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Abstract 

In classic semiquantitati v e meta bolomics, meta bolite intensities ar e affected by biological factors and other unw anted v ariations. 
A systematic evaluation of the data processing methods is crucial to identify adequate processing procedures for a given experi- 
mental setup. Current comparative studies are mostly focused on peak area data but not on absolute concentrations. In this study, 
we evaluated data processing methods to produce outputs that were most similar to the corresponding absolute quantified data. 
We examined the data distribution c har acteristics, fold difference patterns between 2 metabolites, and sample variance. We used 2 
metabolomic datasets from a retail milk study and a lupus nephritis cohort as test cases. When studying the impact of data normal- 
ization, transformation, scaling, and combinations of these methods, we found that the cross-contribution compensating multiple 
standard normalization (ccmn) method, followed by square root data transformation, was most appropriate for a well-controlled 

study such as the milk study dataset. Regarding the lupus nephritis cohort study, only ccmn normalization could slightly improve the 
data quality of the noisy cohort. Since the assessment accounted for the r esemb lance between processed data and the corresponding 
absolute quantified data, our results denote a helpful guideline for processing metabolomic datasets within a similar context (food 

and clinical meta bolomics). Finall y, we intr oduce Meta box 2.0, which ena b les thor ough anal ysis of meta bolomic data, including data 
pr ocessing, biomarker anal ysis, inte gr ati v e anal ysis, and data interpretation. It was successfully used to process and analyze the data 
in this study. An online web version is available at http://metsysbio.com/metabox . 

Ke yw ords: meta bolomics, quantitati v e anal ysis, semiquantitati v e anal ysis, data pr ocessing, normalization, transformation, scaling, 
R package 
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Introduction 

Metabolomic analysis is widely accepted as a reliable technol- 
ogy for inv estigating bioc hemical activities within a cell or tis- 
sue of a living organism, and it has been used to address var- 
ious questions in biology, drug metabolism, food and nutrition,
natur al pr oducts, and biomedicine [ 1–3 ]. Typicall y, the metabolite 
le v el in a sample can be determined quantitativ el y or semiquan- 
titativ el y. Metabolomic quantitativ e anal ysis (absolute quantifica- 
tion) aims to ensure the comparability of metabolite concentra- 
tions from measurements obtained at different times or locations.
On the other hand, semiquantitative analysis (relative quantifica- 
tion) determines the ratio of metabolite intensity from different 
samples [ 4 , 5 ]. Ther efor e, the absolute concentr ations of metabo- 
lites r epr esent a benc hmark dataset that allows an unbiased com- 
parison across different studies. Due to the limited availability of 
r efer ence standards, most metabolomic studies are conducted in 
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 semiquantitative manner. Ho w ever, the inability to compare or
orrelate the results from different studies remains one of the
ajor limitations of semiquantitative analysis [ 6 ]. This is a pri-
ary r oadbloc k in the de v elopment of metabolomics r esearc h. It

s ther efor e essential to encour a ge the metabolomics comm unity
o increase focus on quantitative analyses. 

Data processing (DP) plays an important role in semiquanti- 
ative and quantitativ e anal yses; the pr ocedur es include impu-
ation, normalization, transformation, scaling, and combinations 
hereof [ 7 ]. To date, numerous DP methods have been proposed
n metabolomic studies [ 7–10 ], each with distinct adv anta ges and
itfalls . T her efor e, thor ough method e v aluations ar e crucial to
inpointing the best-performing process for a given metabolomic 
tudy. Many studies have evaluated and compared DP strategies 
ased on different perspectives, including the normality structure 
f the data, changes in global variations, reduction of intragroup
 Open Access article distributed under the terms of the Cr eati v e Commons 
unrestricted reuse, distribution, and reproduction in any medium, provided 

https://orcid.org/0000-0003-0245-0833
https://orcid.org/0000-0002-9618-6473
https://orcid.org/0000-0002-6261-8928
https://orcid.org/0000-0003-4536-4492
https://orcid.org/0000-0001-9461-8597
mailto:sakda.kho@mahidol.edu
mailto:arpowa@kku.ac.th
http://metsysbio.com/metabox
https://creativecommons.org/licenses/by/4.0/


2 | GigaScience , 2024, Vol. 13 

d  

p  

a
 

m  

i  

l  

p  

s  

t  

o  

o  

f  

v  

t  

t  

c  

d  

d  

v
 

M  

m  

a  

s  

d  

b  

g  

w

M
M
Q  

t  

I  

m  

y  

b  

(  

t  

p  

q  

s  

U
 

s  

w  

m  

l  

(  

o  

p  

T  

a
 

p  

t  

i  

a  

i  

s  

t  

a  

b  

i  

g  

s  

c  

t  

d  

f

D
T  

g  

t

C
s
C  

t  

a  

[  

a  

i  

m  

t  

s  

I

D
T  

t  

d  

s  

a  

(  

t  

w  

u  

n  

m  

t  

s  

t  

u  

e  

a  

t

D
S  

t  

s  

m  

6  

i  

s  

p  

P  

w

istance, univariate or multivariate analysis, consistent ranks of
utati ve mark ers, and classification accuracy [ 11–15 ]. DP methods
re context dependent and not determined by a sole criterion. 

Since quantitative analysis is not applicable in every
etabolomic study, c hoosing pr oper DP sc hemes for polish-

ng the peak areas is crucial to best estimate the true metabolite
e v els . T his study aimed to employ another strategy to assess the
erformance of w ell-kno wn DP methods . T he most desirable DP
cheme is the one that yields identical statistical results between
he processed data and its quantitative companion. The results
btained constitute a useful and unbiased r efer ence for DP r ec-
mmendations . T he impact of DP method on data distribution,
old-difference patterns between metabolite pairs, and sample
ariance need to be studied. The DP schemes investigated in
his study cov er ed internal standard (IS)–based normalization,
r ansformation, scaling, tr ansformation follo w ed b y scaling, and
ombinations. We used 2 metabolomic datasets r epr esenting
ifferent types of data: data relating to a food product with
efiniti ve mark ers and clinical metabolomic data with indistinct
ariations. 

Last, we introduced an updated version of the R pac ka ge
etabox [ 16 ] to consolidate a state-of-the-art set of methods for
etabolomic analysis from several R packages. Metabox 2.0 en-

bles the in-depth analysis of metabolomic data covering the DP
te ps, biomark er identification, integrati ve analysis of multiple
ata types, and functional inter pr etation. The softwar e is assem-
led with ready-to-use R functions that are highly flexible for pro-
ramming tasks and have broad application potential. This tool
as used for all processing steps and analyses in this study. 

aterials and methods 

etabolomic datasets 

uantitative and semiquantitative metabolomic data were ob-
ained from our recent studies [ 17 , 18 ]. The first dataset (study
) included the nutrient metabolite composition of various retail

ilk samples purchased in Thailand [ 18 ]. In this study, the anal-
sis was focused on 16 fatty acids (FAs) from 4 milk types: whole
ovine milk ( n = 13), bovine lactose-free milk ( n = 6), soy milk
 n = 7), and almond milk ( n = 3). Each sample was analyzed in
riplicate . T he dataset contained 10 quality control (QC) samples
ooled from a mixture of all the milk samples . T he FAs were ac-
uired using gas chromatography coupled to a time-of-flight mass
pectrometer (GC-TOFMS; Pegasus BT; Leco Corp., St. Joseph, MI,
SA). 
The second dataset (study II) contained information on urine

amples collected from Ramathibodi Hospital, Thailand [ 17 ]. This
as done with a ppr ov al fr om the Faculty of Medicine Ethics Com-
ittee, Ramathibodi Hospital, Mahidol University, Bangkok, Thai-

and. The urine samples wer e acquir ed fr om 53 healthy subjects
N) and 63 patients with lupus nephritis (LN). The metabolites
f the kynurenine pathway (KP) were measured using an ultra-
erformance liquid c hr omatogr a phy platform coupled to a Xevo
Q-S tandem mass spectrometer (LC-MS/MS) and interfaced by
n electr ospr a y ionization source (Waters , Milford, MA, USA). 

The mass spectrometry (MS) data from both studies were
r epr ocessed and quantified as described in pr e vious publica-
ions [ 17 , 18 ]. The concentration of each FA was normalized by
ts molecular weight ( μmol), allowing quantitative comparison
cross studies . T he concentration of KP metabolites was normal-

zed by the concentration of urinary creatinine . T his follows the
tandard practice of adjusting the concentration of a metabolite
o creatinine filtration in nephrotic syndromes [ 19 , 20 ]. Addition-
ll y, missing v alue imputation was performed on the milk dataset
efore data analysis. A minimum value of each metabolite was

mputed to a metabolite with missing values higher than 30%
roupwise . T his step was needed because of the true-negative ab-
ence of metabolites under specific conditions, as defined by con-
entrations that were below the detection limit [ 21 ]. If applicable,
he nondetected metabolites at random (the percentage of non-
etected metabolites < 30%) were then imputed by the random
orest (RF) method. 

ata processing schemes 

his study e v aluated the DP sc hemes commonl y a pplied in a
eneral metabolomic w orkflo w [ 7 ]. This included normalization,
ransformation, scaling, and their combinations. 

ross-contribution compensating multiple 

tandard normalization 

r oss-contribution compensating m ultiple standard normaliza-
ion (ccmn) is an IS-based normalization in which metabolite
bundances are estimated proportionately to a known IS quantity
 22 ]. Additionally, it considers systematic error and study factors
s independent sources of variation on ISs; important information
s unaffected by normalization [ 22 ]. In contrast to a closely related

ethod, such as normalization using an optimal selection of mul-
iple internal standards (nomis), this method r emov es unwanted
ystematic variation based on the variability of single or multiple
Ss [ 23 ]. 

a ta tr ansforma tion 

ransformation aims to reduce data skewness, fix heteroscedas-
icity, and turn m ultiplicativ e metabolite r elationships into ad-
itiv e r elationships [ 24 ]. Six transformation methods were as-
essed in this study, including cube root (cube), logarithm (log2
nd log10), generalized log (glog2 and glog10), and square root
sqrt) transformations ( Supplementary Table S1 ). Transforma-
ions can reduce the differences between large and small values,
her eby lar ge v alues ar e scaled down m uc h mor e than small v al-
es [ 24 ]. These transformations lead to a depletion in right skew-
ess, which is an observed characteristic of omics data such as
etabolomic and transcriptomic data [ 25 ]. The cube and glog

ransformations accept zero and negative values, whereas the
qrt transformation can only manage zero values. In contrast, log
ransformations can only handle nonzero and nonnegative val-
es . T he glog transforms the data using a specific parameter for
ach dataset [ 26 ]. Additionally, it focuses on stabilizing data vari-
nce (i.e., k ee ping the variance constant and inde pendent from
he mean) [ 26 , 27 ]. 

ata scaling 

caling reduces the fold difference between metabolite concen-
rations based on scaling factors [ 24 ]. This is unlike the pseudo-
caling effect of tr ansformations. Her e, a scaling factor is deter-
ined explicitly for a particular metabolite . T his study compared
 scaling methods: auto, le v el, par eto, po w er, r ange, and v ast scal-
ng ( Supplementary Table S1 ). The auto , pareto , range, and vast
caling estimates are scaling factors that are based on data dis-
ersion. In contr ast, le v el scaling is based on the mean v alue [ 24 ].
o w er scaling performs an av er a ge subtr action in combination
ith the sqrt transformation [ 28 ]. 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
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Anal ysis w orkflo w 

Differ ent DP sc hemes wer e inv estigated using study I [ 18 ] and 

study II [ 17 ] datasets that comprised both quantitative (the ab- 
solute le v els) and semiquantitativ e (the peak areas of metabo- 
lites) r esults. K ey DP sc hemes wer e performed to e v aluate their 
effect on the peak area data, which included (A) no processing 
(r aw ar ea), (B) tr ansformation, (C) scaling, (D) tr ansformation fol- 
lo w ed b y scaling, (E) IS-based normalization b y the ccmn method,
and (F) ccmn normalization combined with transformation, scal- 
ing, or a combination of both (Fig. 1 ). The ccmn normalization 

was performed using the normalize_input_data_byqc function from 

the R pac ka ge Metabox 2.0 ( RRID: SCR_024,443). The function 

was implemented from the CRMN R package for normalization of 
metabolomics data [ 22 ]. Heptanoic methyl ester and anthranilic 
acid C 13 were used as an IS in study I and study II, r espectiv el y.
Known amounts of ISs were added to samples before sample 
pr epar ation, so that metabolite peak ar eas wer e normalized with 

respect to the responses of the ISs. 
In total, 97 processed datasets were analyzed, and unprocessed 

data were considered. We evaluated the influence of the DP meth- 
ods and their combinations on different aspects, including nor- 
mality, skewness, coefficient of variation (CV), the trend of fold 

differ ences, sample heter ogeneity, and m ultiv ariate anal ysis out- 
puts. 

The normality test and measures of ske wness wer e computed 

by the Sha pir o–Wilk normality test [ 29 ] and the skewness func- 
tion of the e1071 R pac ka ge [ 30 ], r espectiv el y. A P value > 0.05 indi-
cates a normal distribution, and the symmetric skewness ranges 
from −0.5 to 0.5. The CV for a metabolite is the ratio of the stan- 
dard deviation to the mean within a group. The fold and direc- 
tional differences of a metabolite from a reference were calcu- 
lated. Since most DP methods str ongl y affect highl y abundant 
metabolites, the metabolite with the highest le v el was used as 
a r efer ence point. An acr oss-gr oup r elativ e log abundance (RLA) 
plot was applied to explore the grouping structure , outliers , and 

variation within each group. Each metabolite was standardized 

by subtracting the median from across all groups [ 31 ]. A principal 
component analysis (PCA) was performed to visualize the major 
variations in the data regarding the biology of interest. 

Mor eov er, the effects of various DP methods on the partial least 
squar es–discriminant anal ysis (PLS-DA) in comparison to the ab- 
solute concentration (CONC) data were examined. The variable 
importance in projection (VIP) of a metabolite indicates its degree 
of contribution to the variance in the PLS model [ 32 ]. The similar- 
ity between the resulting VIPs from the CONC data, raw area data,
and processed data was computed. The similarity between the 2 
a ppr oac hes, x and y , was calculated using Euclidean distance ac- 
cording to the following equation ( 1 ): 

Similarity ( x, y ) = 1 −
√ √ √ √ 

n ∑ 

i 

( x i − y i ) 
2 (1) 

For method x , we denoted the VIP score of the i th metabolite as 
x i , where i = 1 , 2 , . . . , the number o f metabolites (n ) . The same def- 
inition was applied to method y . Hierarchical clustering of the VIP 
scores was performed to infer the grouping of the DP schemes . T he 
ComplexHeatma p R pac ka ge [ 33 ] was used for clustering analysis.
All DP tasks , PC A, PLS-DA, and plot gener ation wer e performed us- 
ing the R pac ka ge Metabox 2.0 DP and analysis pipeline. 
mplementation of Metabox 2.0 

etabox 2.0 is a standard R pac ka ge de v eloped fr om R v ersion
.2.0, providing a substantial update to the first Metabox version
 16 ]. An extensive collection of R packages for metabolomic anal-
sis is included ( Supplementary Table S1 ). We enclosed the se-
uences of DP and analysis tasks in R functions. A gr a phical user

nterface (GUI) is implemented with the R pac ka ge Shin y [ 34 ]. An
v ervie w of the analysis pipelines is illustrated in Supplementary
ig. S1 . 

ata processing and analysis pipeline 

his analysis pipeline supports DP and consecutive data analy- 
es, including essential statistical analyses and biomarker discov- 
ry ( Supplementary Fig. S1A ). The DP module includes all ma-
or metabolomic DP tasks, starting with missing value imputa- 
ion, normalization, transformation, and data scaling. A collec- 
ion of commonly used methods is integrated into Metabox 2.0
 Supplementary Table S1 ). Three types of imputation methods are
rovided, including single value, local similarity, and global struc- 
ur e a ppr oac hes [ 21 ]. T he normalization module co vers IS-, QC
ample– and data-based a ppr oac hes, whic h aim to eliminate un-
anted errors while maintaining crucial biological variation [ 8 ,
1 ]. IS-based and QC sample–based normalization r el y on spike-
n ISs and the intensity of QC samples, r espectiv el y [ 8 ]. Meanwhile,
he data-driven normalization summarizes a sample-specific fac- 
or for the adjustment [ 31 ]. The transformation methods for de-
r easing right ske wness and scaling methods based on either data
ispersion or mean v alue ar e included. When performing both
ata transformations and scaling, the differences in magnitude 
etween large and small metabolite values are adjusted, so that
hose metabolites are comparable. In total, there are 10 impu-
ations , 3 IS-based normalizations , 2 QC sample–based normal- 
zations , 12 data-driven normalizations , 6 transformations , and 6
caling methods. 

The statistical analysis module comes with a collection of uni-
 ariate anal ysis methods . T hese are statistical hypothesis testing
ethods and post hoc tests cov ering par ametric and nonparamet-

ic tests, a pairwise correlation analysis, and linear mixed model-
ng from the lmm2met package [ 7 ] ( Supplementary Table S2 ). For
 ultiv ariate anal ysis, both unsupervised and supervised m ulti-
 ariate anal yses ar e included, incor por ating PCA, PLS-DA, and or-
hogonal PLS-D A (OPLS-D A) implemented from the ropls package
 35 ]. 

The biomarker analysis module supports regression and clas- 
ification analyses using the PLS or RF a ppr oac h. We incor por ate
 ecursiv e v ariable elimination within a r epeated double cr oss-
 alidation (r epCV) a ppr oac h fr om the MUVR pac ka ge [ 36 ] to iden-
ify informative metabolites . T he algorithm addresses prediction 

ccur acy, model ov erfitting, and optimall y r ele v ant metabolites. 

a ta integr a tion pipeline 

etabox 2.0 supports the joint analysis of multiple data types,
uch as omics and other phenotypic data ( Supplementary Fig.
1B ). The m ultibloc k PLS-D A (MBPLSD A) pipeline from the mb-
ls pac ka ge [ 37 ] is assimilated into the integr ativ e anal ysis mod-
le, focusing on the m ultiv ariate modeling of concatenated data
locks by considering the specific data structure of each block.
his method allows the estimation of both variable and block im-
ortance. 

https://scicrunch.org/resolver/RRID:
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
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Figure 1: Analysis workflow. Different DP schemes were performed in this study, including (A) no processing, (B) transformation, (C) scaling, (D) 
transformation follo w ed b y scaling, (E) normalization b y ccmn, and (F) consisting of ccmn + transform, ccmn + scale, and ccmn + transform + scale. 
The methods of each DP scheme are listed, and the number shown represents all combinations of these methods . T he DP schemes were applied to 
semiquantitative or peak area data (blue), and the method evaluations were then performed. This included effects on data properties and PLS-DA. For 
each dataset, the resulting VIPs from PLS-DA were compared to those of the quantitative data (red). 
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a ta interpreta tion pipeline 

his pipeline includes well-established methods for functional
nter pr etation in the context of metabolic pathways and chemi-
al classes ( Supplementary Fig. S1C ). The set enrichment analysis
nd ov err epr esentation anal ysis can be performed with a com-
r ehensiv e collection of methods from the piano pac ka ge [ 38 ], as

mplemented in Metabox 1.0 [ 16 ]. Mor eov er, integr ated pathway
v err epr esentation anal ysis uses Fisher’s method to combine P
 alue outputs fr om the hyper geometric test. The KEGG database
 39 ] is used for pathway information, whereas chemical classes of

etabolites are based on the HMDB chemical taxonomy [ 40 ]. 

esults 

he effects of data processing on the 

emiquantified fatty acids in milk samples 

ll 16 FAs were quantified in whole and lactose-free bovine milk
 Supplementary Fig. S2 ). Ho w e v er, some FAs, including C10:0 and
14:1, were not detected in the plant-based milk products (soy
ilk and almond milk). C6:0, C14:0, C22:0, and C24:0 were not

resent in almond milk. C8:0, C12:0, C15:0, C16:1, and C17:0 were
etectable in soy milk but absent in almond milk. These metabo-
ites were imputed by their minim um v alue prior to DP. As re-
orted b y J ariy asopit et al. [ 18 ], C16:0 (palmitic acid) and 2 un-
aturated F As (UF As) (C18:1 cis -9 [oleic acid] and C18:2 n–6 or
18:2 [linoleic acid]) were at their highest concentrations (mg/L) in
ovine milk, almond milk, and soy milk, r espectiv el y. The amount
f C18:1 cis -9 in almond milk was markedly high (14,230.98 ±
057.15 μmol). 

ffects on data properties 

nitiall y, we explor ed the effects of eac h DP sc heme on the ba-
ic properties of the milk dataset. For each DP scheme, we con-
idered the number of normally distributed, positively skewed,
nd negativ el y ske wed metabolites and the CV in eac h sample
roup ( Supplementary Table S3 ). All FAs in the QC samples were
ormally and symmetrically distributed for the CONC data. Most
As in bovine milk and soy milk wer e right-ske wed (i.e., a few
As were highly abundant), while the FAs in bovine lactose-free
ilk wer e mostl y normall y distributed. The lar gest and smallest

Vs wer e pr esent in soy milk and almond milk, r espectiv el y. Sim-
lar aspects were observed in the peak area data. T he PC A plot

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
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sho w ed that the ccmn method was the main factor contributing 
to separation among the DP schemes, with and without this nor- 
malization (Fig. 2 A). The number of normally distributed metabo- 
lites in the almond milk dr amaticall y incr eased after normaliza- 
tion, and most FAs became slightl y negativ el y ske wed. The ba- 
sic properties of the quantified and raw area data were closer to 
those of the unnormalized datasets. Each DP scheme resulted in 

an a ppar ent cluster. The tr ansformations incr eased the number 
of normally distributed metabolites in bo vine milk. T he ar ea pr o- 
cessed by the scaling scheme was separated from those altered by 
the transform + scale and the transformation, with and without 
normalization. All scaling methods returned similar data proper- 
ties, with po w er scaling being slightl y differ ent. After po w er scal- 
ing, the area data had the same data properties as those after 
sqrt + auto, le v el, par eto, r ange, or v ast scaling (Fig. 2 B). All glog- 
and log-based transformations produced similar data properties. 
Ho w e v er, the cube-, sqrt-, and log-based tr ansformations wer e at- 
tributed to slightly different data properties, particularly the dis- 
tribution of metabolites in bovine milk. As such, we noticed a sep- 
aration among the cube, sqrt, and both log-based transformation 

schemes. 

Effects on m ulti v aria te anal ysis 

PLS-DA was performed on 97 processed datasets, the absolute FA 

concentration and peak area datasets. Cluster analysis of the re- 
sulting VIPs r e v ealed gr ouping of the CONC data, r aw ar ea data,
ccmn, ccmn + pareto, ccmn + po w er, and ccmn + sqrt processed 

data ( Supplementary Fig. S3 ). These DP schemes formed a sep- 
ar ate br anc h fr om the DP, involving log-based tr ansformations,
auto, r ange, or v ast scaling. The VIP scor es of the data that had 

undergone ccmn + po w er and ccmn + sqrt processing were iden- 
tical. Mor eov er, they wer e similar to the VIPs from the quantified 

data (Fig. 3 A and Supplementary Table S4 , similarity = 80.32%).
The VIPs from the unprocessed area data were approximately 20% 

differ ent fr om the original CONC data. In contr ast, when using 
the glog-, log-, auto-, range-, and vast-based DP methods, the VIP 
similarity was reduced to below 40%. Any DP counting in the vast 
method led to a low similarity of a ppr oximatel y 10% or less . T he 
ccmn + cube + vast was the least alike (similarity = 4.16%). 

C18:1 cis -9 and C18:2 n–6, the important plant UFAs [ 41 ], were 
the discriminant metabolites (VIP ≥1.5) obtained from the PLS-DA 

on the CONC and raw area data ( Supplementary Fig. S3 ). More- 
ov er, both UFAs wer e identified fr om the data pr ocessed by sqrt or 
cube tr ansformation, le v el, par eto, or po w er scaling. VIP scores in- 
cr eased slightl y when ccmn normalization was a pplied together 
with sqrt, cube, pareto, or po w er. Combining these transforma- 
tion and scaling methods led to lo w er VIPs, particularly the VIP of 
C18:2. C16:0 was an additional discriminant for the plant UFAs in 

the ccmn-normalized data. The DP schemes involving vast scaling 
failed to identify C18:1 cis -9 and C18:2 n–6, as their VIPs were less 
than 1.0. The number of FAs with VIP > 1.0 was increased by glog- 
or log-based transformation, yet it diminished the importance of 
the plant UFAs in the PLS model. 

T he PC A plots sho w ed a clear partitioning of the almond milk,
soy milk, and bovine milk, except for the ccmn + cube + v ast pr o- 
cessed data (Fig. 3 B). This DP task mitigated the variance between 

soy milk and almond milk. Since C18:1 cis -9 and C18:2 n–6 were the 
important plant UFAs, a clustering of plant-based milk products 
was observed. Meanwhile, the whole and lactose-free bovine milk 
wer e cluster ed together because their FA pr ofiles wer e similar 
( Supplementary Fig. S2 ). The k e y distinction between these bovine 
milk types was the absence of lactose in lactose-free bovine milk 
 18 ]. The variability explained by the first and second principal
omponents (PCs) was 99.32%, 97.87%, 92.35%, and 84.05% for the
ONC, r aw ar ea, ccmn + sqrt, and ccmn + cube + v ast pr ocessed
ata, r espectiv el y. Though the observed variation of ccmn + sqrt
as less than that of the raw area data, the original structure of
 ariation was mor e pr eserv ed with ccmn + sqrt processing. The
ilk dataset possessed intr a gr oup v ariability, whic h was still vis-

ble after processing with ccmn + sqrt ( Supplementary Fig. S4A ).
o w e v er, this within-gr oup v ariation was inflated, and the plant-
ased samples displayed a right-skewed distribution after a ppl y-

ng ccmn + cube + vast. 
For the CONC and peak area data, the mean level of the

V (mCV) in each milk type was as follo ws: so ymilk > bovine
ilk > bovine lactose-free milk > QC sample > almond milk

 Supplementary Fig. S4B ). The ccmn + sqrt method could lessen
etabolite dispersion, in contrast to the ccmn + cube + vast. In

equential order, it enlarged the mCV of the QC, bovine lactose-
ree milk, bovine milk, soy milk, and almond milk samples. In ad-
ition, the trend of the fold differences between C18:1 cis -9 and
he other FAs in all milk types was substantially altered by ccmn
 cube + vast ( Supplementary Fig. S4C ). Specifically, the C18:1 cis -
 abundance became less than the FAs C8:0, C10:0, C14:1, C15:0,
16:1, and C17:0 in both bovine milk types, as opposed to the orig-

nal CONC data. The amount of C18:1 cis -9 was higher than that of
16:0 in the bovine milk samples and lo w er in the almond milk. In

he case of the ccmn + sqrt method, ov er all fold differences were
aintained and comparable to the original CONC data. 

ffects on m ulti v aria te anal ysis in the absence of 
ighly abundant metabolites 

he absolute amounts of C18:1 cis -9 and C18:2 wer e r elativ el y high
ompared to those of the other FAs ( Supplementary Fig. S2 ). They
ere the main discriminants between almond milk, soy milk, and
lant-based and bovine milk in the PLS-DA (Fig. 3 ). The pr e vious
ection sho w ed a case study inv olving v ariables with str ong r ela-
iv e r esponses of a biological factor (milk types). We continued our
 v aluation of the milk dataset, excluding the major metabolites
18:1 cis -9 and C18:2. This was to r epr esent a case study without
xtr eme r elativ e r esponses. 

From VIP clustering, the CONC, raw area, ccmn-normalized,
nd pareto-scaled data were grouped and formed the closest 
inkage to a cluster containing either the cube, sqrt, or po w er
rocessing alone or in combination with ccmn normalization 

 Supplementary Fig. S5 ). Elements in this group included ccmn
 pareto, with/without cube or sqrt transformation, and ccmn +

qrt + po w er. These DP schemes formed a distant br anc h fr om
he DP tasks embracing auto, level, range, vast scaling, or log-
ased transformations. In particular, the percentage of VIP sim- 

larity was less than 40%. The VIPs from glog2 + vast processed
ata were the most dissimilar ( Supplementary Table S5 , similar-

ty = 31.54%), and only C24:0 was the discriminative metabolite 
rom this method ( Supplementary Fig. S6A ). The most similar VIP
cor es wer e the VIP scor es of the peak ar ea (similarity = 83.28%),
hereas the VIPs from the data processed by the ccmn + power
r ccmn + sqrt processing were slightly less identical (similarity =
0.35%). The discriminant metabolites C16:0 and C4:0 were com- 
onl y observ ed fr om the CONC, ar ea, and ccmn + sqrt pr ocessed

ata. C14:0 was the additional discriminant for the CONC and
cmn + sqrt processed data, while C18:0 was identified for the
eak area data. 

The a ppar ent separ ation between plant-based and bovine milk
as observed from the PC A plots , except for the area and glog2 +

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
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Figur e 2: PC A scor e plots based on the data pr operties of absolute concentr ation, unpr ocessed (r aw ar ea), and pr ocessed milk data. (A) Major 
separation based on DP schemes and (B) major separation based on transformation methods . T he data properties included normality, skewness, and 
coefficient of variation. 
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Figure 3: Comparisons of selected DP schemes to absolute concentration and the raw milk area data represented by (A) clustering of VIPs and (B) PCA 

plots. 
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 ast pr ocessed data ( Supplementary Fig. S6B ). Ev en without the
lant UFAs, the clustering of plant-based and bovine milk types
ersisted. This was because of the differences in FA composi-
ions as reported b y J ariy asopit et al. [ 18 ]. Both bovine milk types
er e mor e enric hed with satur ated FA compar ed to plant-based
ilk products ( Supplementary Fig. S2 ). The data structure of the

ONC data was mor e pr eserv ed in the ccmn + sqrt processed
ataset. Meanwhile , the PC A plots of the area data with (Fig. 3 B)
nd without the plant UFAs ( Supplementary Fig. S6B ) were com-
arable . T he cumulative variance explained by PC1 and PC2 for
he CONC, area, ccmn + sqrt, and glog2 + v ast pr ocessed data
as 97.43%, 99.47%, 97.40%, and 83.56%, r espectiv el y. Although
e noticed a clustering of plant and bovine milk types by the glog2
 vast method, high variance was introduced within the QC and
o vine milk samples . Accor dingly, w e detected a substantial im-
act on the data distribution, outliers ( Supplementary Fig. S6C )
nd metabolite deviation from its mean ( Supplementary Fig. S6D ).
n contrast to ccmn + sqrt, fold difference tendencies between
16:0 and the other FAs, in all milk types, wer e markedl y influ-
nced after a ppl ying glog2 + vast ( Supplementary Fig. S6E ). 

ata processing effects on the semiquantified 

etabolites in urine samples 

imilar aspects were performed to e v aluate and compare the ef-
ects of the DP methods on 8 KP metabolites in urine samples
study II). For CONC and r aw ar ea data, almost all metabolites
er e positiv el y ske wed, and the mCV of the LN samples was

lightly higher than that of the normal samples ( Supplementary
able S6 ). The basic properties of the quantified and ccmn-
ormalized data were closer than those of the other datasets.
o w e v er, the combined ccmn with transformation, or transform
 scale, was not the major factor influencing the separation, as
bserved in study I ( Supplementary Fig. S7 ). When applying the
ransformation, scaling, or transform + scale schemes, the DP ef-
ect on the urine data properties appeared consistent with the

ilk sample data. 
We observed clustering of VIPs from the sqrt, pareto, po w er,

cmn + cube, ccmn + sqrt, ccmn + pareto, ccmn + po w er, and area
ata ( Supplementary Fig. S8 ). They formed a distinct br anc h fr om
he DP schemes, including glog, log, auto, le v el, r ange, and v ast.
eanwhile, the VIPs from the CONC and the ccmn-normalized

ata were distinguished from those of the other methods . T he
IP scor es fr om the unpr ocessed peak ar eas wer e 55.53%, iden-

ical to the CONC data ( Supplementary Table S7 ). The VIP scores
f the ccmn-normalized data were the closest to those of the
uantified data ( Supplementary Fig. S9A , similarity = 62.36%).
n contrast, the ccmn + level DP led to the least similar VIPs
similarity = 41.62%). Tryptophan was the discriminant metabo-
ite (VIP ≥1.2) observed in the CONC data, r aw ar eas, and ccmn-
r ocessed data. Kynur enic acid was identified as an important
etabolite in both the CONC and the ccmn-normalized data. Pi-

olinic acid (VIP > 1.6) was the discriminative metabolite observed
n the datasets that applied the DP glog, log, auto, level, range, or
ast methods ( Supplementary Fig. S8 ). From the CONC data, this
etabolite possessed a low VIP weight (VIP = 0.03). In contrast,

-hydro xykyn urenine was only reported from the CONC data (VIP
 1.52) and was absent in the other datasets. 
The urine samples from healthy subjects and LN patients

ainl y ov erla pped ( Supplementary Fig. S9B ) and sho w ed high
ithin-gr oup v ariation ( Supplementary Fig. S9C ). Ho w e v er, the

lustering of different subject groups was largely due to trypto-
han ( Supplementary Fig. S9A ). This metabolite was reported as
 potential biomarker for c hr onic kidney diseases [ 17 ]. The ccmn
ethod impr ov ed the explained v ariance in the first PC (PC1 =

1.02%) compared to the raw area data (PC1 = 74.78%). In con-
rast, when using the ccmn + le v el method, we observ ed lar ge
nfluences on the sample distribution, metabolite variation, and
old differences between tryptophan and the other metabolites
 Supplementary Fig. S9C –E ). When using this method, the PC1 and
um ulativ e v ariance wer e 41.77% and 61.56%, r espectiv el y. 

S-based normalization performance is 

ependent on the type of biological factors 

wo commonly used IS-based normalization methods, ccmn and
omis, were further evaluated using milk and urine datasets . T he
ilk dataset has a definitive biological effect, whereas the urine

amples comprise many unknown individual variations. In this
ssent, the informative variation of milk samples was retained by
he ccmn method, unlike the nomis method (Fig. 4 A). The vari-
nces explained by the first and second PCs were 95.97% and
2.20% for the ccmn- and nomis-normalized data, r espectiv el y.
he first PC presented the differences between almond milk and
oy milk for the ccmn-processed data. This aspect was invisible in
he nomis-normalized data. In the case of the urine dataset, we
bserved that the ccmn method performed similarly to the nomis
ethod (Fig. 4 B). The groups of healthy and LN samples were

lightl y separ ated. Within the LN gr oup, v ariation was slightl y
educed after normalization. Subject-specific variations and the
resence of outliers are common in clinical metabolomics. More-
ver, the ccmn method only assumes linear relationships between
easured metabolites and experimental factors, which is not al-
ays the case in metabolomics [ 22 ]. Ther efor e, the metabolite and

S interferences in the urine matrix may not be thoroughly cor-
ected by the ccmn method. 

etabox 2.0: enhancing metabolomic data 

nal ysis, integr a tion, and interpreta tion 

etabox 2.0 is implemented as a standard R pac ka ge . T he cur-
 ent v ersion has under gone significant r edesign and updates
ince Metabox 1.0 [ 16 ], highlighting the analysis of metabolomic
ata from DP steps to biomarker identification and allowing
he joint analysis of multiple data types, such as LC- and GC-
S metabolomes, metabolomic and transcriptomic datasets, or
etabolomic and clinical data. Thr ee anal ysis pipelines ar e or-

anized as separate modules (Fig. 5 and Supplementary Fig. S1 ).
 series of scripts for a particular task is encoded in a ready-to-
se R function, allowing the implementation of customized work-
ows . T he k e y featur es of this v ersion include (i) a collection of
tate-of-the-art methods for end-to-end metabolomic data anal-
sis, (ii) normalization methods for cohort- and laboratory-scale
etabolomic studies, (iii) univariate analysis for 1 or multiple fac-

ors, (i v) multi variate modeling for both classification and r egr es-
ion, (v) machine learning (ML)–based biomarker analysis with
inimizing model overfitting and false-positive rates, (vi) cross-

omain data integration, (vii) data interpretation in the context
f metabolic pathways and c hemical classes, (viii) v arious kinds
f plots for data exploration, and (ix) an intuitive GUI for bench
iologists (Fig. 5 ). This GUI version supports typical analysis and
llows broader usability as a hosted web application on the server.
he integr ativ e explor ation of m ultiomic le v els in biological net-
orks is excluded in this version because it r equir es the pr einstal-

ation of a specific gr a ph database system. 
For metabolomic analysis, this tool serves as an alternative to

losel y r elated softwar e suc h as MetaboAnal yst [ 42 ], iMAP [ 43 ],

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
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Figure 4: Effects of the ccmn and nomis normalization methods on the (A) milk data and (B) urine data. Color coding indicates sample groups, 
including the types of milk, the urine samples from healthy subjects (N), and patients with lupus nephritis (LN). 
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NOREVA [ 28 ], XCMS Online [ 44 ], MZmine 3 [ 45 ], and OUKS [ 46 ].
Comparison of the main features with other tools is summa- 
rized in Supplementary Table S8 . Metabox 2.0 covers more DP 
methods and is equipped with a tool for integr ativ e anal ysis of 
omic and nonomic data. It is an open-source R pac ka ge fr eel y 
accessible from our GitHub [ 47 ] under the GPL-3 license. Fur- 
thermore, an online web version is publicly available from our 
website [ 48 ]. 
d

iscussion 

n the field of metabolomics, quantitative analysis is important 
or understanding cellular metabolism because the abundances 
f metabolites affect both free energy and metabolic reactions 
 49 ]. Nonetheless, a number of obstacles, including the absence
f standardized methods and the accessibility of r efer ence stan-
ards, lead the majority of metabolomics r esearc h to be con-
ucted using a semiquantitative analysis. Although semiquan- 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae005#supplementary-data
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Figure 5: Metabox 2.0 GUI and example outputs from the data processing, statistical analysis, and biomarker analysis modules. 
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itativ e anal ysis does not pr ovide the true v alue of a metabo-
ite’s concentration, it is still useful for the discovery of important

etabolites in many studies [ 3 ]. Often, the potential bias or tech-
ical err ors intr oduced by this a ppr oac h can be r emov ed or min-

mized thr ough tec hniques in anal ytical c hemistry and bioinfor-
atics [ 2 , 7 ]. The major limitation of semiquantitative compared

o quantitativ e anal ysis is that it is challenging to compare re-
ults acr oss differ ent studies, leading to difficulty translating the
otential metabolites into pr actice, especiall y in clinical r esearc h
 50 ]. 

Quantitativ e anal ysis is ideal in metabolomics r esearc h; how-
 v er, the absolute quantification of all metabolites can be chal-
enging. A good DP scheme for raw data processing is essen-
ial to impr ov e semiquantitativ e data suc h that it r esembles
uantitative data. In this study, we c har acterized and compar ed
he semiquantified metabolites after different DP treatments to
heir quantified counterparts . We co vered 3 common scenarios
n metabolomics, including a dataset with a ppar ent markers, a
ataset with a known biological effect, and a dataset with obscure
ariations. 

The r esults consistentl y indicated that normalization and
ransformation had an impact on the data distribution, skewness,
nd CV, while scaling only influenced the CV of the data. Apart
rom 1 exception, po w er scaling behaved like the sqrt + scale
cheme . T his is because the method relies on the squar e r oot of
etabolite intensity along with a mean subtraction [ 28 ]. Ho w ever,

hese data properties could not directly reflect the final results
f statistical analyses (e.g., how many significant metabolites are
dentified or how m uc h class discrimination is impr ov ed by a spe-
ific DP method). An understanding of data distribution could
uide the choice of subsequent statistical analysis . T he change in
he CV is an indicator of DP performance in reducing group vari-
tion [ 51 ]. 

The use of milk and urine sample datasets r epr esented 2 sides
f the story. As a food product, the milk samples were produced
n well-controlled en vironments , while the urine study data were
ot, e v en though ther e wer e strict inclusion and exclusion crite-
ia in the study cohort. Interindividual variations (e.g., dietary, ge-
etic, and demogr a phic bac kgr ound) wer e the k e y unwanted vari-
tions in clinical metabolomics [ 7 ]. Accor dingly, w e observed that
he PLS-DA result from the milk area data resembled its CONC
ata more than that of the urine study data. The raw peak areas,
xcluding the 2 plant UFAs, resulted in the most similar result
o the CONC data without any processing task. Due to the numer-
us unknown sample matrices, the ccmn method performed sim-
larly to nomis normalization in the urine dataset. Ov er all, ccmn
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normalization impr ov ed the quality of semiquantitative data in 

e v ery case in our study and is ther efor e r ecommended. Further- 
more, the ccmn method can segregate IS interference because of 
the correlation with the factors under study [ 22 , 31 ]. As such, it 
can avoid the risk of losing informative variations in the nomis. 

The normalization process aims to remove systematic errors 
and unrelated biological variations (if applicable). Ho w ever, it can- 
not scale for ma gnitude differ ences among metabolites. When 

considering the milk sample dataset, which included plant UFAs,
the ccmn + sqrt method was suggested. This was because the 
dataset had a distinct biological factor, and the sqrt transforma- 
tion had the least effect on the variance structure compared to the 
other transformation methods. In descending order, the effect size 
r anged fr om the log famil y, cube tr ansformation, and sqrt method.
The performance of the scaling methods, po w er, and pareto was 
r elativ el y compar able and had a smaller effect on the data v ari- 
ance than the other methods . T he vast-scaled milk and level- 
scaled urine produced the most divergence among VIP results 
from the CONC data. This is because vast scaling is more suit- 
able for datasets with small induced fluctuations [ 11 , 24 ], which 

is not the case in this study. The FAs with a lar ge v ariation wer e 
considered less important, while a low-deviated metabolite be- 
came more significant after vast scaling. In contrast to level scal- 
ing, this a ppr oac h is suggested for a study that involves large rel- 
ativ e r esponses of a biological factor [ 11 , 24 ]. This method failed 

when using the urine sample data because the signal-to-noise ra- 
tio w as lo w . T r ansformation by log famil y is a commonly used ap- 
pr oac h in omic data analysis. Its transformation is stronger than 

cube and sqrt methods (i.e., transformed data are more divergent 
from the original). The log transformation performs well for data 
with constant r elativ e standard de viation [ 24 ]. Ho w e v er, it is not 
always the case in metabolomics, where variance gets larger with 

an increasing intensity level. The log transformation tends to re- 
duce the lar ge v ariance for large values, but it rather inflates the 
variance of metabolites close to zero [ 52 ]. In this study, its per- 
formance was modest for both milk and urine sample datasets 
(VIP similarity = 35–45%). By using the log transformation, one 
needs to balance the trade-off between obtaining more discrimi- 
nant metabolites and gaining more false positives. 

Class separation in multivariate models such as PCA and PLS- 
DA is attributed to metabolites with high loadings, whic h ar e usu- 
all y pr oportional to the concentr ation or ma gnitude of fold c hange 
[ 24 , 52 , 53 ]. These dominant sources of variation could be infor- 
mati ve mark ers or obscure dominators. We sho w ed that, with the 
pr esence of v ery high concentr ations of plant UFAs (C18:1 cis -9 
and C18:2), they wer e al ways the main discriminants between al- 
mond milk, soy milk, and plant-based and bovine milk. Without 
both plant UFAs, the second most abundant FAs (C16:0, C4:0, and 

C14:0) became the k e y source of variation between plant-based 

and bovine milk types. Ho w e v er, v ast, r ange, and auto gr eatl y min- 
imized the importance of plant UFAs and resulted in a higher load- 
ing for metabolites with low measured levels. Different transfor- 
mation and scaling methods adjust scale-size effects to a certain 

degree, allo wing lo w-concentration metabolites to be more impor- 
tant [ 24 ]. If a low-abundant metabolite could reflect the variation 

of interest, it is worth considering the separation of very high- 
abundant metabolites to enable exploration of low-concentration 

regions. 
In summary, our study sho w ed that the ccmn or the ccmn 

+ sqrt method yielded the most similar PLS-DA results between 

the quantified and semiquantified equi valents. Gi ven that ccmn 

outperformed the other methods in this study, various research 

pr ojects ar e under way to impr ov e the normalization str ategy, that 
s, the use of quality control metabolites [ 31 ], quality control sam-
les [ 8 ], subject-specific c har acteristics [ 7 ], and nonlinear model-

ng [ 8 , 9 , 22 ]. The tr ansform + scale and normalize + tr ansform
 scale schemes could not enhance the quality of the semiquan-

itative data in many cases . T his ma y be because of an excessive
lteration in the data variance by both transformation and scal-
ng. 

Many studies have compared different strategies for 
etabolomics data processing [ 11–15 ]. Ho w ever, this is the

rst study to use quantitative data as a reference point for DP
 v aluation. Our findings ar e based on the closest r epr esentation
f genuine metabolite patterns, which could be a valuable guide
or the DP pr ocedur e. In pr actice, the CONC data ar e not al ways
 vailable for comparison. T herefore , method evaluations , such
s those performed in this and the other studies, are highly
dvised prior to any statistical analysis (e.g., the changes in CV,
he fold difference trends, the unsupervised patterns of the PCA
core plot, and the clustering of multivariate analysis outputs).
ost bioinformatics tools, such as Metabox 2.0, MetaboAnalyst 

 42 ], NOREVA [ 28 , 51 ], and OUKS [ 46 ], pr ovide v arious featur es to
acilitate DP e v aluations and comparisons. 

onclusion 

his stud y re ported the effects of DP schemes on data proper-
ies and variance structure. Normalization and transformations 
ltered the data normality, skewness, and CV, whereas data scal-
ng onl y c hanged the CV. T he PC A and the results of PLS-DA were
ompared between the absolute abundances and the processed 

eak areas to observe the outcome of different DP schemes on
he data variance . T he ccmn + sqrt outperformed for the datasets
ith a ppar ent markers and a known biological effect. Further-
or e, the r aw ar ea may be used if the samples ar e fr om a well-

efined experiment and have a known matrix effect. Although 

he resulting VIPs from the raw peak of urine metabolites were
lightl y ov er 50% identical to the absolute le v els, IS-based normal-
zation, such as ccmn, was the best option to impr ov e this clin-
cal metabolomics data. Choosing a strong DP method (e.g., log
ransformation, auto, range, vast, and level scaling) needs care- 
ul consideration. These methods have less tolerance for out- 
iers and tend to amplify noise. Our study used another aspect
f the DP criteria. The best DP choice allo w ed the semiquanti-
ative data to mimic the quantitati ve data. Ad ditionally, we dis-
ussed the bioinformatics toolbo x, Metabo x 2.0, which contains
ignificant updates on the DP tasks, biomarker identification, and 

ntegr ativ e anal ysis, and serv ed as a tool for all anal yses in this
tudy. 

vailability of Source Code 

roject name: Metabox 2.0 
r oject homepa ge: https:// metsysbio.com/ metabox/ index.html 
perating system(s): Platform independent 
r ogr amming langua ge: R 

ther r equir ements: None 
icense: GNU General Public License (v3) 
RID: SCR_024,443 

dditional Files 

upplementary Fig. S1. Metabox 2.0 analysis pipelines. Metabox 
.0 provides 3 analysis pipelines: (A) data processing and anal-
sis, (B) data integration, and (C) data inter pr etation. For eac h

https://metsysbio.com/metabox/index.html
https://scicrunch.org/resolver/RRID:
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ipeline, the analysis module and its major tasks are presented
n blue boxes . T he data pr ocessing and anal ysis pipeline includes
eparated modules for data processing, statistical analysis, and
iomark er analysis. A comma-se parated values (CSV) file is the
 equir ed input format. The output contains a report file, related
gures , and tables . 
upplementary Fig. S2. The absolute concentration of 16 FAs in
he milk samples. 
upplementary Fig. S3. Clustering of VIPs from absolute concen-
r ation, unpr ocessed milk, and processed milk data by different
P schemes. 
upplementary Fig. S4. Comparisons of the selected DP schemes
o the absolute concentration and unprocessed milk data repre-
ented by (A) acr oss-gr oup RLA plots, (B) CV plots, and (C) fold
ifferences of oleic acid to the other fatty acids . T he CV of each
etabolite is indicated by color coding from green to red. The

arge CV (CV > 1.0) is represented as a dark gray dot. The av er a ge
V (mCV) of each group is shown. 
upplementary Fig. S5. Clustering of VIPs from absolute concen-
r ation, unpr ocessed milk, and processed milk data without the
lant UFAs by different DP schemes. 
upplementary Fig. S6. Comparisons of the selected DP schemes
o the absolute concentration and unprocessed milk data without
he plant UFAs r epr esented by (A) clustering of VIPs , (B) PC A plot,
C) acr oss-gr oup RLA plots, (D) CV plots, and (E) fold differences of
almitic acid to the other fatty acids . T he CV of each metabolite

s indicated by color coding fr om gr een to red. The large CV (CV
 1.0) is r epr esented as a dark gr a y dot. T he a v er a ge CV (mCV) of
ac h gr oup is shown. 
upplementary Fig. S7. PCA score plots based on the data
roperties of absolute concentration, raw area, and processed
rine datasets. (A) Major separation based on DP schemes and

B) major separation based on transformation methods . T he
ata properties included normality, skewness, and coefficient of
ariation. 
upplementary Fig. S8. Clustering of VIPs from absolute concen-
r ation, unpr ocessed urine, and processed urine data by different
P schemes. 
upplementary Fig. S9. Comparisons of the selected DP schemes
o the absolute concentration and unprocessed urine data rep-
esented by (A) clustering of VIPs , (B) PC A plot, (C) acr oss-gr oup
LA plots, (D) CV plots, and (E) fold differences of tryptophan
o the other KP metabolites . T he CV of each metabolite is in-
icated by color coding from green to red. The large CV (CV
 1.0) is r epr esented as a dark gr a y dot. T he a v er a ge CV (mCV)
f eac h gr oup is shown. Healthy gr oup (N) and lupus nephritis
roup (LN). 
upplementary Table S1. List of DP methods in Metabox 2.0. 
upplementary Table S2. List of univariate analysis in Metabox
.0. 
upplementary Table S3. Data properties of the absolute concen-
r ation, ar ea and processed milk data. 
upplementary Table S4. Similarity of VIPs from the area, and
rocessed milk data compared to the absolute concentration data.
upplementary Table S5. Similarity of VIPs from the milk data set
xcluded the plant UFAs. 
upplementary Table S6. Data properties of the absolute concen-
r ation, ar ea and processed urine data. 
upplementary Table S7. Similarity of VIPs from the area, and
rocessed urine data compared to the absolute concentration
ata. 
upplementary Table S8. Comparison of Metabox 2.0 with other
pen source tools. 
a ta Av ailability 

 code used for this article and intermediary files are available
rom the GigaScience database , GigaDB [ 54 ]. T he metabox2 pack-
ge and its full source code are also available from GitHub [ 47 ].
he datasets used in this article have been submitted to the
etabolomics Workbench repository [ 55 ], study I (ST002902), and

tudy II (ST002874). 

bbreviations 

cmn: cr oss-contribution compensating m ultiple standard nor-
alization; CONC: absolute concentration; CUBE: cube root; CV:

oefficient of variation; DP: data processing; FA: fatty acid; GC-
OFMS: gas c hr omatogr a phy coupled to a time-of-flight mass
pectr ometer; GLOG: gener alized logarithm; GUI: gr a phical user
nterface; IS: internal standard; KEGG: Kyoto Encyclopedia of
enes and Genomes; KP: kynurenine pathway; LC-MS/MS: liquid
 hr omatogr a phy platform coupled to tandem mass spectrometer;
N: lupus nephritis; LOG: logarithm; MBPLSDA: m ultibloc k partial
east squares discriminant analysis; ML: machine learning; MS:

ass spectrometry; nomis: normalization using an optimal se-
ection of multiple internal standards; OPLS-DA: orthogonal par-
ial least squares–discriminant analysis; PC: principal component;
CA: principal component analysis; PLS-DA: partial least squares–
iscriminant analysis; QC: quality control; repCV: repeated double
r oss-v alidation; RF: r andom for est; RLA: r elativ e log abundance;
qrt: squar e r oot; UFA: unsatur ated fatty acid; VIP: v ariable im-
ortance in projection. 
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