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Abstract  

Therapeutic antibodies have become one of the most influential therapeutics in modern medicine 

to fight against infectious pathogens, cancer, and many other diseases. However, experimental 

screening for highly efficacious targeting antibodies is labor-intensive and of high cost, which is 

exacerbated by evolving antigen targets under selective pressure such as fast-mutating viral 

variants. As a proof-of-concept, we developed a machine learning-assisted antibody generation 

pipeline AbGen that greatly accelerates the screening and re-design of immunoglobulins G (IgGs) 

against a broad spectrum of SARS-CoV-2 coronavirus variant strains. Our AbGen centers around 

a novel antibody language model (AbLM) that is pretrained on 12 million generic protein domain 

sequences and fine-tuned on 4,000+ paired VH-VL sequences, with IgG-specific CDR-masking 

and VH-VL cross-attention. AbLM provides a latent space of IgG sequence embeddings for 

AbGen, including (a) landscapes of IgGs’ activities in neutralizing the wild-type virus are analyzed 

through structure prediction for IgG and IgG-antigen (viral protein spike’s receptor binding domain, 

RBD) interactions; and (b) landscapes of IgGs’ susceptibility in neutralizing variant viruses are 

predicted through Gaussian process regression, despite that as few as 14 clinical antibodies’ 

responses to variants of concern are available. The AbGen pipeline was applied to over 1300 IgG 

sequences we collected from RBD-binding B cells of convalescent patients. With experimental 

validations, AbGen efficiently prioritized IgG candidates against a broad spectrum of viral variants 

(wildtype, Delta, and Omicron), preventing the infection of host cells in vitro and hACE2 transgenic 

mice in vivo. Compared to other existing protein language models that require 10-100 times more 

model parameters, AbLM improved the precision from around 50% to 75% to predict IgGs with 

low variant susceptibility. Furthermore, AbGen enables structure-based computational protein 

redesign for selected IgG clones with single amino acid substitutions at the RBD-binding interface 

that doubled the IgG blockade efficacy for one of the severe, therapy-resistant strains - Delta 

(B.1.617). Our work expedites applications of artificial intelligence in antibody screen and re-

design combining data-driven protein language models and Kriging for antibody sequence 

analysis and activity prediction, in synergy with physics-driven protein docking and design for 

antibody-antigen interface analyses and functional optimization.  
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Introduction 

One of the most demanding challenges in medical care and clinical investigation is to fight against 

constantly evolving pathogens and abnormal cells (such as cancer) under selective therapeutic 

pressure. Antibodies have accounted for most of the top therapeutic sales impacting medical 

treatments for immune diseases and cancer over the past years (1-3). However, the traditional 

development of any therapeutic drugs including antibodies is time- and labor-intensive, requiring 

a large scale of experimental screening and validation. Many antibody screening strategies for 

neutralization efficacy such as phage display, ribosome display, and mammalian cell surface 

display are relatively of low efficiency (4). In this study, we set out to accelerate antibody 

development by integrating a novel antibody language model (AbLM) and antibody structure, 

interaction, and viral-neutralizing activity prediction with experimental validations into a pipeline 

(AbGen) for broad-spectrum antiviral therapy, utilizing the fast-mutating severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) as a targeting model.  

 

SARS-CoV-2 enters host cells via its viral spike protein binding with the host cell receptor 

angiotensin-converting enzyme 2 (ACE2) (5, 6), which is highly expressed on the cell membrane 

in various human organs including the lungs, heart, and kidney (7). During the pandemic of 

coronavirus disease 2019 (COVID-19), neutralizing antibodies became one of the earliest 

approaches that rapidly developed and effectively treated the early phase of infections before a 

vaccine was developed and before the coronavirus evolved to evade neutralization (8-12). Most 

of the coronavirus neutralizing antibodies disrupt the spike interactions with human ACE2 thereby 

preventing viral entry for prophylactic and therapeutic applications (8-15).  

 

The constantly-evolving viral sequences especially the variants of concern (Delta and Omicron) 

started to escape from neutralizing antibodies and vaccination immunity (16, 17), partially 

contributing to the death of nearly seven million people worldwide (18). For instance, the spike 

L452R and T478K mutations in the Delta variant, also known as B.1.617 lineage, are located at 

the periphery or the epitope region of the receptor binding domain (RBD) and are found to reduce 

antibody neutralizing activity (19, 20). The Omicron variant, which is characterized by the 

presence of around 32 mutations in the RBD, escapes most therapeutic neutralizing antibodies 

and largely vaccine-elicited antibodies (17). 
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To better prepare for any inevitable pandemics or epidemic diseases, rapid development and 

design of broad-spectrum antibodies would facilitate the early response against infectious 

pathogens (21). The emerging artificial intelligence has shown a great potential to expedite and 

transform the antibody production pipeline (21, 22). However, it is unclear whether and how the 

therapeutic development could be accelerated in low-data regimes, where data are very limited 

for epitope identification, structure identification, and variant responses, which curbs the power of 

data-hungry computational methods such as machine learning. Despite the critical barriers, we 

integrated experimental data, physics simulations, and machine learning into an antibody-

screening and optimization platform. With limited experimental data, we built and validated such 

methods in predicting and ranking patient antibodies against broad coronavirus variants.  

 

To improve the efficiency of experimental screening, we built our computational pipeline AbGen 

on a novel antibody language model, AbLM, through pretraining over twelve million generic 

protein domain sequences and finetuning over four thousand paired VH-VL sequences, with 

antibody-specific CDR masking and VH-VL cross-attention.  No activity data was required for 

AbLM. In the latent space of IgG sequence embeddings suggested by AbLM, we first used 

physics-driven IgG antibody structure prediction and IgG-RBD docking to predict the IgG 

neutralization landscape against the wild-type (WT) coronaviral strain. Again no activity data was 

required here for predicting WT neutralization. Second, using known activity data of as few as 14 

antibodies, we constructed Gaussian process regressors (23) in the latent space to predict the 

IgG neutralization landscape against the viral variants of concern. Furthermore, we used 

computational protein design with the input of protein-docking structural models to redesign IgGs 

for improved neutralization efficacy against the Delta variant. The screened or redesigned IgGs 

were validated in both in vitro and in vivo virus infection studies.  

Results  

Overview of the machine learning-accelerated antibody production platform  
 

Using SARS-CoV-2 as a targeting model pathogen and the spike RBD as a bait antigen, we 

developed a low data regime-derived pipeline facilitating the screening and redesign of 

neutralizing antibodies (Fig. 1a). To identify and produce anti-spike antibodies, we first collect 

blood specimens from 42 patients recovered from early COVID-19 as described (24), flow sorted 

the RBD-bound IgM memory B cells for subsequent single-cell VDJ sequencing via the 5’ 10X 

genomics platform, and retrieved 1376 heavy-light chain pairs of IgG antibody sequences.  
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Facing the low data regimes where activity data are available for none or few antibodies, we 

harnessed two distinct approaches, namely physics-driven protein docking and data-driven 

machine learning, for the prediction of antibodies' effectiveness in virus neutralization (Fig. 1b 
with details in Fig. S1). We first predicted the antibody structure of each sequence derived from 

convalescent patient samples. Subsequently, leveraging both the predicted antibody structures 

and the crystal structure of the spike RBD, we generated multiple docking configurations of 

antibody-RBD structures. Later, we refined a confidence score for each IgG docking structure, 

which is predicted as a coverage fraction or blockade portion of the RBD residues for ACE2 

binding, serving as a physics-driven predictor for WT virus neutralization. Higher coverage of the 

ACE2 binding residues would predict better neutralization. This structure-based protein docking 

approach has been previously validated for its accuracy in modeling antigen-antibody complex 

structures (25).   

 

To predict neutralization against variants of concern such as Delta and Omicron strains, we 

calculated the covariances (variograms) to represent dissimilarities or distances among all 

sequenced antibodies and clinically used antibodies, using the latent space learned in an antibody 

language model. Then, we predicted the robustness of sequenced antibodies to neutralize 

variants using Kriging (Gaussian process regression) (23), with the input of the variograms above 

and the IC50 fold changes of 14 clinical antibodies from WT to variants. This sequence-based 

antibody language model is novel in tailoring pretrained protein language models for paired VH-

VL chains and later shown to outperform other language models in variant response prediction.   

 

Based on the confidence score against the WT virus and the robustness predictions against viral 

variants, the IgG ranking facilitated IgG prioritization and re-design for further experimental 

validation. After machine learning-assisted neutralization prediction classified all sequenced IgG 

antibodies into distinct categories of top, medium, and low confidence (or priorities), we cloned 

19 randomly picked IgG pairs of heavy and light chains spanning these categories and a few 

computationally redesigned antibodies for experimental analyses and functional neutralization 

against SARS-CoV-2 infections in vitro and in vivo (Fig. 1c).  
 
Diversity of sequenced antiviral antibodies from human B cells   
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After obtaining 1376 heavy-light chain pairs of IgG antibodies using the CellRanger platform (10X 

genomics), we identified the individual V, D and J genes (sequences) for each antibody as well 

as the type of light chain (Kappa or Lambda). Frequency analyses of individual V and J genes 

revealed a non-even distribution, as certain V and J genes were more common with 60 to 600 

counts than others with few counts (Fig. S2a-b). D genes were not detected in the light chains 

and were rarely seen in the heavy chain (Fig. S2c). The relative diversity of V genes was identified 

with the J genes skewed toward a few sequences, such as IGHJ4 of over 600 counts, suggesting 

that our sample group of antibody candidates share general properties of IgGs with distinct 

specificity of how each IgG recognizes and binds to spike-RBD. We detected a few C genes in 

the heavy chains and Lambda light chains but not within the Kappa chains (Fig. S2d). Every 

CDR3 sequence within the H chains was identified once, similar to most of the CDR3 sequences 

in K and L chains with only a small portion repeating 2-10 times (Fig. S2e, f).   
 

Since it is labor-intensive and inefficient to experimentally test 1000+ IgG candidates for functional 

efficacy tests, we sought to utilize physics-driven protein docking and data-driven machine 

learning for computational predictions that accelerate the experimental screen and redesign of 

efficacious neutralization antibodies. 

Antibody language model provides a latent space for IgG analysis and design.  

To analyze the sequence distribution of IgG candidates at a large scale without time-consuming 

sequence alignment, and to further improve prediction of antibody activities, we designed and 

trained a novel antibody language model (AbLM) (Fig. 2a). AbLM utilizes readily available, 

unlabeled protein sequence data for pretraining, paired antibody heavy and light chain sequences 

for finetuning, and CDR-informed masking (see details in Methods). For the convalescent IgG 

antibodies our sequenced as well as 14 clinically used COVID antibodies, we embedded their 

variable region sequences into 1536-dimensional vectors (768 dimension for either heavy or light 

chain) using the paired sequence encoders of AbLM and visualized their 2D distributions using 

Uniform Manifold Approximation and Projection (UMAP) (26) (Fig. 2b). We noticed that the 14 

clinically proven antibodies were clustered with (or “covered” by) some convalescent IgG clusters, 

which suggests the clinical potential to prioritize and improve selected IgG antibodies. As 

demonstrated in the subsequent subsections, AbLM provided a capability to harness the potential.    

 

On the UMAP, the randomly selected 19 IgG candidates (in red color) for experimental validation 

showed diversity among themselves and coverage of the cluster sets of over 1000 antibodies 
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(Fig. 2b). Based on the AbLM analysis, IgG 106/107, named after H/L indices, resembled the 

sequence of clinical antibodies C144 (8) and IMD (27) (Imdevimab or REGN10987) whose 

neutralization mechanism involves direct competition with ACE2; whereas IgG 88/89 resembled 

CAS (27) (Casivirimab or REGN10933). Sequence alignment proved such resemblance that 

106/107 and C144 share 11 of 12 CDR3 amino acids in the light chain (CSSYTSSSTGVF versus 

CSSYTSSSTRVF), although C144 has a much longer CDR3 sequence than 106/107 (14 amino 

acids for 106/107 versus 23 amino acids for C144) (Supp. Fig. S3a).   

Physics-driven prediction of IgG structures, RBD interactions and WT viral 
neutralization landscape  

To assess mechanistically and virtually the neutralization capabilities of these uncharacterized 

IgG candidates, we established a physics-driven prediction pipeline (Fig. S1b). It simulates IgG 

apo-structures (H/L pairs) via AbodyBuilder-ML (28) and predicts IgG halo-structures bound to 

spike RBD, using HADDOCK (25) for initial docking and employing Bayesian Active Learning 

(BAL) (29) for refinement and uncertainty quantification.  We hypothesized that an IgG antibody 

of higher neutralization capability blocks more competitively the viral RBD’s binding to the entry 

receptor ACE2 as one neutralization mechanism. Therefore, we used the IgG-competing portion 

of the ACE2-binding residues of RBD (0.0-1.0) as a confidence indicator to predict the IgG’s 

neutralization against the WT virus (Supp. Table 1 [Tab 1 “All IgGs (WT and variant pred.)”]). The 

predicted IgG groups are visualized as scatter points and the smoothened neutralization 

landscape in the latent space (Fig. 2c). The majority, 849 (>62%) of the 1366 IgG candidates 

(1376 excluding 10 with failed apo-structure prediction) were predicted with a confidence score 

below 0.4, implying a low neutralization potential against the WT thus a low priority. 107 IgGs 

(7.8%) were predicted with the scores above 0.6 (Fig. 2c) and these high-priority antibodies were 

dispersed in the latent space (Fig. S3a), including regions not covered by the 14 clinical antibodies 

and suggesting novel sequences of clinical application potentials.    

Data-driven prediction of neutralization profiles against the viral variants in low-
data regimes  

To predict the neutralization profiles of the uncharacterized IgG candidates, we followed an early 

response scenario of “few-shot learning” by selecting a few IgGs for experimental characterization 

and providing a few labeled data for machine learning. The IgG selection can be based on the 

diversity (clusters covering the latent space) and the predicted WT neutralization.  Before any of 

our IgG candidates was tested, we emulated the selection process using the 14 clinical antibodies 
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that satisfied the criteria and had been experimentally characterized for many SARS-CoV-2 

variants.  As machine learning especially large deep learning models often demand big data that 

is unavailable in the early response scenario or other disease settings, we chose Gaussian 

process regressor (Kriging), the best linear unbiased estimator, in combination with a latent space 

from a protein language model, to predict variant-response robustness (the IC50 log-fold 

improvement of each IgG candidate in neutralizing variants versus WT) based on just the 14 

clinical antibody profiles.   

 

For all 1366 IgG candidates, we visualized the predicted robustness landscape against Delta and 

Omicron BA1/BA5 variants (evolving variants compared to the WT infection the convalescent 

patients experienced) in the latent space (Fig. 2d and Supp. Fig. S3b with data provided in the 

Supp. Table 1 [Tab 1 “All IgGs (WT and variant pred.)”]).  We observed a few regions enriched 

in better robustness for Delta variant (warmer colors), such as those around IgG 106/107 

predicted to resemble nearby IMD (Imdevimab/REGN10987) and neutralize the Delta variant well 

(but losing robustness against the Omicron BA1 or BA5 variants). The prediction revealed an 

overall cooler colored landscape against the Omicron variants versus the Delta variants, echoing 

the observations from other studies (17, 30) that the Omicron variants are more prone than the 

Delta variant to elicit antibody escape.      

 

Functional tests of IgG candidates in neutralizing RBD binding and viral infections  
 

To assess our predictions of IgG candidates in neutralizing the WT and variant strains of SARS-

CoV-2, we randomly selected 19 IgG antibodies for experimental tests, including three [88/89, 

106/107, and 94/95] in the high priority class, four in the medium priority class, and 12 in the low 

priority class against WT (Fig. 3a and Supp. Table 1 [Tab 2 “Validated IgGs (WT pred.)”]). 

Following heavy and light chain cloning, the plasmid DNA was transfected into HEK293T cells for 

IgG overexpression, and the IgGs were purified for functional analyses in blocking RBD binding 

to host cells and neutralizing live viral infections.  
  

With flow cytometry-based measurement of RBD-binding to human ACE2 expressing cells (31), 

we evaluated the IgG abilities in blocking the RBD-binding to cellular ACE2 receptor (binding 

inhibition IC50) (Supp. Fig. S4a). Seven out of 19 randomly selected then tested IgGs (001/002, 

019/020, 025/026, 031/032, 088/089, 106/107 and 108/109) inhibited the RBD binding to 

ACE2+ HEK293 cells in a dose dependent manner (Supp. Fig. S4a and Supp. Table 2).  Among 
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the seven neutralizing IgGs, two were extremely potent (106/107 and 31/32) with IC50 < 0.5 nM, 

both of which confidence scores are among the top (Fig. 2). The rest 12 antibodies did not show 

any effective neutralization activity at the concentration tested (Supp. Table 2), all of which are 

largely consistent with their low confidence scores (Fig. 2c). 

 

Consistently, nearly half of the IgG antibodies had neutralizing effects at serially diluted 

concentrations (up to 16 nM) on live SARS-CoV-2 infection to ACE2 overexpressing A549 cells 

(Fig. 3b). Specifically, the IgG clones 106/107, 011/012 and 031/032 showed the lowest EC50 

values against the WT Washington strain, demonstrating the strongest neutralizing effects (Fig. 
3b).  Interestingly, although the IgGs were derived from the COVID-19 patients infected with the 

WT Washington strain (before the variants of concern emerged and widespread), many of the 

IgGs possessed neutralizing capacities against the Delta and Omicron variants as well. In fact, 

three of the clones (001/002, 031/032, and 108/109) were about ten times more effective in 

neutralizing the Delta variant as compared to the wildtype (Fig. 3c, Fig. S4b and Supp. Table 3).   

 

These experimental data validated our computational pipelines’ predictive power in screening and 

prioritizing potent and broad-spectrum antibodies, as detailed as follows.  

 

First, independent of IgG activity data, our physics-driven confidence prediction for IgGs in WT 

neutralization, based on the predicted blocking portion of ACE2-binding RBD residues, showed 

robust prioritization of WT neutralizing antibodies (Fig. S5a and Fig. 2c).  The first two of the top 

three IgGs with high-confidence score priority (88/89 and 106/107) showed high potencies and 

efficacies in neutralizing RBD-binding and viral infection, representing a 67% success rate 

compared to 37% (7/19) from a random subset of antibodies. Conversely, among the twelve 

predicted low-priority antibodies, 75% and 67% were proven to have no activity in neutralizing 

RBD-binding and viral infection, respectively (Fig. S5a).   

 

Second, using data from as few as 14 antibodies (Supp. Fig. S6), our data-driven prediction 

profiles of antibodies on variant neutralization also showed agreement with the experimental 

inhibition of variant infection in differentiating narrow- and broad-spectrum antibodies (Fig. 3d-e 
and Fig. 2d).  Among 22 experimentally validated antibodies against variant infections, 3 out of 4 

predicted to have improved neutralization efficacy (better robustness compared to the WT virus) 

were validated with a success rate of 75% (3/4), whereas 14 of the rest 18 predicted to lose 

efficacy were also validated with a success rate of 78% (14/18) (Fig. 3e, and Supp. Fig. S5b).  
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The success rates from our antibody language model, especially that for robust responses (75%), 

significantly outperformed those from state-of-the-art pretrained language models, including all 

five versions of ESM-1 (32)  (44%–57% for robustness), three largest versions of ESM-2 (33) 

(45%–67%), ProtT5 (34) (44%), and an antibody language model AbLang (35) (50%), as shown 

in Fig. 3d,e and Supp. Fig. S5b.  Compared to the next best performer ESM-2 with 15 billion 

parameters, our AbLM with 92 million parameters (163-times smaller) is accurate yet lightweight, 

thanks to antibody-inspired novelty including pairing VH-VL encoders with cross attention and 

training them with CDR-masking.     

 

 

Redesign of a prioritized antibody improves neutralizing the Delta variant  

Given the demonstrated ability of our platform to prioritize potent and broad-spectrum antibodies, 

we next tested its ability to (re)design prioritized IgGs for better variant neutralization profiles. We 

picked IgG 106/107 that was a top candidate of our predictions and verified with its neutralizing 

efficacy against WT and the Delta variant.  Based on predicted IgG-RBD structures, we used a 

physics principle-driven multistate protein design program, iCFN (36) to computationally redesign 

IgG 106/107 to improve its binding to the Delta variant RBD without losing much affinity to the WT 

RBD. Ten single amino-acid substitutions near suggested binding sites of T478K were proposed, 

including three at the heavy chain (all on F66) and seven at the light chain (four on Y38, two on 

Y55 and one on D56) (Fig. 4a and Supp. Fig. S7).  All four designs at Y38 stood out with a higher 

confidence score due to strongly improved electrostatic interactions, half being large-to-small 

apolar substitutions (Y38A and Y38G) and the other half hydrophobic-to-polar (Y38S and Y38Q).               

 

We cloned ten re-designed IgG 106/107m antibodies and measured their neutralization abilities 

against live viruses of the wild type and Delta variant.  Strikingly, three of the four top-ranked 

designs, all at Y38 residue including Y38A, Y38S and Y38G (not Y38Q) showed most improved 

neutralization against the Delta variant, with Y38A of over 2-fold increase in neutralization efficacy 

(Fig. 4b and Supp. Fig. S8).  Importantly, their neutralization activities for the WT virus were not 

significantly impaired, which is consistent with the intended computational design. Our principle-

driven protein design led to energy scores with positive to strongly positive ranking performances: 

the Spearman’s rank correlation coefficient between the predicted binding energy changes and 

the measured pEC50 values for the 10 designs was 0.515 and 0.806 for wild type and the Delta 

variant, respectively (Fig. 4c).  It also led to mechanistic explanations of Y38A’s gained binding 

to the Delta RBD: T478K in the Delta variant may cause Y38 of the antibody 106/107 to be buried 
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from the solvent and pay desolvation penalty to the binding affinity (Fig. 4d middle panel), 

whereas the substitution to a small hydrophobic residue Y38A (as well as Y38G) in the antibody 

106/107 can reduce such penalty (Fig. 4d right panel). With the proof of concept from single 

substitution designs, we anticipate that higher-order redesigns or even de novo designs would 

further improve the broad-spectrum neutralization profile.   

Prioritized IgG candidates show anti-infection in transgenic mice  

We next evaluated the therapeutic efficacy of two best neutralizing IgG candidates (106/107 and 

011/012) prioritized by our integrated computational and experimental platform in their ability to 

prevent multi-strain SARS-CoV-2 infection in the well-established hACE2 transgenic mouse 

model in vivo (Fig. 5a). Antibodies were administered to mice by nasal inhalation to determine 

their effects on preventing viral infection of the three viral strains (WT Washington, Delta, and 

Omicron). In concordance with the in-vitro cell survival after viral infections, both antibodies 

prevented weight loss and health deterioration in mice infected with the Washington strain, 

whereas only IgG 106/107, but not IgG 011/012, prevented the mice from Delta variant infection-

caused weight loss and clinical symptoms (Fig. 5b, c). Furthermore, the viral titers in the lungs of 

infected mice were significantly lower after the 106/107 antibody treatment which also neutralized 

the viral variants, consistent with the live virus neutralization results in vitro (Fig. 5d).  

 

Notably, while the low pathogenic Omicron variant did not cause severe disease in mice, 

treatment with either IgG 106/107 or IgG 011/012 resulted in lower levels of viral titers in the lungs 

of the infected animals (versus the isotype IgG control group) (Fig. 5c, d). As expected, Omicron 

infection did not cause significant changes in clinical scores and lung histology even in the control 

mice without candidate treatment (Fig. 5c, d, and Supp. Fig. S9, S10). Histology analyses of the 

lungs of infected mice reveal that the 106/107 and 011/012 neutralizing IgGs were able to reduce 

acute lung inflammation following infection with the Washington and Delta strains, albeit no 

significant effect on chronic inflammation (Fig. 5e, 5f, and Supp. Fig. S9, S10). Additionally, the 

IgG 011/012 antibody treatment significantly inhibited the necrosis in the lungs of mice infected 

with the Washington as compared to the control IgG (Fig. 5g). These data demonstrated the IgG 

prioritization strategies in pre-clinical studies. 
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Discussions and Conclusions 

Therapeutic antibody development faces the dual challenges of expensive experimental 

screening and constantly evolving targets under selective pressure. Using SARS-CoV-2 as a 

testing model, our extensive RBD-specific IgG sequencing on a sizable scale with COVID-19 

patients in the early stages of the pandemic, reveals that a significant number of effective clones 

against the WT virus, lose effectiveness against the variants of concern, such as Delta and 

Omicron. Significantly, our computational analysis pinpoints certain IgG antibody clones with 

potential enhancements in blocking variant infections in ACE2+ cells, as confirmed through both 

in vitro and in vivo virus infection studies. These findings offer a potential explanation for why 

certain COVID-19 patients exhibit greater resistance to reinfection by SARS-CoV-2 variants 

compared to others, as frequently observed (37).  

 

Furthermore, we have demonstrated that replacement of a single residue spin in the IgG core for 

RBD binding with a smaller and hydrophobic alanine (Y38A) dramatically improves its 

neutralization activity against the Delta variant. This unexpected discovery also provides a 

rationale for us to harness the computational power in accelerated virtual IgG screening and re-

design for their use to treat/prevent emerging new pathogen variants or mutating oncogenic 

targets, which are urgent clinical demand. Over the last few years, while the convalescent plasma 

treatment has been proven to be effective in treating COVID-19 patients [30], almost all licensed 

monoclonal antibodies have eventually failed to neutralize the Omicron variant [31].  

 

While many clinical antibodies are used to neutralize other pathogens, treat autoimmune diseases, 

and combat cancer, there is an urgent call to prepare efficacy-improving strategies in advance or 

in early response phase before therapy resistance develops. Similar to our machine learning 

strategies, a few methods have been proposed: (1) to efficiently select broadly neutralizing 

antibodies based on the structure information of specific epitope [32], and (2) to identify antibody 

variants of high potency using the evolutionary information of antibody sequences alone which 

are encoded in generic protein language models [33]. Beyond these powerful methods, we 

emphasize the urgency of advanced preparation and early response for therapeutic antibody 

optimization without timely availability or abundance of experimental data, such as epitope 

characterization, structure determination [29], or activities of antibody variants [30]. Also, 

compared to the single substitutions of any given antibody are selected and combined [30], our 

approach combines with predictions of the neutralization activity landscapes for a large and 
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diverse set of IgG antibodies. The success of activity landscape prediction was largely attributed 

to a novel antibody language model that, despite being 10-100 times smaller, outperformed 

competing protein language models thanks to protein pretraining - antibody fine-tuning, VH-VL 

cross-attention, and CDR masking. Future therapeutic development strategies shall further 

integrate computational and experimental approaches for synergistic accuracy and efficiency to 

design and re-design clinically effective antibodies and other drugs against quickly evolving 

targets, such as viral pathogens and oncogenic antigens. 

 

 

Methods and Materials  
Sex as a biological variable 
Human blood specimens were collected from both male and female patients. Additionally, our 
study examined male and female mice, and similar findings are reported for both sexes. 
 
Human subject study and biosafety approvals for blood draws.   
Human blood specimens from convalescent COVID-19 patients and related research activities 
were implemented under NIH guidelines and the protocols approved by the Northwestern 
University Institutional Review Board (STU00205299) as well as the Institutional Biosafety 
Committee for COVID-19 research. 
 
B-cell sequencing (VDJ), bioinformatic analysis  
B cells were isolated from blood of convalescent COVID-19 donors using the EasySep B kit 
(Stemcell Technologies, cat no 17954). SARS-nCoV-2 Spike RBD (Raybiotech, catalog no. 230-
30162) was biotinylated via a commercially available kit (Thermo Sceintific cat no. 21330) and 
the resulting biotin-labeled protein was purified through a Zeba quick spin column (Thermo 
Scientific cat no. 89882). The RBD-biotin was prebound with streptavidin-AlexaFluor-647 to make 
RBD-647 (Invitrogen, cat no. S21374). B cells were stained with CD19, CD27, CD38, anti-IgM 
and RBD-647 and a TotalSeq-C hashtag oligo (Biolegend). RBD-647+ B cells were sorted on a 
FACS Aria (BD Biosciences) in the Robert H. Lurie Cancer Center Flow Cytometry core facility. 
Due to the small number of RBD-647+ B cells isolated from each patient, we combined B cells 
with monocytes isolated from the same patients, labeled with a different hashtag oligo (24) .  
 
B Cells and monocytes were partitioned using a 10X genomics Chromium Controller for GEM 
generation followed by single-cell library construction using 10X Chromium Next GEM Single Cell 
V(D)J Library reagent kit.  Libraries were sequenced at the Northwestern University Sequencing 
Core Facility on an Illumina HiSeq 4000 using the sequencing parameters indicated by the 
manufacturer. We aligned the sequences aligned using CellRanger (10X genomics). Aligned 
antibody sequences from CellRanger were extracted for downstream analysis. VDJ sequences 
were ordered from IDT and cloned into the vector AbVec antibodies (Addgene)  
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WT-neutralization prediction based on antibody structure prediction and docking  
From each antibody sequence, we first predicted its 3D structure using the web application  
ABodyBuilder-ML (38). Then we determined the “active” residues for each antibody’s predicted 
structure using the web server proABC2 (39) and the “passive” residues for an RBD crystal 
structure (PDB ID: 6W41, Chain C) using the criteria of DSSP-calculated relative solvent 
accessibility above 0.4.  For each pair of antibody heavy (H) and light (L) chains and RBD antigen 
structures, we performed initial protein docking using the webserver HADDOCK (25) (“Scenario 
2” when a loose definition of the epitope is known) as well as the aforementioned information 
about active and passive residues.  And we refined the resulting top-10 or less HADDOCK 
structural models (cluster representatives) and estimated their confidence weights using the 
computer program Bayesian Active Learning (BAL) (29).  For each antibody, we calculated the 
confidence indicator of WT virus neutralization probability (0.0-1.0) using these protein-docking 
models to calculate antibody-blocking RBD residues from ACE2 binding.  A total of 26 ACE2-
binding residues on RBD were determined using the ACE2-RBD co-crystal structure (PDB ID: 
6M17, 6M0J, and 6LZG), based on the proximity within 5Å of the ACE2; their residue indices are 
417, 446, 447, 449, 453, 455, 456, 473, 475, 476, 477, 484, 486, 487, 489, 490, 493, 494, 495, 
496, 498, 500, 501, 502, 503, and 505. Specifically, each given antibody is predicted to interact 
and interfere with a portion (0.0-1.0) of the 26 ACE2-binding residues on RBD(within 5Å of any 
RBD heavy atom) according to each structural model; and the WT-neutralizing confidence 
predictor is calculated by weight-averaging the portions across all structural models for each 
antibody. 
   
Antibody language model (AbLM) 
The architecture, training, and application of AbLM is illustrated in Fig. 2a. We adopted a 
bidirectional self attention-based transformer encoder (12 layers and 12 heads per layer; please 
refer to the model ‘RP15_B1’ in (40) for more details). We pretrained the encoder using over 12 
million non-redundant protein-domain sequences from Pfam-RP15-v32 (41) and fine-tuned two 
weight-tied sequence encoders, one for the heavy chain (VH) and the other for the light chain 
(VL), using 4,196 paired heavy and light-chain antibody sequences (variable region) from SabDab 
(42). During fine-tuning, a VH-VL cross-attention module was added after the weight-tied VH and 
VL encoders.  While random masking following BERT was applied in pre-training, antibody-
specific masking of one random CDR region per training example was adopted in fine-tuning.  For 
the input of given paired heavy and light-chain sequences, the output of the resulting antibody 
language model is the “embedding” of the antibody sequence, that is, a 1536-dimensional vector 
consisting of 768 dimensions for either heavy or light chain. The embeddings lie in a 1536-
dimensional space dubbed the “latent” space.   
 
Variant response prediction based on machine learning 
To emulate the low-data regimes, we used variant response profiles of 14 clinical antibodies as 
of late 2022 (including 9 single antibodies under emergency use authorization and 5 single 
antibodies under clinical trials), as in “susceptibility summaries” of the Coronavirus Resistance 
Database (CoV-RDB) (43)) and Supp. Fig. S6.  Specifically, we used their log fold improvements 
against Delta, Omicron/BA.1, and Omicron/BA.4/5, ranging between -3 (³1000-fold reduced 
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neutralizing activity) and +1 (³10-fold increased neutralizing activity).  In the 1536-dimensional 
latent space, we constructed covariance kernels using Euclidean distances among the 
embeddings of 1366 uncharacterized IgG candidates and 14 experimentally profiled clinical 
antibodies and accordingly three Kriging regressors for log fold improvements against Delta, 
Omicron/BA.1, and Omicron/BA.4/5, respectively.  We made variant response predictions for all 
1366 IgG candidates and visualized the landscape by interpolation (inverse distance weighting).  
We then validated such prediction based on 19 IgG candidates.   
 
Antibody re-design against the Delta variant.  
We chose antibody 106/107 as the “seed” for improved neutralization against a SARS-CoV-2 
variant (Delta).  The highest-weight structural model of the antibody-RBD (WT) complex as the 
input, a computational protein design program iCFN (36) is used to first predict the antibody-RBD 
(Delta variant) complex structure and then design amino-acid substitutions for the antibody to gain 
neutralization against the Delta variant.  Specifically, both steps involve multistate design with 
single substrate per state (see more details in (36)) and find the optimal structures (and 
sequences, when applicable) to minimize the energy difference between a positive and a  
negative state.  
 
When predicting the antibody-RBD (Delta variant) complex structure, we maximally disrupt 
binding by minimizing the folding-energy difference between the separate (positive-state) and 
bound (negative-state) antibody-RBD, as detailed in (44). All residues within 5Å of RBD residues 
L452 and T478 were treated flexible during design, while amino-acid substitutions L452K and 
T478R were enforced.   
 
When designing the optimal single amino-acid substitutions for the antibody 106/107 and 
simultaneously predicting the structures, we maximally enhance RBD-binding by minimizing the 
folding-energy difference between the bound (positive-state) and the separate (negative-state) 
antibody-RBD while constraining the folding stability, as detailed in (36) (XRCC1 design).  The 
antibody redesign positions are all residues within 5Å of RBD residues 452 and 478, including 1 
on the heavy chain near residue 452 of RBD and 7 on the light chain near residue 478 of RBD.     
 
Cloning of antibody expression plasmids 
The VDJ sequences of heavy and light chains of prioritized antibody pairs were obtained from the 
single cell VDJ sequencing. DNA fragments harboring the specific variable sequences were then 
synthesized by gBlock Gene Fragment technology by Integrated DNA Technologies (IDT). 
Synthesized double stranded DNA fragments were then cloned into AbVec2.0-IGHG1 (Addgene 
#80795), AbVc2.0-1.1-IGKC (Addgene #80796), and AbVec1.1-IGLC2-Xho1 (Addgene #99575) 
to generate the heavy chain, kappa light chain, and lambda light chains, respectively. The IgG 
expression vectors and protocols were generously shared by Drs. Jenna Guthmiller and Patrick 
Wilson at the University of Chicago. Proper insertions of cloned DNA fragments were confirmed 
by Sanger sequencing.  
 
Antibody production and purification 
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Plasmids expressing the heavy and light chain of each tested antibody were transfected into 
HEK293T cells (ATCC CRL-3216) by a calcium chloride transfection method. Briefly, 60-80% 
confluent HEK293T cells were transfected with about 19 micrograms of each heavy and light 
chain expression plasmids (up to 1044 µL nuclease free H2O) mixed with 188 µL of 2M CaCl2. 
Followed by dropwise addition of 1.25ml of 2X HBS buffer pH 7.12 (50 mM Hepes Acid, 280mM 
NaCl, 1.5 mM NA2HPO4) while introducing bubbles to the mix. Following incubation for 20 
minutes at room temperature, 15.5 mL cDMEM was added to the mix and subsequently 
transferred to cells and incubated at 37°C 5% CO2 for 16 hours, after which cells were washed 
with 1X PBS and fresh cDMEM was added to cells and incubated for three more days. 
Supernatants were collected and spun at 2,000 x g for 10 minutes at 4°C to pellet cell debris. 
Antibodies were purified from culture supernatants by protein A agarose beads (Thermo Fisher 
PierceTM Protein A Agarose, 20333). Briefly, cell culture supernatant was added to pre-washed 
beads (500 µL) and incubated on a table top rocker for 2 hours at room temperature followed by 
overnight incubation at 4°C. Bead-bound antibodies were collected by centrifugation at 1800 xg 
for 10 minutes at 4°C (Break off) and washed in 1M NaCl followed by two 1X PBS washes. 
Antibodies were eluted by adding 3 ml 0.1M glycine-HCL (pH 7.12) and rocking at room 
temperature for 10 minutes. Following centrifugation at 1800 x g for 10 minutes at 4°C, 
supernatants containing the antibodies were neutralized by adding 200ul 1M Tris-HCl (pH 8.8). 
Antibody solutions were then concentrated using an Amicon protein concentrator (4 mL capacity, 
30 kDa MWT cutoff) and buffer exchanged with 1X PBS and antibodies were stored at 4C. 
 
Quantification of antibody concentrations using ELISA 
The Human IgG ELISA Kit (ab195215) was used to quantify the concentration of purified IgGs 
following the manufacturer’s instructions and optical density was measured using the SpectraMax 
iD5 plate reader.  
 
Cell-based neutralization assay 
To create neutralized Spike Receptor Binding Domain (RBD), purified antibodies were incubated 
with the RBD-biotin-AF647 bait (3.3 nM) for 45 min on ice, then incubated with ACE2 expressing 
HEK-293 (ACE2+ HEK-293) cells (200,000 cells in 100 µL 2% extracellular vesicles (EV)-free 
FBS/PBS) for 45 min on ice. RBD bait that was incubated with PBS, or with non-fluorescent RBD 
bait (mock control) were used as controls. Cells were then washed twice with 2%EV-free/PBS 
(300xg for 5min). Dapi was added to stain dead cells and analysis was performed using BD 
FACSymphony A5-laser analyser. Viable singlets were gated for percentage of the RBD-AF647+ 
population. Data were analyzed using Flow Jo v10.6.2. and GraphPad Prism 9.5.0  
 
Live SARS-CoV-2 virus infection of A549 cells (BSL3) 
The live virus neutralization experiments were conducted at the NIAID-supported BSL-3 facility at 
the University of Chicago Howard T. Ricketts Regional Biocontainment Laboratory. 
 
One day prior to viral infection, A549 cells overexpressing human ACE2 (A549-hACE2) (obtained 
from tenOever and colleagues) (45)  were seeded onto 96-well plates at a density of 10,000 cells 
per well. Antibody dilutions were made in Infection Media with 2% FBS. Antibody dilutions were 
mixed with 500 pfu of a SARS-CoV-2 strain, WT Washington (nCoV/Washington/1/2020), variant 
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Delta (NR-55672  SARS-Related Coronavirus 2, Isolate hCoV-19/USA/MD-HP05647/2021 
(Lineage B.1.617.2), variant Omicron (NR-56481 SARS-Related Coronavirus 2 Isolate hCoV-
19/USA/GA-EHC-2811C/2021 (Lineage B.1.1.529) or variant Omicron Isolate hCoV-
19/USA/COR-22-063113/2022 (Lineage BA.5) and incubated at 37°C in the dark for 1 hour. 
Culturing media was then replaced with infected antibody dilutions and allowed to incubate for 
72-96 hours or until positive control wells show at least 50% CPE (cytopathic effect). At which 
point the infectious media was removed and cells were fixed with 100 µL of Formalin solution (10% 
Formalin Fisher 23305510). Cells were incubated at room temperature with Formalin for at least 
15 minutes to ensure viral inactivation. Then formalin media was removed, and cells were stained 
in 0.25% Crystal Violet solution (0.25% w/v Crystal Violet Sigma C0775 in 20% EtOH) for 15-30 
minutes, after which the Crystal violet is washed off under gently flowing tap water. Plates were 
then allowed to dry uncovered on the benchtop for at least 24 hours prior to analysis using the 
Infinite 200 Pro TECAN plate reader. Control wells such as no virus mock control in addition to a 
non-antibody treated control were included. A value of maximal death caused by the virus was 
evaluated from the virally infected but non-treated control wells while the maximal normal cell 
growth was determined from the mock-infected control wells. The average absorbance value of 
the non-treated control wells was subtracted from the remaining absorbance values to establish 
“0” values for non-treated wells. Next, all absorbance values were divided by the average 
absorbance value of the mock-infected control thereby setting the value of the mock-infected 
control to 100. 
 
Mouse experiments 
Three experimental groups of 15 week-old hACE2 transgenic B6.Cg-Tg (K18-ACE2) 2Prlmn/J 
(K18-hACE2) mice were set up with nine mice per group (4 or 5 females and males each group 
to reach about 50%/50%). Mice were housed in specific pathogen-free facilities at the BSL-2 
facility at University of Chicago Howard T. Ricketts Regional Biocontainment Laboratory. Three 
groups of IgG (1.2ug for Washington and Delta or 8.5ug for Omicron) were each mixed with 
SARS-CoV-2 viral strains; Washington at 10,000 pfu, Delta at 10,000 pfu, or Omicron at 20,000 
pfu and incubated for 1 hour at 37°C. After incubation, the mice were anesthetized with isoflurane 
and 25 µL of the mixture were administered intranasally. Following viral infection challenges, 
animals were monitored for health twice daily and weighed once per day. Clinical scoring system 
included: Score 0 (pre-inoculation)- mice are bright, alert, active, normal fur coat and posture. 
Score 1 (post-inoculation, pi)- mice are bright, alert, active, normal fur coat and posture, no weight 
loss. Score 1.5 - mice present with slightly ruffled fur but are active OR weight loss might occur 
but does not reach 2.5%; recovery can be expected. Score 2 (pi)- ruffled fur OR less active OR < 
5% weight loss; recovery might occur. Score 2.5 (pi)- ruffled fur OR not active but movies when 
touched OR hunched posture OR difficulty breathing OR weight loss 5-10%; recovery is unlikely 
but still might occur. Score 3 (pi)- ruffled fur OR inactive but moves when touched OR difficulty 
breathing OR weight loss at 11-20%; recovery is not expected. Score 4 (pi)- ruffled fur OR 
positioned on its side or back OOR dehydrated OR difficulty breathing OR weight loss > 20% OR 
labored breathing; recovery is not expected. Score 5 (pi) - death. Three days post infection, mice 
challenged with the Omicron variant were euthanized while the mice challenged with Washington 
and Delta variant were euthanized on day seven post infection. One lung was used to determine 
SARS CoV-2 viral genome levels and the other lung was fixed with formalin. 
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Lung fixation and histopathological analysis  
Lung tissue was submerged in 1 mL formalin for 48 hours. Formalin was removed and 1 mL 
formalin was added and incubated for an additional 12 days. Tissue was tested for viral 
inactivation and released. Fixed lungs were then embedded in paraffin and sectioned by routine 
procedures followed by H&E staining. Stained slides were scanned then analyzed using the NDP 
view2 software. Double-blinded evaluation of the percent of total lung surface area involvement 
was performed by a pathologist following a graded scheme adopted from a previous report (46). 
 
Lung viral genome level measurement using qRT-PCR 
RNA was extracted from mouse lungs using the Nucleospin 96 RNA extraction kit as per written 
instructions (Macherey-Nagel 740709.4). Prior to being run through the binding columns, the lung 
tissue was collected in the R1A buffer provided with the kit and homogenized using a FastPrep 
fp120 homogenizer with 1.4 mm ceramic beads (Omni international SKU 19-645). RNA was 
eluted in RNAse free water and used for qRT-PCR.  Which was performed using an Applied 
BioSystems Step One Plus Realtime PCR system, using the SupperScriptIII Platinum One-Step 
qRT-PCR Kit with ROX (Invitrogen 11745-500). Sample RNA was measured using a standard 
curve made by extracting viral RNA from lab viral stocks. The quantity of RNA in the viral stock 
was measured with a Nanodrop 2000. CDC recommended N2 primers and probe used in the 
qRT-PCR were purchased from IDT (10006824, 10006825, and 10006826). 
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Figure 1

Figure 1: Schematic illustration of our study flow and the AbGen pipeline. a. Peripheral blood samples 
were collected from 42 convalescent Covid-19 patients and RBD+ memory B-cells were sorted and underwent 
single-cell VDJ sequencing using the 10x Genomics platform. b. A total of 1366 a-RBD antibody sequences 
were retrieved and included in our machine-learning model to predict antibodies with high SARS-CoV2 
neutralization capacities. c. Prioritized antibodies were then tested for their ability to neutralize broad-spectrum 
SARS-CoV-2 in both in-vitro and in-vivo settings. 
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Figure 2. Our novel Antibody Language Model (AbLM) embeds IgG sequences in a latent space for 
sequence analysis and susceptibility prediction.
(a) Architecture, training, and application of our novel antibody language model, AbLM. 
(b) Clusters of 1366 patient-derived convalescent antibodies along with 14 clinical antibodies, based on the 
sequence embeddings from AbLM and dimensionality reduction using UMAP.  19 antibodies highlighted in red were 
functionally tested.  
(c) Predicted 2D and 3D landscape of patient antibodies’ neutralization of wild type (a confidence score between 0 
and 1), along with a 1D histogram in between, using antibody-antigen structure predictions.   
(d) Predicted 3D landscape of patient antibodies’ robustness to variants (log fold improvement in neutralization 
compared to that of the wild type / Washington, ranging from -3 to +1), using Gaussian Process Regression 
(Kriging) based on 14 clinical antibodies’ known variant responses.   
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Figure 3. Experimental tests of antibody neutralization against SARS-CoV-2 WT and variants

(a) Schematic depicting experimental workflow. Variable regions of the heavy and light chains of the prioritized 
antibodies were cloned into AbVec IgG vectors followed by transfection into 293T cells. Purified antibodies 
were then tested for their ability to neutralize RBD in an ACE-2 cell-binding assay as well as live SARS-
CoV2 neutralization.

(b, c) Live SARS-CoV-2 virus neutralization by prioritized anti-RBD antibodies. Viability of A549 cells 
overexpressing human ACE2 was evaluated 72-96 hours post viral infection. GraphPad Prism 9.3.1 was used 
to calculate EC50s

(d) Box plots of antibodies tested antibodies’ wild-type neutralization (binding inhibition IC50 and viral 
neutralization EC50) split into three predicted to be of to  

(e) Box plots of tested antibodies’ variant response (log fold improvement in viral neutralization EC50 compared 
to the wild type) split into four antibody-variant cases predicted to be robust and eighteen predicted to be 
susceptible.   
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Figure 4. Antibody 106/107  redesign with improved efficacy against delta variant 

(a) Visualization of the binding interface between the spike RBD (in wheat cartoon), including two 
positions mutated in the Delta variant (L452 and T478), and the patient antibody 106/107 (in blue 
cartoons).  Four positions on the antibody were selected for redesign and shown in sticks, including 
F66 of the heavy chain (in darker blue) and Y38, Y55, and D56 of the light chain (in lighter blue).    

(b) Live SARS-CoV-2 virus neutralization by our redesigned antibodies. Data showing fold-improvement 
of EC50 for the redesigned antibodies compared to the WT 106/107 antibody. Viability of A549 cells 
overexpressing human ACE2 was evaluated 72-96 hours post viral infection. GraphPad Prism 9.3.1 
was used to calculate EC50s

(c) Computational designed single amino-acid substitutions of antibody 106/107: computationally-
predicted binding-energy improvements (-ddG) showed high correlations with experimentally-
measured EC50 fold improvements, whether tested against WT (Washington) or the Delta variant.  

(d) Computationally predicted 3D structures of RBD-Ig complexes suggested the WT-neutralizing 
mechanism of the antibody 106/107 (where Y38(L) and D56(L) interacted with T478 on the RBD wild 
type), the antibody-escaping mechanism of the Delta variant (where Y38(L) and D56(L) lost 
interactions with K478 on the RBD Delta variant and Y38(L) paid more desolvation penalty), and the 
variant-neutralization enhancing mechanism (where A38(L) paid almost no desolvation penalty).  
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Figure 5
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Figure 5. Antibody neutralization and inhibition of broad strain infections in hACE2 transgenic 
mice
(a) Schematic of viral neutralization and infection design. SARS-CoV-2 viral strains and select 

antibodies (1.2 ug IgG for Washington and Delta or 8.5ug IgG for Omicron) were administered 
intranasally into K18-hACE2 mice. Animals were monitored for health twice daily and weighed 
once per day. Seven days post infection (3 days for Omicron), mice were euthanized, and lungs 
were analyzed for viral load and pathohistological characteristics. 

(b) Percent weight loss of K18-hACE2 mice post viral infection (n= 9). 
(c) Clinical score post SARS-CoV-2 infection. Larger clinical scores indicate increased disease 

severity and reduced physical fitness (n= 9). 
(d) Lung genomic viral load on day 7 (Washington and Delta) or day 3 (Omicron) post antibody 

neutralization and viral infection measured by qRT-PCR (n= 9). 
(e) Representative H&E images of mice lungs at experimental endpoint. Error bar = 1mm.
(f) Lung Acute and chronic inflammation scores based on histopathological analysis of H&E-

stained slides (n= 9). 
(g) Alveolar hemorrhage and necrosis scores based on histopathological analysis of H&E-stained 

slides  (n= 9). Statistical significance was tested with unpaired t-tests (b, c, f and g) or Mann 
Whitney test (d). ns means non-significant difference.
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