems Van Dijk K, et al. Fusing
metabolomics data sets with heterogeneous measurement er-
rors. PLoS One 2018;13(4):€0195939. https://doi.org/10.1371/jour
nal.pone.0195939.

Keun HC, Ebbels TMD, Antti H, et al. Improved analysis of mul-
tivariate data by variable stability scaling: application to NMR-
based metabolic profiling. Anal Chim Acta 2003;490(1):265-76.
https://doi.org/10.1016/S0003-2670(03)00094- 1.
Wanichthanarak K, In-on A, Fan S, et al. Supporting data for
“Data Processing Solutions to Render Metabolomics More Quan-
titative: Case Studies in Food and Clinical Metabolomics Using
Metabox 2.0.” GigaScience Database. 2024. https://doi.org/10.552
4/102497.

Sud M, Fahy E, Cotter D, et al. Metabolomics Workbench: an
international repository for metabolomics data and metadata,
metabolite standards, protocols, tutorials and training, and
analysis tools. Nucleic Acids Res 2016;44(D1):D463-70. https:
//doi.org/10.1093/nar/gkv1042.

Received: August 29, 2023. Revised: December 22, 2023. Accepted: February 2, 2024
© The Author(s) 2024. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.


https://CRAN.R-project.org/package=e1071
https://doi.org/10.1021/ac502439y
https://doi.org/10.1002/cem.2736
https://doi.org/10.1002/imt2.43
https://CRAN.R-project.org/package=shiny
https://doi.org/10.1021/acs.jproteome.5b00354
https://doi.org/10.1093/bioinformatics/bty710
https://doi.org/10.1007/s11306-019-1598-y
https://doi.org/10.1093/nar/gkt111
https://doi.org/10.1093/nar/gkr988
https://doi.org/10.1093/nar/gkab1062
https://doi.org/10.3389/fpls.2020.00390
https://doi.org/10.1093/nar/gkab382
https://doi.org/10.3389/fchem.2021.659656
https://doi.org/10.1038/nmeth.4260
https://doi.org/10.1038/s41587-023-01690-2
https://doi.org/10.1021/acs.jproteome.1c00392
https://github.com/kwanjeeraw/metabox2
https://metsysbio.com/metabox/
https://doi.org/10.1038/nchembio.186
https://doi.org/10.1016/j.csbj.2023.09.032
https://doi.org/10.1093/nar/gkx449
https://doi.org/10.1371/journal.pone.0195939
https://doi.org/10.1016/S0003-2670(03)00094-1
https://doi.org/10.5524/102497
https://doi.org/10.1093/nar/gkv1042
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Materials and methods
	Results
	Discussion
	Conclusion
	Availability of Source Code
	Additional Files
	Data Availability
	Abbreviations
	Competing Interests
	Funding
	Authors Contributions
	Acknowledgments
	References

