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Abstract: To elucidate the aging-associated cellular population dynamics throughout the body, here we 17 
present PanSci, a single-cell transcriptome atlas profiling over 20 million cells from 623 mouse tissue 18 
samples, encompassing a range of organs across different life stages, sexes, and genotypes. This 19 
comprehensive dataset allowed us to identify more than 3,000 unique cellular states and catalog over 200 20 
distinct aging-associated cell populations experiencing significant depletion or expansion. Our panoramic 21 
analysis uncovered temporally structured, organ- and lineage-specific shifts of cellular dynamics during 22 
lifespan progression. Moreover, we investigated aging-associated alterations in immune cell populations, 23 
revealing both widespread shifts and organ-specific changes. We further explored the regulatory roles of 24 
the immune system on aging and pinpointed specific age-related cell population expansions that are 25 
lymphocyte-dependent. The breadth and depth of our 'cell-omics' methodology not only enhance our 26 
comprehension of cellular aging but also lay the groundwork for exploring the complex regulatory networks 27 
among varied cell types in the context of aging and aging-associated diseases. 28 
 29 
 30 
One Sentence Summary: PanSci, a single-cell transcriptome atlas of over 20 million cells throughout the 31 
mouse lifespan, unveils the temporal architecture of aging-associated cellular population dynamics, organ-32 
specific immune cell shifts, and the lymphocyte’s role in organismal aging.  33 
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Main Text: 34 
 35 
The adage 'A chain is only as strong as its weakest link' aptly applies to the aging process. Within the 36 
diverse cellular landscape of different organs, certain cell types exhibit profound alterations in their states 37 
or populations as we age(1–3). These changes not only impact the overall function of the organism, but 38 
play a critical role in the onset of age-associated diseases(4). Therefore, cataloging these vulnerable cell 39 
types is critical for unraveling the cellular underpinnings of aging-related pathologies and for identifying 40 
potential interventions to counteract detrimental age-related changes in cell populations. 41 
 42 
Nevertheless, a comprehensive characterization of these aging-related cellular changes presents 43 
significant challenges. One primary barrier is the inherent heterogeneity within cell populations, potentially 44 
obscuring less common yet crucial cell types involved in aging. While advancements in single-cell genomic 45 
profiling offer a powerful route in characterizing cell state heterogeneity(5–8), current studies are limited 46 
by the throughput of single-cell techniques and thus mainly focus on the abundant cell types, neglecting 47 
the intricate dynamics of rare cell states or subtypes, as well as their variations across different individuals 48 
or conditions (e.g., sexes, genotypes). In addition, large-scale single-cell studies that integrate multiple 49 
datasets, often profiled using varied methodologies and by different laboratories, face the challenge of 50 
batch effects that can hinder the identification of rare cell types and complicate comparisons of broadly 51 
distributed cell types, such as immune or endothelial cells, across different tissues(9–11). 52 
 53 
To achieve a comprehensive characterization of aging-associated cell population changes, here we 54 
present PanSci, a panoramic view of mouse aging, by examining the transcriptional states of over twenty 55 
million cells across mammalian organs sourced from 623 diverse tissue samples (Fig. 1A-B, fig. S1-2). 56 
These samples were collected from a cohort of individuals across various ages, sexes, and genotypes 57 
(fig. S2A-C, table S1). Specifically, we included eight sex-balanced wild-type C57BL/6 mice across three 58 
age groups (6-month, 12-month, and 23-month). Moreover, we profiled both wild-type and two immuno-59 
deficient genotypes, B6.129S7-Rag1tm1Mom/J(12) and B6.Cg-Prkdcscid/SzJ(13), at 3-month and 16-60 
month stages, with four sex-balanced replicates each. (Fig. 1A, upper). These mutant strains, 61 
characterized by lymphocyte deficiency, could provide insight into the regulatory role of the immune system 62 
in the aging process of other solid organs. In addition, varied time intervals and genotypes in our dataset 63 
allow for rigorous cross-validation of the observed aging-associated cell population changes. 64 
 65 
The single-cell datasets are generated with EasySci(14), an optimized single-cell combinatorial indexing 66 
method(15–18) for organismal cell population analyses. A noteworthy aspect of EasySci lies in its full gene 67 
body coverage of transcripts, scalability, and cost-effectiveness, facilitating the profiling of over 20 million 68 
cells by a single operator. Notably, we extensively optimized the cell lysis conditions to efficiently extract 69 
nuclei from frozen tissues across diverse mammalian organs, effectively reducing the batch effects 70 
commonly associated with conventional tissue digestion and cell isolation approaches (fig. S1). Post 71 
extraction, the nuclei underwent fluorescence-activated cell sorting, followed by barcoding via indexed 72 
reverse transcription, ligation, and PCR stages in EasySci (Fig. 1A, lower). The final libraries were 73 
sequenced through twenty-five S4 runs with the Illumina NovaSeq 6000 system, yielding over 200 billion 74 
raw reads. This sequencing depth (~8,950 reads per cell), aligns with our prior single-cell studies in 75 
capturing rare cell states in mammalian development and brain aging (14, 18, 19). After filtering low-quality 76 
cells and doublets, we recovered 21,786,931 single-nucleus gene expression profiles (including the 77 
1,469,111 brain cells profiled in(14)) (fig. S2G). An average of 1,601 unique transcripts (UMIs) was 78 
detected per cell (median = 1,040 UMIs) (fig. S2D), and an average of 1,562,909 cells was profiled per 79 
organ (Fig. 1B; maximum, 3,767,262 cells from kidney; minimum, 696,410 cells from muscle). 80 
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 81 
We adopted a two-step approach, akin to our prior work(14), to identify heterogeneous cellular states 82 
across various organs. Employing UMAP visualization and Leiden clustering(20), we first analyzed single-83 
cell gene expression profiles for each organ separately. A total of 239 organ-specific main cell types were 84 
characterized across different organs (except the 31 brain cell types identified in (14)) (Fig. 1C, fig.S3A, 85 
table S2). Each cell type was identified across multiple individuals (a median of 48 samples per cell type, 86 
fig. S3B), represented by a median of 15,922 cells, ranging from 2,465,275 cells (i.e., proximal tubule cells 87 
in the kidney) to only 6 cells (i.e., osteoblasts in muscle) (fig. S3C). On average, 56 unique marker genes 88 
were identified per cell type. The marker genes were defined by a minimum fivefold difference in expression 89 
between the top-ranked and second-ranked cell types and a minimum expression (transcripts per million) 90 
of 50 in the targeted cell type (table S3). The identity of these cell types was confirmed by cell-type-specific 91 
gene markers from published single-cell datasets (10, 21–33) (fig. S4-6). Notably, the scalability of our 92 
platform has effectively minimized the batch effects that arise during the integration of single-cell datasets 93 
generated in multiple laboratories in conventional consortium-level studies (6, 34). Taking the muscle as 94 
an example, cells of the same type (e.g., Type II myonuclei) from different individuals are clustered together 95 
in the UMAP space without batch correction (fig. S7A-B). A subsequent validation, incorporating cells from 96 
various organs, confirmed that broadly distributed cell types, such as immune and endothelial cells, were 97 
clustered together in the UMAP space (Fig. 1C). 98 
 99 
As a second step toward a more detailed characterization of cellular heterogeneity, we took each main cell 100 
type for sub-clustering analysis by integrating both gene and exonic counts per cell(14). This is based on 101 
a unique feature of the EasySci approach that integrates both indexed oligo-dT primers and random 102 
primers during reverse transcription, ensuring full gene body coverage and simultaneous recovery of non-103 
polyA transcripts. Similar to our previous study(14), the combined information remarkably increased the 104 
clustering resolution (fig. S7C). Beyond the 359 sub-clusters we identified before in the brain(14), we 105 
detected 3,925 sub-clusters across organs, with each observed in multiple individuals (a median of 45 per 106 
sub-cluster), represented by a median of 1,035 cells (fig. S3D-F). Over 90% of these sub-clusters (3,535 107 
out of 3,925) can be distinguished by unique gene markers per the above-mentioned criteria (table S4). 108 
To validate the unique transcriptomic signatures of these sub-clusters, we harnessed 80% of our single-109 
cell gene expression dataset to train a support vector machine classifier for sub-cluster annotation. This 110 
classifier, upon application to the residual dataset, recognized most sub-clusters compared with 111 
permutation controls (fig. S7D-G). 112 
 113 
By incorporating sex-balanced replicates into each group, our dataset provides an in-depth view of the 114 
sex-specific effects on heterogeneous cellular states across various organs. Taking the liver as an 115 
example, we observed distinct separations in specific cell populations between females and males in 116 
hepatocytes (fig. S8A-B), consistent with previous research characterizing the liver as a "sexually 117 
dimorphic organ"(35, 36). This distinction is in line with known sex-specific variations in metabolic 118 
functions, such as superior alcohol clearance and lipid metabolism capabilities in males and heightened 119 
cholesterol metabolism abilities in females(36). These sex-specific effects extend down to the sub-cluster 120 
level, as demonstrated by the identification of 73 sub-clusters displaying significant differential abundance 121 
between males and females across all age groups (fig. S9). Interestingly, our analysis not only reaffirmed 122 
the presence of conserved sexually dimorphic cell types in the liver and kidney (37), but also brought to 123 
light underreported cell types in other organs (fig. S8C-F). For instance, in the perigonadal adipose tissue 124 
(gWAT), we identified female-specific Dlgap1+ Fgf10+ and male-specific Pde11a+ Rtl4+ adipose stem and 125 
progenitor cells. In the stomach, we found female-specific Grm8+ Entpd1+ and male-specific Slc35f3+ 126 
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Rimbp2+ Chief cells. These discoveries highlight the complexity of sex-specific cellular differences and 127 
pave the way for future in-depth studies. 128 
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Figure 1: Overview of experimental design and main cell type annotation across mammalian 130 
organs. (A) Upper: Schematic representation of the sample collection process detailing the various ages, 131 
sexes, and genotypes (including wild-type and immuno-deficient mice) used in the study. Lower: Flowchart 132 
illustrating the experimental procedures of single-cell RNA sequencing by combinatorial indexing through 133 
EasySci. (B) Logarithmic scale bar plot depicting the number of high-quality cells profiled from each organ 134 
or tissue, post-quality filtering. (C) UMAP plots displaying the cellular heterogeneity of each organ/tissue, 135 
with cells color-coded by identified main cell types. Brain cell types were retrieved from (14). An aggregated 136 
UMAP plot of the entire dataset (comprising only wild-type cells, without batch correction) is also shown 137 
(right corner), with cells distinguished by organ/tissue origin and lineage. LOH, loop of Henle.  138 
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Temporally structured aging-associated cell population dynamic waves 139 
 140 
To obtain a global view of aging-related cell population dynamics, we quantified cell-type-specific 141 
proportions in both main cell types and sub-clusters within individual replicates across various age groups, 142 
followed by differential abundance analyses (Methods). We detected 23 main cell types and 374 sub-143 
clusters undergoing significant population changes in both age intervals: 3 vs. 16 months and 6 vs. 23 144 
months (False discovery rate (FDR) of 0.05, with a minimum 2-fold difference between two-time points; 145 
Fig. 2A, fig. S10). These changes were confirmed by significant consistency between different sex (Fig. 146 
2B-E). Reassuringly, most of these main cell types (21 out of 23) and sub-clusters (280 out of 374) 147 
demonstrated robust and consistent changes during both intervals, referred to as “aging-associated cell 148 
populations” in our subsequent analysis.  149 
 150 
These aging-associated cell populations exhibited unique dynamics across distinct life stages (Fig. 3A). 151 
For instance, we observed a significant age-associated expansion in immune cells, including lymphocytes 152 
and myeloid cells across multiple organs, aligning with findings from previous studies(38). Interestingly, 153 
certain age-associated cell types also exhibited a marked sexual dimorphism. For example, while we 154 
observed a decline in Mirg+ cells within the skeletal muscle across aging in both sexes, there is a sharper 155 
reduction in females due to a higher baseline level in youth (Fig. 3B). These cells correspond to a rare 156 
subset of muscle myonuclear populations, marked by an elevated expression of several lncRNAs—Meg3, 157 
Rian, GM37899, and Mirg—all stemming from the Dlk1-Dio3 locus, containing mammalian's largest miRNA 158 
mega-cluster(39)(Fig. 3C-D). The observed decline may be attributed to the aging-associated 159 
downregulation of miRNAs from Dlk1-Dio3 locus, critical for mitochondrial biogenesis and reactive 160 
oxidative species protection, suggesting the diminished cellular resilience against aging-induced 161 
stress(40). 162 
 163 
To delve deeper into the evolving landscape of cell populations across the lifespan, we next clustered all 164 
age-associated cell sub-clusters, based on their dynamics across five age stages. A substantial proportion 165 
of these sub-clusters underwent consistent alterations throughout life. Specifically, we identified 174 sub-166 
clusters that expanded, 56 that depleted, and 50 with transient dynamics (Fig. 3E). Utilizing our multi-167 
timepoint dataset, we discerned the varied pace at which different cellular states altered across cell 168 
lineages and organs (Fig. 3F-G). To further investigate these aging-associated cell populations and their 169 
unique molecular markers, we integrated all cells from consistently expanding or depleting sub-clusters for 170 
clustering and UMAP visualization (Fig. 3H). This analysis led to the characterization of distinct cellular 171 
dynamics at different life stages, accompanied by both organ- and lineage-specific cellular populations, as 172 
discussed below: 173 
 174 
The initial two waves predominantly indicate cell loss (Fig. 3I). The first wave, spanning 3 to 6 months, is 175 
characterized by a decline in Gmpr+ activated brown adipocytes in BAT, accompanied by a reduction in 176 
Ppargc1a+ Nos+ type II myonuclei and Bmpr1b+ Dkk2+ tenocytes in muscle (Fig. 3K). The subsequent 177 
wave, extending from 6 to 12 months, is notable for the marked decrease in CD4+ naïve T cells across 178 
various organs and Dlc1+ Spock1+ intestinal macrophages (fig. S11D). As a continuum of muscle 179 
degeneration, we witnessed a reduction of  Flt1+ Mecom+  tenocytes from muscle and Ttn+ Neb+ mural 180 
cells from gWAT. The age-related adipose decline is further observed in Bmper+ Scara5+ adipocytes from 181 
gWAT. Additionally, this period featured a decrease in functional epithelial cells across several organs, 182 
including Mirg+ cells from muscle and colon, Fgr15+ intestinal epithelial cells, Lmo7+ Digap1+ gastric 183 
mucous cells, Rdh16+ cells from gWAT, and a range of epithelial cells in the kidney (e.g., Sgcd+ Frmpd4+ 184 
type B intercalated cells, Zfp207+ connecting tubule cells, and Tspan18+ principal cells) (Fig. 3L).  185 
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 186 
The following two waves are featured with the cell expansion, primarily immune cells (Fig. 3J). The third 187 
wave, initiating from 12 months, is dominated by an expansive growth in the majority of T cell subtypes 188 
(e.g., CD8+ Gzmk+ cytotoxic T cells, and Gamma-delta (γδ) T cells), IgM+ plasma cells, Tbx21+ aging-189 
associated B cells, and various subtypes of cells from myeloid lineages (e.g., Blnk+ Ccr5+ alveolar 190 
macrophages, Cxcr1+ Fstl1+ alveolar macrophages, migratory dendritic cells, Col14a1+ macrophages 191 
from kidney, Colq+ macrophages from intestine, Mcpt1+ Mcpt2+ mucosal mast cells (fig. S11E)). 192 
Additionally, Pcdh15+ Ltbp2+ lung fibroblasts, Pcdh7+ Tnc+ lung lymphatic endothelial cells, Raly+ Tsnax+ 193 
neuromuscular junction myonuclei, Ampd1+ Cdc14a+ myotendinous junction myonuclei and certain 194 
epithelial cells in the kidney (e.g., Sema5a+ Dock10+ proximal tubule cells, Sntg1+ thick ascending limb 195 
of LOH cells, Slco1a5+ Cdf2rb+ urothelial cells, Rbfox1+ Epha6+ podocytes, Prkca+ Nrxn3+ 196 
Juxtaglomerular cells, and Nlgn1+ Hdac9+ distal convoluted tubule cells) significantly surged as well (Fig. 197 
3M). The fourth wave, starting from 16 months, is characterized by a major expansion in immune 198 
populations, such as Pstpip2+ aging-associated B cells and patrolling monocytes (Fig. 3N, fig. S11E).  199 
 200 
In summary, these sequential aging dynamics waves delineate a pattern where cellular depletion precedes 201 
expansion, with minimal temporal overlap, suggesting disparate mechanisms governing cell population 202 
dynamics at varying life stages. The initial dynamics, spanning from 3 to 12 months, are predominantly 203 
marked by the loss of cells in adipose, muscle, and epithelial lineages. Conversely, the latter stages, from 204 
12 to 23 months, exhibit a significant expansion of immune cells. This progression aligns with prior research 205 
documenting sequential alterations of plasma protein profiles throughout the aging process(41), thereby 206 
reflecting the non-linear shifts of the internal milieu at different life stages. 207 
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Figure 2: Identification of aging-associated cell population change across organs/tissues. (A) Dot 209 
plots illustrating cell-type-specific fractional changes (log-transformed fold change) between ages 6 and 210 
23 months. Main cell types are represented by triangles and sub-clusters by dots, with key gene markers 211 
labeled for select sub-clusters. The dendrogram is derived from hierarchical clustering of gene expression 212 
correlations among main cell types. AM, alveolar macrophages; IM, interstitial macrophages; DC, dendritic 213 
cells; ICB, Type B intercalated cells; DCT, distal convoluted tubule cells; TAL, thick ascending limb of LOH 214 
cells; Sis, Sis positive cells; Uro, urothelial cells; VEC, vascular endothelial cells; Podo, podocytes; LEC, 215 
lymphatic endothelial cells; Meso, mesothelial cells; Type II, Type II myonuclei; NJM, neuromuscular 216 
junction myonuclei. (B-E) Correlation scatter plots (employing Spearman correlation) comparing fractional 217 
changes in main cell types (B, D) and sub-clusters (C, E) between female and male mice during two age 218 
intervals: 6 vs. 23 months (B, C) and 3 vs. 16 months (D, E), with a linear regression line. For all scatter 219 
plots, aging-associated cell types that are significantly changed in both age intervals are colored by the 220 
direction of changes. 221 
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 222 
Figure 3: The temporal dynamics, tissue distribution, and molecular signatures of aging-associated 223 
cell populations. (A) Heatmap illustrating the fractional changes of aging-associated main cell types 224 
across five life stages. (B) Box plots depicting the fractional changes in muscle Mirg+ cells (lower) across 225 
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the five life stages in wild-type and two time points in two lymphocyte-deficient mutants. Each dot 226 
represents a biological replicate. For all box plots: middle lines, median value; upper and lower box edges, 227 
first and third quartiles, respectively; whiskers, 1.5 times the interquartile range; and all individual data 228 
points are shown. (C) Schematic of the Dlk1-Dio3 locus, highlighting Mirg+ cell marker genes. (D) Dot plot 229 
displaying marker gene expression in the PanSci-muscle dataset, with color indicating average expression 230 
and dot size showing the percentage of cells expressing each marker. (E) Heatmap of aging-associated 231 
sub-cluster fractions across five life stages, with hierarchical clustering identifying distinct depletion and 232 
expansion waves. (F) Stacked bar plots representing the proportions of aging-associated sub-clusters from 233 
different lineages and organs/tissues in each dynamic wave. (G) Line plot showing normalized cell 234 
proportion changes in each aging wave, with Loess regression lines centered at the initial age point. (H) 235 
UMAP visualizations of 634,185 wild-type cells from aging-associated sub-clusters, colored by 236 
organ/tissue. (I-N) Density plots showing the distribution of aging-associated sub-clusters from all depletion 237 
dynamic waves (I), all expansion dynamic waves (J), first depletion wave spanning 3 to 6 months (K), 238 
second depletion wave extending to 12 months (L), first expansion wave starting from 12 months (M), and 239 
second expansion wave from 16 months (N). Cells from non-immune lineage are annotated with enriched 240 
genes.  241 
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A global view of aging-associated changes in lymphocyte populations  242 
 243 
Our pan-organ dataset provides a unique opportunity for systematically exploring organ-specific aging 244 
changes in broadly distributed cell types, particularly immune cells. To investigate the aging-related 245 
alteration of T cells and innate lymphoid cells (ILCs), we first isolated 957,975 cells representing these cell 246 
populations across all organs for clustering and UMAP visualization (Fig. 4A). A total of 18 cell clusters 247 
were recovered, each with highly cell-type-specific gene markers (Fig. 4B). While most cell clusters are 248 
prevalent across various organs, some immune cells exhibited organ-specific distribution (Fig. 4C). For 249 
instance, ILC-3 cells (Cluster 18), the central regulator of gut immunity(42), predominantly detected in the 250 
intestine. Similarly, Prf+ natural killer cells (Cluster 13) – crucial for pathogenic immune response and 251 
maintaining pulmonary homeostasis(43) – were primarily found in the lung. Additionally, while CD8+ 252 
Gzmb+ cytotoxic T cells (Cluster 8) were predominantly in the intestine, CD8+ Gzmk+ cytotoxic T cells 253 
(Cluster 9) appeared more abundantly in other organs such as the kidney, lung, and adipose tissue, 254 
aligning with the prior report(44). 255 
 256 
Investigating aging-associated dynamics in T cell subsets, we noted that nearly all T cell clusters that 257 
diminished with age could be traced back to the CD4+ naïve T cells (Fig. 4D). This trend was consistent 258 
across different organs and aligned with previous studies(38) (Fig. 4E, left). However, age-associated T 259 
cell expansion was more varied across distinct molecular states. Expanding cell subtypes included CD4+ 260 
T follicular helper cells (Dgki+ Hs6st3+), CD4+ T helper cells (Ccr9+ CD6+), CD8+ Gzmk+ cytotoxic T 261 
cells, CD8+ Pde2a+ Ly6c2+ T cells, and γδ T cells (Fig. 4D). While the CD8+ Pde2a+ Ly6c2+ T cells were 262 
not well characterized in prior studies, its age-related expansion aligns with observations of an age-263 
associated surge in Ly6c-expressing immune cells in both bone marrow and spleen (45, 46). This increase 264 
may be attributed to a phenomenon wherein proliferating naive CD8+ T cells, in the absence of specific 265 
antigen recognition, progressively express Ly6c(47). Additionally, we observed a broad expansion of CD8+ 266 
Gzmk+ cytotoxic T cells across various organs (Fig. 4E, right), in line with prior studies reporting age-267 
related production of pro-inflammatory molecules (e.g., granzyme K) involved in tissue remodeling in aged 268 
mice(44) and higher abundance of GZMK-expressing CD8+ T cells in aged human blood(48). Interestingly, 269 
while the expansion of this CD8+ Gzmk+ T cell subset occurs at various locations (e.g., kidney, lung, and 270 
adipose tissue), its presence is minimal in the intestine, which is dominated by the CD8+ Gzmb+ T cell 271 
subset, suggesting a unique immune-mediated regulatory mechanism in intestinal aging. 272 
 273 
Analyzing 1,072,614 pan-organ B cells and plasma cells, we detected nine distinct cell clusters, each 274 
marked by unique gene markers and organ-specific distributions (Fig. 4F-H). Notably, IgA+ plasma cells 275 
(Cluster 8) were predominantly found in the digestive system (Fig. 4H), aligning with their pivotal role in 276 
producing immunoglobulin A, a primary defense for the mucosal epithelium against pathogens and 277 
toxins(49). Similar organ-specific distribution was seen in subsets of memory B cells with high expression 278 
of Cd83 and Fcgbp (Cluster 2 and 3) and germinal center B cells (Cluster 6) (Fig. 4H). Cd83 is associated 279 
with activated B cells during germinal center reactions(50), while IgGFc-binding protein (Fcgbp) underpins 280 
mucosal immunity in the intestinal lining(51). In contrast, other B cells and plasma B cell subtypes were 281 
dispersed across multiple organs, such as kidney, lung, and adipose tissue (Fig. 4H).  282 
 283 
In parallel with age-associated T cell expansion, various B cell subsets were significantly expanded during 284 
the aging process (Fig. 4I). The first age-associated B cell subset, with increased Tbx21 expression, 285 
resembles a previously reported B cell subset associated with lupus-like autoimmunity in mice(38, 52). 286 
The second age-associated B cell subset displays elevated Pstpip2 expression, a factor linked to 287 
macrophage activation, neutrophil migration, and autoinflammatory diseases(53) (Fig. 4J). Additionally, 288 
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we detected the age-associated expansion of an IgM+ plasma cell subtype (Fig. 4J), marked by elevated 289 
Xbp1, Dgkg, and Igbm expressions. This subtype was widespread in aged mice tissues, including the liver 290 
and the adipose tissue (Fig. 4H). Unlike other organs, the aged intestine is uniquely featured with a notable 291 
rise in Mki67+ Mybl1+ germinal center B cells. The age-associated proliferation of distinct B and T cell 292 
subtypes in the intestine highlights its differential aging process compared to other solid nonlymphoid 293 
tissues. We further delved into the molecular programs underlying these expanded B cell populations. 294 
Despite varying cellular characteristics and originating organs, they shared the same gene markers like 295 
Sox5 and Cdk14 (Fig. 4K), both involved in the cell cycle and proliferation(54, 55), indicating their roles in 296 
age-associated cellular expansion.  297 
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 298 

 299 
 300 
Figure 4: Identifying aging-associated lymphocytes across organs/tissues. (A) UMAP visualization 301 
of 957,975 T cells and innate lymphoid cells (ILCs) across various organs/tissues, colored by cluster ID. 302 
(B) Dot plot illustrating marker gene expression for T cell and ILC subtypes. The color denotes average 303 
expression values, and the dot size indicates the percentage of cells expressing these markers. (C) 304 
Heatmap displaying the normalized and scaled distribution of each T cell and ILC subtype across different 305 
organs/tissues. (D) Density plot highlighting the distribution of significantly depleted (Left) and expanded 306 
(Right) T cell and ILC sub-clusters in aging, with their respective marker genes. (E) Stacked bar plot 307 
depicting the proportion of CD4+ Naïve T cells (Left) and CD8+ Gzmk+ cytotoxic T cells (Right) within each 308 
organ/tissue in wild-type cells, normalized by organ and age group. (F) UMAP visualizations of 1,072,614 309 
B cells and plasma cells across organs/tissues, colored according to cluster ID. (G) Dot plot showing 310 
expression of marker genes for B cell and plasma cell subtypes, with color indicating average expression 311 
and dot size reflecting cell expression percentage. (H) Heatmap illustrating the normalized and scaled 312 
distribution of each B cell and plasma cell subtype across organs/tissues. (I) Density plot revealing the 313 
distribution of aging-associated B cell and plasma cell sub-clusters with significant expansion in aging, 314 
annotated with distinct marker genes. (J) Stacked bar plot indicating the expansion of IgM+ plasma cells 315 
(Left) and Petpip2+ aging-associated B cells (Right) in each wild-type organ/tissue, normalized by organ 316 
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and age group. (K) UMAP visualization demonstrating the widespread expression of Sox5 and Cdk14 in 317 
expanded B cell and plasma cell populations.  318 
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The impact of lymphocyte deficiency on aging 319 
 320 
To understand the impact of lymphocytes on cell population dynamics in aging, we employed a 321 
"knockdown" approach, targeting lymphocytes throughout the mammalian body using two specific 322 
immunodeficient genotypes: B6.129S7-Rag1tm1Mom/J and B6.Cg-Prkdcscid/SzJ. These models are 323 
recognized for lacking functional or mature lymphocytes(12, 56). To validate the lymphocyte deficiency in 324 
these models, we compared the main cell populations of the two mutants with age-matched wild-type 325 
controls (3-month-old). As anticipated, the majority of the diminished cell populations were lymphocytes, 326 
including B cells, T cells, and plasma cells, across various organs (Fig. 5A). 327 
 328 
In addition to lymphocytes, we observed a marked decrease in intestine-specific Mfge8+ follicular dendritic 329 
cells (FDCs) (57) across two immuno-deficient mutant models. This decline was consistent across 330 
anatomical sites (i.e., duodenum and jejunum) and various age stages (Fig. 5B). FDCs, recognized for 331 
their crucial roles in B cell activation and antibody maturation, are the primary producers of chemokine 332 
Cxc13 in primary follicles and germinal centers of the intestine(58). This chemokine, in synergy with the B 333 
cell-specific receptor Cxcr5 (Fig. 5C), plays a vital role in B cell positioning within follicles and is essential 334 
in defining the secondary lymphoid tissue architecture, including lymph nodes and Peyer's patches(59). 335 
Noteworthily, our findings reveal that FDC-lymphocyte interactions are crucial for sustaining this intestinal 336 
stromal cell population.  337 
 338 
Extending down to the sub-cluster level, we identified 289 sub-clusters exhibiting significant population 339 
changes in two immuno-deficient models (fig. S12). As expected, the depleted sub-clusters are primarily 340 
associated with lymphocytes across various organs. Interestingly, several sub-clusters significantly 341 
increased upon lymphocyte-knockdown (e.g., Rnf213+ Ddx60+ intestinal epithelial cells in duodenum and 342 
jejunum), suggesting that lymphocytes might play a role in limiting the growth of these intestinal epithelial 343 
cells. Meanwhile, specific stromal sub-clusters (e.g., Serpine1+ Jun+ adipocytes in the lung) were depleted 344 
in both immuno-deficient mutant models, hinting at potential stromal-immune crosstalks that warrant future 345 
exploration.  346 
 347 
We next clustered aging-associated cell subtypes based on their dynamics in two immunodeficient models 348 
(Fig. 5D), focusing on subtypes that are detected and displayed consistent alterations in both mutants. 349 
Intriguingly, 15 subtypes with age-associated depletion and 33 subtypes with age-associated expansion 350 
exhibited consistent patterns in both wild-type and mutant models, suggesting their population changes 351 
are not directly caused by lymphocyte involvement (Fig. 5, E and F). Representative examples include the 352 
aging-associated depletion of Tspan18+ kidney principal cells (Fig. 5I-J), expansion of Pcdh15+ lung 353 
fibroblast (Fig. 5K-L) and Nlgn1+ kidney connecting tubule (CNT) cells (Fig. 5, M and N). Molecular 354 
analysis of these cells offers insights into aging-linked organ dysfunction. For example, the aging-depleted 355 
renal principal cells correspond to a group of progenitor cells (e.g., Dach1, Tfap2b, Tspan18(60)) (Fig. 5I) 356 
and show elevated expression of genes crucial for calcium homeostasis (e.g., Cacnb4, Atp2b2(61)). This 357 
may indicate a susceptibility to calcium-induced cellular stress, potentially predisposing them to age-358 
related damage and depletion. These findings highlight the complex interplay of cellular changes in aging 359 
and suggest mechanisms beyond direct lymphocyte interactions. 360 
 361 
In contrast, other aging-associated subtypes presented distinct population dynamics between wild-type 362 
and mutant models, indicative of immune-dependent regulation (Fig. 5D). A considerable proportion (128 363 
out of 138) of these subtypes were lymphocytes, impacted by their depletion in the mutants (Fig. 5, G and 364 
H). For instance, the aging-associated depletion of naive T cells and expansion of most lymphocytes were 365 
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absent in the aged mutant. In addition, we observed several non-lymphocyte cell populations that displayed 366 
altered dynamics in both mutants. A notable rescued cell-type-specific expansion is a Slco1a5+ kidney 367 
urothelial subtype (i.e., urothelial cells-14) featured with an enriched expression of genes indicative of 368 
immune stimulation (e.g., Csf2rb(62), Fig. 5, O and P). Likewise, the expansion of a unique subtype of 369 
Colq+ lung interstitial macrophage (i.e., interstitial macrophage-3) was halted in both mutants (Fig. 5, Q 370 
and R). This macrophage subtype is characterized by genes associated with lymphocytes interaction (e.g., 371 
Cxcl13, Cxcl10), illuminating the critical role of lymphocytes in driving its expansion during aging. These 372 
observations underscore the instrumental role of lymphocytes in regulating the dynamics of these cell 373 
populations. Consequently, targeted ablation of lymphocytes could be a viable strategy for the in-depth 374 
functional analysis of cellular interactions throughout the organism. 375 
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 376 
Figure 5. Characterizing lymphocyte-dependent cell population dynamics in aging. (A) Scatter plots 377 
comparing the proportion changes of main cell types between C57BL/6 wild-type mice and Rag1 (left) or 378 
Prkdc (right) mutants. Immune cell lineages are highlighted with black circles, with significant alterations 379 
labeled. (B) Box plots illustrating the fraction changes of Mfge8+ cells in the duodenum (upper) and 380 
jejunum (lower) across life stages in both wild-type and mutant mice. Each dot represents a biological 381 
replicate. Box plots display the median (middle line), quartiles (box edges), and 1.5x interquartile range 382 
(whiskers). (C) Dot plot showcasing the expression of Cxcl13 and its receptor Cxcr5 in PanSci's duodenum 383 
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dataset, colored by average gene expression and sized by the percentage of cells expressing these 384 
markers. (D) Heatmap visualizing fraction changes of aging-associated sub-clusters (identified in Figure 385 
3) between 3 and 16 months in C57BL/6 wild-type and immunodeficiency mutants, with hierarchical 386 
clustering revealing four distinct dynamic patterns. (E-H) Stacked bar plots presenting the proportions of 387 
aging-associated sub-clusters from different lineages and organs/tissues in each dynamic pattern. (I-J) 388 
Case study of kidney principal cells: UMAP visualizations of 39,286 kidney principal cells (I, upper) and 389 
density plot depicting the distribution and marker genes of aging-depleted principal cells (J, lower); box 390 
plot detailing population shifts in aging-depleted principal cells across different life stages in wild-type and 391 
mutant mice (J).(K-L) Case study of lung fibroblasts: UMAP visualizations of 85,625 lung fibroblasts (K, 392 
upper) and density plot depicting the distribution and marker genes of aging-expanded lung fibroblasts (K, 393 
lower); box plot detailing population shifts in aging-expanded lung fibroblasts across different life stages in 394 
wild-type and mutant mice (L).(M-N) Case study of kidney connecting tubule cells: UMAP visualizations of 395 
57,619 kidney connecting tubule cells (CNT) (M, upper) and density plot showing the distribution and 396 
marker genes of aging-expanded CNT (M, lower); box plot detailing population shifts in aging-expanded 397 
CNT across different life stages in wild-type and mutant mice (N).(O-P) Case study of kidney urothelial 398 
cells: UMAP visualizations of 7,670 kidney urothelial cells (O, upper) and density plot showing the 399 
distribution and marker genes of aging-expanded urothelial cells (O, lower); box plot detailing population 400 
shifts in aging-expanded urothelial cells across different life stages in wild-type and mutant mice (P). (Q-401 
R) Case study of lung interstitial macrophages: UMAP visualizations of 18,418 lung interstitial 402 
macrophages (Q, upper) and density plot showing the distribution and marker genes of aging-expanded 403 
interstitial macrophages (Q, lower); box plot detailing population shifts in aging-expanded interstitial 404 
macrophages across different life stages in wild-type and mutant mice (R).  405 
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Discussion 406 
 407 
In this study, we've generated an extensive catalog highlighting the intricate dynamics of cell population 408 
changes upon aging. This was achieved through high-throughput single-cell transcriptome analysis of over 409 
20 million cells from 623 tissue samples spanning various life stages (3, 6, 12, 16, 23 months), sexes, and 410 
genotypes. The analysis revealed a complex and dynamic landscape of aging at the cellular level, 411 
uncovering more than 10 main cell types and over 200 subtypes undergoing significant age-associated 412 
depletion or expansion. Notably, while some cell types, such as lymphocytes, have previously been 413 
documented to expand with age, our study has uncovered a range of rare cellular states that remain 414 
underexplored, such as the depletion of Tspan18+ principal cells and the expansion of Nlgn1+ connecting 415 
tubule cells within renal tissues. These findings were consistently observed across varying ages and even 416 
genotypes, underscoring their potential as anti-aging targets for further therapeutic exploration. 417 
Additionally, we discovered 73 subclusters that are highly sex-specific across different ages, as well as 418 
sexually dimorphic cellular dynamics in aging, exemplified by the accelerated decline of Mirg+ muscle cells 419 
in females. 420 
 421 
Moreover, our data suggest that aging at the cellular level unfolds through a series of dynamic waves 422 
rather than following a simple linear trajectory akin to the patterns observed with the DNA Methylation 423 
Clock(63). Early stages (3 to 12 months, mirroring human ages 20 to 42) are primarily characterized by 424 
the depletion of specific cell types within the adipose, muscle, and epithelial lineages. In contrast, later 425 
stages (12 to 23 months, analogous to human ages 42 to 68) are dominated by a pronounced expansion 426 
of various immune cell populations. This observation challenges the traditional Wear-and-Tear Theory of 427 
aging(64), proposing instead that a complex array of regulatory mechanisms are at play. These 428 
mechanisms orchestrate a series of coordinated cell population transitions, which unfold throughout the 429 
aging process and vary distinctly between each examined age interval. Our findings also align with prior 430 
reports(65), highlighting the advantages of initiating anti-aging interventions in early life, given cellular 431 
depletion occurs in the initial stages of aging. 432 
 433 
Furthermore, our study has uncovered organ-specific changes within broadly distributed cell types (e.g., 434 
immune cells) through a comprehensive analysis of cell population shifts across various organs. For 435 
example, we observed a consistent decrease in CD4+ naïve T cells and an increase in CD8+ Gzmk+ 436 
cytotoxic T cells and age-related B cell subsets. These consistent patterns suggest a universal regulatory 437 
mechanism governing immune aging throughout the body. Notably, specific organ systems displayed 438 
distinct aging dynamics, with early immune expansion occurring predominantly in the kidney and lung, 439 
while later expansions were observed in the liver and others, potentially linked to the onset of organ-specific 440 
aging-associated diseases. The intestinal environment, in particular, displayed a unique profile, with an 441 
increase in specific aging-associated B cells (e.g., Mki67+ Mybl1+ germinal center B cells) and T cell 442 
subtypes (e.g., CD8+ Gzmb+ T cells), highlighting a potentially unique aspect of immune regulation in gut 443 
aging relative to other nonlymphoid tissues. 444 
 445 
Utilizing a "cell-knockdown" strategy analogous to "gene-knockdown" in functional genomics, we targeted 446 
lymphocytes to interrogate their role in the aging-related population dynamics of other cell types. This 447 
strategy was instrumental in delineating the complex interplay between lymphocytes and other cell types, 448 
evidenced by the halted increase of Slco1a5+ kidney urothelial cells and Colq+ lung interstitial 449 
macrophages upon lymphocyte reduction. However, efforts to restore most depleted cell populations 450 
through immune knockdown proved largely unsuccessful, reinforcing the temporal hierarchy of cellular 451 
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depletion preceding expansion. This underscores the intricate and multi-layered regulatory mechanisms 452 
governing cell population changes throughout aging. 453 
 454 
Of note, the scalability of the single-cell combinatorial indexing strategy has been pivotal to our study's 455 
success, as it allows the inclusion of multiple individuals, with a sex balance, at various aging stages, with 456 
all cells from each organ profiled concurrently. This is a significant advancement over traditional 457 
approaches that often require the integration of different technical batches. While our primary focus has 458 
been on cell population dynamics throughout aging, the applicability of our dataset opens avenues for 459 
investigating a myriad of compelling biological questions, from cell-type-specific transcriptomic alterations 460 
associated with aging to variations in cellular profiles due to differences in sexes and genotypes. 461 
Furthermore, the depth of our dataset, featuring single-nucleus gene expression with full gene body 462 
coverage, allows for exploring cell type-specific dynamics concerning isoform variation or non-coding RNA 463 
expression changes during aging. 464 
 465 
In summary, our work has meticulously charted an extensive spectrum of over 3,000 unique cellular states 466 
in the mammalian system, identifying over 200 that exhibit significant aging-related changes in a tightly 467 
coordinated manner. We uncovered lymphocyte-dependent cellular population shifts associated with aging 468 
by harnessing scalable single-cell genomic techniques alongside mutant strain analysis. This ‘'Cell-omics' 469 
strategy—mirroring the progress made in high-throughput genomic sequencing—sets the stage for 470 
identifying key cellular targets and their regulatory network in various aging-related conditions, which holds 471 
the potential to spur therapeutic innovations aimed at restoring cellular functions and rejuvenating the 472 
systemic biological processes of organisms in aging and diseases.  473 
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Supplementary Materials 500 
 501 
Materials and Methods: 502 
Animals and organ collection 503 
 504 
C57BL/6 wild-type mice were obtained from the Jackson Laboratory and the National Institution on Aging 505 
colony at Charles River. The immunodeficient strains, B6.129S7-Rag1tm1Mom/J (JAX #002216) and 506 
B6.Cg-Prkdcscid/SzJ (JAX #001913), were also obtained from the Jackson Laboratory. All strains were 507 
housed according to standard protocols, with same sex- and age-matched groups. The sex-balanced 508 
cohorts ranged in age from 106 days to 704 days. Comprehensive metadata for each animal, including 509 
mouse individual ID, sex, age, birth and euthanasia dates, and body and organ/tissue weights, are detailed 510 
in table S1A. 511 
 512 
All animal procedures were in accordance with institutional, state, and government regulations and 513 
approved under the IACUC protocol 21049. In brief, animals of the same age and sex were euthanized, 514 
and the organ/tissue collection for each batch was carried out by the same person on the same day, with 515 
approximately one-hour intervals between each euthanasia to ensure temporal consistency. This 516 
scheduling was designed to reduce the potential circadian rhythm's effect on transcriptomic data across 517 
different sexes and age groups. For each mouse, whole organs/tissues were then dissected in the following 518 
order: inguinal adipose tissue (with inguinal lymph nodes), stomach, small intestine (duodenum, jejunum, 519 
ileum), colon, perigonadal adipose tissue, kidney, liver, heart, lung, hindlimb muscle, brown adipose tissue. 520 
A complete organ/tissue set was profiled for most mouse individuals, with additional specimens included 521 
to compensate for any losses during dissection or dissociation processes. For the immunodeficient strains, 522 
the duodenum was exclusively profiled to represent the small intestine. All collected organs/tissues are 523 
washed thoroughly in ice-cold HBSS (Thermo Fisher #14175095) and immediately flash-freeze in liquid 524 
nitrogen. Snap-frozen tissues are manually pulverized on dry ice with a chilled hammer, aliquoted, and 525 
stored in liquid nitrogen until further processing.  526 
 527 
Nuclei extraction from multiple mammalian organs 528 
 529 
The 10X PBS-hypotonic stock solution was prepared using the method described in reference (15). On 530 
the day of nuclei extraction, 1X hypotonic lysis buffer was freshly prepared by diluting the 10x stock solution 531 
with RNase-free water (Corning, #46-000-CM), supplemented with 3mM MgCl2, 1% Diethyl pyrocarbonate 532 
(Sigma Aldrich, #40718) and specifically optimized detergent for each organ/tissue type: 0.025% IGEPAL 533 
CA-630 (VWR, #IC0219859650) for kidney, lung, liver, brown adipose tissue, inguinal adipose tissue, and 534 
perigonadal adipose tissue; 0.01% Digitonin (Thermo Fisher, #BN2006) for heart, muscle, duodenum, 535 
jejunum, ileum, and colon;  0.49% CHAPS (Sigma Aldrich, #220201) for the stomach. Additionally, 0.33M 536 
sucrose (Sigma Aldrich, #S0389) was included in the working lysis buffer for the stomach and intestinal 537 
tissues (duodenum, jejunum, ileum, and colon) to maintain osmotic balance and protect the nuclei.  538 
 539 
For nuclei extraction, dry tissue powder stored in liquid nitrogen was quickly transferred into 10 mL of a 540 
pre-prepared lysis solution. After a brief 10-second vortex to disperse large chunks, the mixture underwent 541 
a 15-minute incubation at 4°C with constant rotating. It was then strained through a 40 μm cell strainer 542 
(VWR, #470236-276) using a 5 mL syringe plunger, with an additional 5 mL of lysis solution used to rinse 543 
the filter. The extracted nuclei were collected by centrifugation at 500g for 5 minutes at 4 °C and 544 
resuspended in a nuclei suspension buffer. This buffer contained 10 mM Tris-HCl pH 7.5 (Thermo Fisher, 545 
#15567027), 10 mM NaCl (Thermo Fisher, #AM9760G), 3 mM MgCl2 (Sigma Aldrich, #68475-100ML-F), 546 
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1% SUPERase⋅In RNase Inhibitor (Thermo Fisher, #AM2696), and 0.2 mg/mL BSA or Recombinant 547 
Albumin (New England Biolabs, #B9000S or #B9200S), supplemented with 0.005 mg/mL DAPI (Thermo 548 
Fisher, #D1306) for fluorescence-activated cell sorting (FACS). FACS was performed on a SH800 Cell 549 
Sorter with a 100 μm sorting chip (Sony, #LE-C3210), aiming to include all DAPI-positive singlet nuclei, 550 
which aids in recovering the global cell population while removing cellular debris and doublets. Nuclei were 551 
collected into a 1.5 mL tube (Eppendorf, #022431021) containing 100 μL of nuclei suspension buffer and 552 
subsequently concentrated by centrifugation at 500g for 5 minutes at 4 °C. 553 
 554 
We introduced a control step to assess batch effects during library preparation and sequencing. 555 
Specifically, control kidney nuclei, extracted from pooled mouse kidney samples using the previously 556 
described methods, were spiked into each library at the reverse transcription stage. These control nuclei 557 
were aliquoted into 1.5 mL tubes and underwent a slow freeze in a nuclei suspension buffer with an added 558 
10% DMSO (VWR, #97063-136), stored at -80 °C. When required for sorting, an aliquot of these control 559 
nuclei was rapidly thawed in a 37 °C water bath and then sorted in conjunction with the actual experimental 560 
samples. 561 
 562 
EasySci library construction and sequencing 563 
 564 
The sequencing library generation for the sorted nuclei was conducted in accordance with the EasySci 565 
protocol (14). Initially, the sorted nuclei were allocated to 96-well plates (Geneseesc, #24-302) for reverse 566 
transcription. Here, both indexed oligo-dT and indexed random hexamer primers were employed to 567 
introduce the first index. Subsequently, these nuclei underwent pooling, washing, and re-distribution into 568 
new 96-well plates for the second index attachment via ligation. This was followed by another set of pooling 569 
and washing, after which the nuclei were placed into final plates for second-strand synthesis and 570 
purification. The concluding steps were tagmentation with Tn5 transposase and PCR for the final index 571 
addition. The final PCR products were then pooled and purified using a 0.8X volume of AMPure XP SPRI 572 
Reagent (Beckman Coulter, #A63882). Library quality was verified using an Agilent TapeStation, and 573 
sequencing was performed on an Illumina NovaSeq 6000 System with twenty-five S4 flow cells. Read 574 
alignment and gene/exon count matrix generation for the single-cell RNA-seq were performed using the 575 
pipeline we developed for EasySci (14). Control kidney samples from each run, identified by reverse 576 
transcription barcodes, were compiled to create a gene count matrix, enabling the assessment of batch 577 
effects. 578 
 579 
Cell filtering, clustering, and marker gene identification 580 
 581 
Cells from each NovaSeq run are split into an organ/tissue-specific count matrix for data cleaning. Briefly, 582 
the low-quality cells, merged from oligo-dT reads and random hexamer reads, were filtered out if they met 583 
one of the following criteria: 1) unmatched rate (proportion of reads not mapping to any exon or intron) >= 584 
0.4, 2) UMI count  < 200, 3) gene count < 100. Then, Scrublet (version 0.2.3) (66) was applied to each 585 
count matrix with parameters (min_count = 3, min_cells = 3, vscore_percentile = 85, n_pc = 30, 586 
expected_doublet_rate = 0.08, sim_doublet_ratio = 2, n_neighbors = 30. Cells with doublet scores over 587 
0.2 were annotated as doublets and discarded.  588 
 589 
The count matrices from each NovaSeq run were aggregated to form organ/tissue-specific matrices. For 590 
each organ/tissue, main cell type clustering was carried out using Scanpy (version 1.9.3) (67) through the 591 
following steps: 1) Normalization of the gene count matrix per cell by total UMI count followed by logarithmic 592 
transformation. 2) Selection of the 5000 most variable genes per organ/tissue matrix, scaling their 593 
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expression to zero mean and unit variance. 3) Dimension reduction using PCA, utilizing the top 50 principal 594 
components to construct a neighborhood graph (n_neighbor = 50). 4) Leiden clustering (resolution = 0.5). 595 
5) Further dimension reduction with UMAP into 2D space (min.dist = 0.01). Differentially expressed genes 596 
within clusters for each organ/tissue were identified using the differentialGeneTest() function in Monocle2 597 
(version 2.28.0) (68). Specific gene markers were selected based on differential expression across 598 
clusters, with criteria including a maximum 5% false discovery rate, a minimum 2-fold expression difference 599 
between top-ranked and second-top clusters, and TPM over 50 in the highest-ranked cluster. Clustering 600 
was refined by merging adjacent clusters if they had few differentially expressed genes or shared high 601 
expression of the same literature-nominated marker genes. Main cell type annotations were based on 602 
organ/tissue-specific published cell type markers. This strategy enabled the recovery of almost all main 603 
cell types identified in similar atlasing studies, accommodating variations in species, developmental stages, 604 
and methodologies. We also identified 16 unknown cell types in certain tissues, labeling them according 605 
to their top enriched differentially expressed gene markers specific to each tissue. 606 
 607 
For cross-organ cell clustering from wild-type samples, we combined wild-type cells from our dataset with 608 
the previously generated brain dataset (14). The Scanpy pipeline was reapplied for dimension reduction 609 
and clustering (n_top_genes=2000, n_neighbors=50, n_pcs=50, min_dist=0.15, resolution=0.5), and 610 
lineages were manually annotated in 2D UMAP space. 611 
 612 
Sub-clustering analysis 613 
 614 
To identify sub-clusters within each main cell type with higher resolution, we employed a similar pipeline 615 
described in the previous study (14). Briefly, each gene count matrix and exon count matrix for each main 616 
cell type is normalized, log-transformed, and scaled. These matrices were then subjected to PCA, from 617 
which the top 30 principal components of the gene count matrix and the top 10 from the exon count matrix 618 
were extracted and combined into a single matrix. This combined matrix underwent further processing 619 
through Leiden clustering and dimension reduction using UMAP. To identify the enriched genes for each 620 
sub-cluster, we computed the aggregated gene expression per sub-cluster and prioritized the prominently 621 
expressed sub-clusters for each gene. A gene specificity score was calculated to assess the uniqueness 622 
of gene expression in the most expressed sub-cluster. This dual filtering approach enables a swift and 623 
comprehensive assessment of the genetic landscape of each sub-cluster. Enriched genes for sub-clusters 624 
of interest were further validated by differentially expressed gene analysis through Monocle2 (68).  625 
 626 
For case studies illustrated in Figures 3, 4 and 5, UMAP coordinates were calculated based on gene count 627 
matrix alone. In Figure 3, all wild-type cells from identified 230 aging-associated sub-clusters were 628 
extracted; in Figure 4, all cells annotated as immune lineage were selected, re-clustered, and classified 629 
into 1) T cells and innate lymphoid cells, 2) B cells and plasma cells, and 3) myeloid cells for further 630 
annotation; in Figure 5, main cell types to which the targeted sub-cluster belonged was isolated. Cells 631 
selected for each figure were then subjected to the above-mentioned clustering pipeline. Differentially 632 
expressed genes for each cluster within the selected cell group were identified with the 633 
differentialGeneTest() function in Monocle2 (version 2.28.0) (68), applying a filter criteria that includes 1) 634 
a maximal false discovery rate of 5%, 2) a minimum 2-fold expression difference between the top two 635 
ranked sub-cluster,  and 3) TPM greater than 50 in the highest-ranked sub-cluster. Clusters were merged 636 
if they shared the same marker genes. Distinct clusters expressing marker genes of other cell types are 637 
further excluded as potential doublets.  638 
 639 
Intra-dataset cross-validation analysis 640 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 5, 2024. ; https://doi.org/10.1101/2024.03.01.583001doi: bioRxiv preprint 

https://paperpile.com/c/y0IF2v/qHza
https://paperpile.com/c/y0IF2v/qHza
https://paperpile.com/c/y0IF2v/qHza
https://paperpile.com/c/y0IF2v/v8mF
https://paperpile.com/c/y0IF2v/v8mF
https://paperpile.com/c/y0IF2v/v8mF
https://paperpile.com/c/y0IF2v/v8mF
https://paperpile.com/c/y0IF2v/v8mF
https://paperpile.com/c/y0IF2v/v8mF
https://paperpile.com/c/y0IF2v/qHza
https://paperpile.com/c/y0IF2v/qHza
https://paperpile.com/c/y0IF2v/qHza
https://paperpile.com/c/y0IF2v/qHza
https://paperpile.com/c/y0IF2v/qHza
https://paperpile.com/c/y0IF2v/qHza
https://doi.org/10.1101/2024.03.01.583001
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 641 
To confirm the accuracy of the main cell types and sub-cluster annotation, we implemented a general-642 
purpose support vector machine classifier for intra-dataset cross-validation, mirroring the methods outlined 643 
in the reference (69). Briefly, we randomly sampled up to 2,000 cells from each cell type, or all cells for cell 644 
types with fewer than 2,000 cells. For main cell type validation, we combined sampled cells from the same 645 
organ or tissue; for sub-cluster validation, we combined sampled cells from each main cell type. These 646 
were then used as input for a 5-fold cross-validation using an SVM classifier with a linear kernel. The 647 
complete gene count transcriptome was utilized for predicting both main cell types and sub-clusters. The 648 
specificity of our cell type annotation was assessed by calculating the cross-validation F1 score. As a 649 
control, we randomly permuted the cell type labels and subjected them to the same analysis pipeline. 650 
 651 
Identifying aging-associated dynamic waves 652 
 653 
To assess cell population dynamics across different conditions, including age groups, sex, and genotype, 654 
at both the main cell type and sub-cluster levels,  we generated organ/tissue-specific cell count matrices 655 
across mouse individuals (cell type X individual). Cell numbers of each cell type for individual mice (serving 656 
as replicates) in a particular organ or tissue were counted and then normalized against the total cell number 657 
obtained from the corresponding organ or tissue of each individual mouse. Likelihood-ratio test was 658 
employed for identifying differentially abundant cell types using the differentialGeneTest() function of 659 
Monocle2 (version 2.28.0) (68). For fold change calculations, we first normalized the number of cells in 660 
each cell type relative to the total cell count in the respective condition. We then compared these 661 
normalized values between the case and control conditions, incorporating a small numerical value (10-6) 662 
to reduce the noise from very small clusters. 663 
 664 
To classify a main cell type or sub-cluster as a "significantly changed cell type," we set specific criteria: 1) 665 
a maximum false discovery rate of 0.05 and 2) a fold change higher than 2 between conditions. 666 
Additionally, we established more stringent criteria for identifying aging-associated cell types that show 667 
consistent changes across the aging process. We focused on two age intervals — "16 months vs 3 months" 668 
and "23 months vs 6 months" — and performed differential abundance tests separately for each interval. 669 
A main cell type or sub-cluster was considered an "aging-associated cell type" if it met the following 670 
conditions: 1) significant changes in both intervals (q-value 16v3 < 0.05, q-value 23v6 < 0.05), 2) a fold 671 
change at least 2 in both intervals (absolute(fold-change 16v3) ≥ 2, absolute(fold-change 23v6) ≥ 2), and 672 
3) consistent dynamic directions between two age intervals. 673 
 674 
To identify the aging-associated dynamic waves, we generated a cell count matrix across five life stages 675 
(cell type X time points). Cell numbers of each cell type for each time point were counted and then 676 
normalized against the total cell number from the corresponding organ or tissue of each time point. The 677 
cell count matrix across ages for identified “aging-associated cell type” was extracted and subject to 678 
hierarchical clustering. Each cluster was manually inspected and categorized into each aging-associated 679 
dynamic wave. 680 
 681 
Identifying sex-specific and genotype-specific cell types 682 
 683 
Similar to identifying aging-associated cell types, we constructed organ/tissue-specific cell count matrices 684 
across mouse individuals (cell type X individual) and applied a likelihood-ratio test through 685 
differentialGeneTest() function in Monocle2 (version 2.28.0) (68) under specific conditions.  For identifying 686 
sex-specific cell types, we compared the differential cell abundance between female and male individuals 687 
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within each age group independently. Cell types were designated as “sex-specific” based on the following 688 
criteria: 1) a maximum false discovery rate of 0.05; 2) a minimum fold change of 2 between sexes; 3) sex-689 
specificity is consistent across five age groups. For identifying genotype-specific cell types, two 690 
lymphocyte-deficient mutant strains were treated as biological replicates. Our analysis focused on cell 691 
types demonstrating consistent alterations between two mutants. We first compare the differential cell 692 
abundance between each mutant and wildtype at 3 months and 16 months. Cell types were designated as 693 
“genotype-specific” based on the following criteria: 1) a maximum false discovery rate of 0.05; 2) a 694 
minimum fold change of 2 between the mutant and wildtype; 3) mutant-specific change is consistent in 695 
both genotypes and across two assessed age groups.  696 
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Figs. S1 to S13 697 

 698 
 699 
Fig. S1. Optimization of lysis conditions for single-cell profiling of diverse mammalian tissues.  700 
This figure presents an assessment of lysis conditions tailored for single-cell transcriptome library 701 
preparation across a variety of mammalian tissues. (A-B) UMAP plots illustrating the clustering results of 702 
49,264 cells, delineated by tissue origin (A) and by lysis conditions (B). It is noteworthy that cells processed 703 
in the same hypotonic lysis conditions with different additives demonstrate minimal batch effects without 704 
computational integration. Hypotonic lysis buffer working solution is prepared fresh, with specific additives 705 
introduced just before nuclei extraction: digitonin, 0.01% digitonin; IGEPAL, 0.025% IGEPAL; CHAPS, 706 
0.49% CHAPS; NP-40, 0.2% NP-40; S, 0.33M sucrose. (C) A heatmap representation detailing the median 707 
UMI counts retrieved per cell across each tissue type under variable lysis protocols. (D-E) Representative 708 
UMAP of 10,079 cells from ileum (D), and 4,170 cells from colon (E), colored by lysis conditions. 709 
Importantly, the dimensionality reduction analyses were conducted without batch correction for lysis 710 
conditions, reinforcing the absence of lysis-condition-induced bias in cell-type representation. 711 
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 712 
Fig. S2. Quality control metrics for the PanSci dataset.  713 
(A-C) Bar plots showing the number of mouse individuals per organ, colored by age group (A), sex (B) and 714 
genotype (C). (D-E) Box plot showing the UMI per cell (D) and cell numbers per individual (E) for each 715 
organ/tissue of the PanSci dataset without brain. (F) UMAP visualization of 112,002 kidney cells spiked in 716 
each sequencing library, no data integration was applied. (G) Pie chart showing the cell numbers after 717 
each of the data cleaning steps. (H-K) UMAP visualizations of 15,589,090 wild-type cells colored by age 718 
group (H), sex (I), organ/tissue (J) and lineage (K) same as in Figure 1C. 719 
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 720 
 721 
Fig. S3. Quality control metrics for the identified main cell types and sub-clusters.  722 
(A-C) Histogram showing the number of main cell types identified for each organ/tissue (A; median: 19 723 
main cell types per organ/tissue), mouse individual replicates number for each main cell type (B; median: 724 
48 replicates per main cell type), and cell number for each main cell type (C; median: 15,321 cells per main 725 
cell type) with a dashed line showing the median number. (D-F) Histogram showing the distribution of sub-726 
clusters identified in each main cell type (D; median: 18 sub-clusters per main cell type), mouse individual 727 
replicates number for each sub-cluster (E; median: 45 replicates per sub-cluster), and cell number for each 728 
sub-cluster (F; median: 1,035 cells per sub-cluster) with a dashed line showing the median number. 729 
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 730 
Fig. S4. Characterization of main cell types in lung, heart, liver, kidney, and muscle. 731 
(A-E) Dot plot illustrating gene marker expression for annotating main cell types in lung (A), heart (B), liver 732 
(C), kidney (D), and muscle (E) for PanSci. The color denotes average expression values, and the dot size 733 
indicates the percentage of cells expressing these markers.   734 
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 735 
Fig. S5. Characterization of main cell types in organs/tissues of the gastrointestinal tract. 736 
(A-E) Dot plot illustrating gene markers’ expression for annotating main cell types in stomach (A), 737 
duodenum (B), jejunum (C), ileum (D), and colon (E) for PanSci. The color denotes average expression 738 
values, and the dot size indicates the percentage of cells expressing these markers.   739 
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 740 
Fig. S6. Characterization of main cell types in adipose tissues. 741 
(A-C) Dot plot illustrating gene markers’ expression for annotating main cell types in brown adipose tissue 742 
(A), inguinal adipose tissue (B), and perigonadal adipose tissue (C) for PanSci. The color denotes average 743 
expression values, and the dot size indicates the percentage of cells expressing these markers. 744 
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 745 
Fig. S7. Identification and validation of main cell types and sub-clusters across organs/tissues. 746 
(A-C) Workflow for the identification of main cell types and sub-clusters on an organ-by-organ basis. The 747 
main cell types are initially annotated with gene markers  (A). This is followed by a sub-clustering process, 748 
which utilizes combined gene and exon expression data to refine clustering resolution (B-C). (D-G) The 749 
cross-validation pipeline within the dataset for main cell types and subclusters is depicted. For a five-fold 750 
cross-validation, single-cell transcriptomes from these categories are input into an SVM classifier with a 751 
linear kernel (Methods). Confusion matrices for intra-dataset validation are generated for each 752 
organ/tissue (D) and for each main cell type (E). Additionally, specificity scores for cell annotation are 753 
determined for both main cell types (F) and subclusters (G).  754 
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 755 
Fig. S8 Identification of sex heterogeneity in liver, kidney, and perigonadal adipose tissue. 756 
(A-B) UMAP plots displaying the cellular heterogeneity in the liver, with cells color-coded by identified main 757 
cell types (A) and sexes (B). (C-D) UMAP plots displaying the cellular heterogeneity in the kidney, with 758 
cells color-coded by identified main cell types (C) and sexes (D). (E-F) UMAP plots displaying the cellular 759 
heterogeneity in the perigonadal adipose tissue, with cells color-coded by identified main cell types (E) and 760 
sexes (F). 761 
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Fig. S9. Identification of sex-specific cell types across organs/tissues. 763 
(A) Dot plots showing the cell-type-specific population dynamics between males and females of main cell 764 
types (triangles) and sub-clusters (dots) at 6 months old. The cell number of each main cell type and sub-765 
cluster is normalized by the total cell numbers of each organ in respective life stages, and population 766 
dynamics is presented as the log-transformed fold changes (capped to [-3, 3]). Only cell types (both main 767 
and sub-clusters) with minimum 2-fold changes, FDR < 0.05, and consistent sex-specificity across 5 age 768 
groups are defined as sex-specific cell types. The dendrogram of each main cell type is ordered through 769 
hierarchical clustering of the correlation matrix constructed by main cell types and its top 50 principal 770 
components. (B) Stacked bar plots representing the proportions of sex-specific sub-clusters from different 771 
lineages and organs/tissues. 772 
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Fig. S10.  Identification of aging-associated cell population shifts across organs/tissues between 774 
3 and 6 months. 775 
Dot plots showing the cell-type-specific population dynamics between 3 months and 16 months of main 776 
cell types (triangles) and sub-clusters (dots). The cell number of each main cell type and sub-cluster is 777 
normalized by the total cell numbers of each organ in respective life stages, and population dynamics is 778 
presented as the log-transformed fold changes (capped to [-3, 3]). Only cell types (both main and sub-779 
clusters) with minimum 2-fold changes and FDR < 0.05 are defined as significantly changed cell types. 780 
Only significantly changed cell types consistent in both time intervals (i.e., ‘3 to 16 months’ and ‘6 to 23 781 
months’ are defined as aging-associated cell types and selected for downstream analysis. The dendrogram 782 
of each main cell type is ordered through hierarchical clustering of the correlation matrix constructed by 783 
main cell types and the top 50 principal components.  784 
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 785 
Fig. S11: Exploration of myeloid population aging across organs/tissues. 786 
(A) UMAP visualizations of 1,357,734 cells from myeloid cells across organs/tissues, colored by cluster 787 
ID. (B) Dot plot illustrating marker gene expression for myeloid cell subtypes. The color denotes average 788 
expression values, and the dot size indicates the percentage of cells expressing these markers. (C) 789 
Heatmap displaying the normalized and scaled distribution of each myeloid cell subtype across 790 
organs/tissues. (D-E) Density plot highlighting the distribution of significantly depleted (D) and expanded 791 
(E)myeloid cells sub-clusters in aging, with their respective marker genes. (E) Density plot showing 792 
distribution aging-associated expansion of myeloid cells sub-clusters. Distinct marker genes are labeled 793 
for each density peak. 794 
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Fig. S12. Identification of genotype-specific cell types across organs/tissues. 796 
(A) Dot plots showing the cell-type-specific population dynamics between Rag1 mutant and wild-type of 797 
main cell types (triangles) and sub-clusters (dots) at 3 months old. The cell number of each main cell type 798 
and sub-cluster is normalized by the total cell numbers of each organ in respective life stages, and 799 
population dynamics is presented as the log-transformed fold changes (capped to [-3, 3]). Only cell types 800 
(both main and sub-clusters) with minimum 2-fold changes, FDR < 0.05, and consistent mutant-specific 801 
enrichment/depletion are defined as genotype-specific cell types. The dendrogram of each main cell type 802 
is ordered through hierarchical clustering of the correlation matrix constructed by main cell types and its 803 
top 50 principal components.  804 
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 805 
Fig. S13: Marker gene for aging-associated sub-cluster associated with Figure 5. 806 
(A) UMAP visualization highlighting the expression of principal cell makers (Aqp2) and markers of aging-807 
depleted principal cells (Tspan18, Atp2b2, and Clu). (B) UMAP visualization highlighting the expression of 808 
fibroblast makers (Col1a1) and markers of aging-expanded lung fibroblast (Pcdh15, Ltbp2, and Csf2rb) 809 
(K). (C) UMAP visualization highlighting the expression of CNT makers (Calb1) and markers of aging-810 
expanded CNT (Nlgn1, Creb5, and Relb). (D) UMAP visualization highlighting the expression of urothelial 811 
cells (Krt19) and markers of aging-expanded urothelial cells (Slco1a5, Csf2rb, and Reg3g). (E) UMAP 812 
visualization highlighting the expression of interstitial macrophage makers (Mrc1) and markers of aging-813 
expanded interstitial macrophage (Colq, Stat1, and Gbp5).  814 
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Tables S1 to S8 815 
 816 
Table S1. Metadata for mouse individuals included in the study. 817 
Table S2. Metadata for main cell types annotated in each organ/tissue. 818 
Table S3. Differentially expressed genes for main cell types within each organ/tissue  819 
Table S4. Enriched genes for sub-clusters within each main cell type 820 
Table S5. List of aging-associated sub-clusters with differential abundance test results. 821 
Table S6. Differentially expressed genes for T cells and innate lymphoid cells subtypes 822 
Table S7. Differentially expressed genes for B cells and plasma cells subtypes. 823 
Table S8. Differentially expressed genes for myeloid cells subtypes.  824 
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