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Abstract 

Brain age measures predicted from structural and functional brain features are increasingly 

being used to understand brain integrity, disorders, and health. While there is a vast literature 

showing aberrations in both structural and functional brain measures in individuals with and at 

risk for alcohol use disorder (AUD), few studies have investigated brain age in these groups. 

The current study examines brain age measures predicted using brain morphological features, 

such as cortical thickness and brain volume, in individuals with a lifetime diagnosis of AUD as 

well as in those at higher risk to develop AUD from families with multiple members affected with 

AUD (i.e., higher family history density (FHD) scores). The AUD dataset included a group of 30 

adult males (mean age = 41.25 years) with a lifetime diagnosis of AUD and currently abstinent 

and a group of 30 male controls (mean age = 27.24 years) without any history of AUD. A second 

dataset of young adults who were categorized based on their FHD scores comprised a group of 

40 individuals (20 males) with high FHD of AUD (mean age = 25.33 years) and a group of 31 

individuals (18 males) with low FHD (mean age = 25.47 years). Brain age was predicted using 

187 brain morphological features of cortical thickness and brain volume in an XGBoost 

regression model; a bias-correction procedure was applied to the predicted brain age. Results 

showed that both AUD and high FHD individuals showed an increase of 1.70 and 0.09 years 

(1.08 months), respectively, in their brain age relative to their chronological age, suggesting 

accelerated brain aging in AUD and risk for AUD. Increased brain age was associated with poor 

performance on neurocognitive tests of executive functioning in both AUD and high FHD 

individuals, indicating that brain age can also serve as a proxy for cognitive functioning and 

brain health. These findings on brain aging in these groups may have important implications for 

the prevention and treatment of AUD and ensuing cognitive decline. 

Key Words: Brain age, alcohol use disorder; high-risk individuals; cortical thickness; brain 

volume; neuropsychological performance, brain health. 
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1. Introduction 

Prediction of brain age relative to one’s chronological age can serve as a useful biomarker 

of brain health [1,2]. Brain age estimation using neural measures has been successfully used as 

a measure of neurobiological aging and cognitive decline/lag [3-5] in clinical populations 

[1,2,6,7]. Brain age indices computed from structural and functional brain measures, especially 

using brain morphological features, are increasingly being used to understand brain integrity, 

neurodevelopment, and neuropsychiatric disorders [2,8-10]. There is substantial evidence that 

substance use disorders can lead to accelerated biological aging [11], including brain aging 

[12,13] and cognitive impairment [14-16].   

Alcohol misuse is a leading cause for premature death and disability [17,18]. While there is 

a vast literature showing aberrations in both structural and functional brain measures in 

individuals with and at risk for alcohol use disorder (AUD) [19,20], few studies have investigated 

brain age in these groups using neurophysiological features. There is strong neuroimaging 

evidence that chronic AUD can lead to accelerated aging of brain morphology and hypothesized 

contribution to age-related dementia [21]. It is also well-established that children from families 

densely affected with AUD families who are at higher risk to develop AUD, manifest 

neurocognitive deficits and atypical structural and functional brain features [22-24]. Therefore, it 

is important to measure and understand changes in brain age in individuals with AUD as well as 

high-risk individuals from high-dense AUD families. 

Neuroimaging-based methods are predominantly used to estimate brain age and brain age 

gap (BAG), a measure to quantify the deviation of an individual from age-dependent 

distributions that are meant to model normal aging [2,25]. Brain age measures are usually 

calculated by first modeling the association between selected brain-derived measurements and 

chronological age in a healthy (or control) sample to serve as a baseline, and then the trained 

model will be applied to a sample of interest (usually the clinical group) to predict brain age at 

the individual level [2]. Recently, there have been accumulating efforts to develop and test 

methods to measure brain age using machine learning models [2,8,9,26-29]. More recently, 

several studies have used XGBoost [30], a popular, efficient ensemble based algorithm [8,9], 

has been frequently used in recent studies to predict brain age [8,9,13], as it has been shown to 

have superior predictive power and model performance compared to other machine learning 

methods [29]. It is important to note that predicted brain age often involves bias in the estimation 

as the computed score is overestimated in younger individuals and underestimated in older 

individuals in the initial prediction before any correction [31-34], and therefore, bias-correction 
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procedures are in place [35]. For the current study, we will use the correction procedure adopted 

in a recent work by de Lange et al. [8], who have demonstrated brain age prediction predicted 

age using neuroanatomical features in an XGBoost model. 

The current study has estimated brain age in two datasets related to alcohol use 

phenotypes: (i) a group of adults with a lifetime diagnosis of AUD along with a comparison group 

of healthy controls, and (ii) a group of young adults at higher risk to develop AUD from families 

with multiple members affected with AUD (i.e., higher family history density (FHD) of AUD 

scores) and a low-risk comparison group with relatively low FHD scores. We have used 

XGBoost regression model to predict brain age in both datasets. We have also implemented 

age-bias correction in order to optimize brain age measurement. As most of the recent studies 

have used MRI-based neuroanatomical features to predict brain age [1,5-8,27,36-38], we have 

specifically used cortical thickness and volumetric measures following a recent study by 

Rutherford et al. [27]. In order to understand the association between brain age and cognitive 

performance, we have included neuropsychological measures of executive functions and 

memory performance in the study. We expected accelerated brain age in the AUD group as well 

as in the high-risk group with high FHD scores compared to those with low FHD scores. The 

present study can enhance our understanding of brain aging in individuals with AUD as well as 

in high-risk individuals with high scores of family history density of AUD. 

2. Materials and Methods 

2.1. Participants 

The sample consisted of two different datasets: (i) The AUD dataset comprised a total of 60 

male participants (age range = 19.75–51.08 years), in which 30 individuals had a lifetime 

diagnosis of DSM-IV alcohol dependence (AUD group; Mage=41.25; SDage=7.20; age range = 

25.58–51.08 years) and 30 individuals did not have any AUD diagnosis (CTL group; Mage=27.24; 

SDage=4.78; age range = 19.75–38.08 years) [see Table 1]. The AUD individuals were recruited 

from alcoholism treatment centers in and around NYC after they had been detoxified and did not 

have any withdrawal or other major AUD symptoms during the time of scanning. CTL individuals 

were recruited through advertisements and screened to exclude any personal and/or family 

history of major medical, psychiatric, or substance-related disorders. A detailed description of 

this dataset is provided in our previous publications [39,40]. (ii) The FHD dataset had a total of 

71 participants (38 males and 33 females), of whom 40 individuals (20 males) were grouped as 

HiFHD based on their high scores (above the median value of 5) on the measure of family 
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history density (FHD) [41], while the remaining 31 individuals (18 males) were categorized as 

LoFHD as they had low FHD scores (below the median value of 5) [see Table 2]. FHD scores, 

which ranged from 0 to 1, were computed as the proportion of non-descendant First and 

Second-degree relatives with DSM-5 diagnosis of Alcohol Use Disorder; a detailed description 

of this measure is available in our previous publication by Pandey et al. [41]. 

A modified version of the semi-structured assessment for the genetics of alcoholism 

(SSAGA) [42], a polydiagnostic clinical interview was administered to assess alcohol/substance 

use and related disorders. Participants were instructed to abstain from alcohol and other 

substances for at least 5 days prior to the scanning. Standard MRI safety protocols and 

exclusion criteria (implants, tattoos, cosmetics, claustrophobia, etc.) were followed to ensure 

subjects’ safety and data quality. Individuals with hearing/visual impairment, a history of head 

injury, or moderate and severe cognitive deficits (<21) on mini-mental state examination 

(MMSE) [43] were also excluded from the study. All participants provided informed consent and 

the Institutional Review Board approved the respective study protocols. 

2.2. MRI Data Acquisition and Image Processing 

The MRI data were collected using three different systems: (i) AUD dataset (N=60) was 

collected with Siemens 3T Tim Trio; (ii) first batch of 59 individuals from the FHD dataset were 

scanned with Siemens 3T Magnetom Skyra; and (iii) second batch of 12 participants from the 

FHD dataset were scanned with Siemens 3T Magnetom Prisma. A high-resolution three-

dimensional T1-weighted magnetization-prepared rapid gradient-echo (MPRAGE) image was 

collected with the following parameters for each scanner: (i) Trio: TR=2500 ms, TE=3.5 ms, 

TI=1200 ms, flip angle=8°, matrix size=256×256×192, and voxel size=1×1×1 mm3; (ii) Skyra: TR 

= 2100 ms, TE = 4.78 ms, TI = 900 ms, flip angle = 8°, matrix size = 256×256×176, and voxel 

size = 1×1.2×1.2 mm3; and (iii) Prisma: TR=2300 ms, TE=2.98 ms, TI=900 ms, flip angle=8°, 

matrix size=240×256×160, and voxel size=1×1×1 mm3. Standard procedures and protocols of 

MRI scanning were followed. 

A total of 187 brain morphological features [see Table A1 in the Appendix section] were 

extracted for the prediction of brain age, based on the previous study by Rutherford et al. [27]. 

We used the sMRIPprep (version 0.12.2) workflow [44], which is part of a Python-based image 

analysis platform Nipype (version 1.8.6) [45], for preprocessing anatomical data from the T1-

weighted (T1w) images.  Complete details of the software, processing, processing pipeline and 

documentation are available at https://www.nipreps.org/smriprep/.  First, the T1-weighted (T1w) 
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image was corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection [46], 

distributed with ANTs (version 2.3.3) [47], and used as T1w-reference throughout the workflow. 

The T1w-reference was then skull-stripped with a Nipype implementation of the 

antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target template. Brain 

tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was 

performed on the brain-extracted T1w using fast from FSL (version 6.0.5.1:57b01774) [48]. 

Brain surfaces were reconstructed using recon-all from FreeSurfer (version 7.3.2) [49], and the 

brain mask estimated previously was refined with a custom variation of the method to reconcile 

ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle 

[50]. Cortical thickness values of the Destrieux parcellation [51] containing 74 regions and a 

mean value for each hemisphere, along with volumetric measure for 37 brain structures, were 

extracted from the Freesurfer output directories. All 187 neuroanatomical features (150 on 

cortical thickness and 37 on brain volumes) were used in the brain age prediction model. 

2.3. Brain Age Prediction 

We implemented an XGBoost [30] (stands for eXtreme Gradient Boosting) as several 

recent studies have used this algorithm to predict brain age using MRI [52-57] as well as EEG 

measures [29]. The details of the algorithm and computational steps are available in the work by 

de Lange et al. [8], wherein the algorithms from the native XGBoost [30] and Scikit-learn [58] 

have been implemented for computing brain age. As mentioned earlier, 187 anatomical features 

(i.e., 150 features of bilateral cortical thickness and 37 features of brain volumes) [see Table A1 

in Appendix section] served as the predictor variables against chronological age as the 

response or outcome variable in the XGBoos regression model. The prediction models were run 

separately for the AUD and FHD datasets. We trained the model using the reference groups 

(i.e., CTL group for the AUD dataset and the LoFHD group for the FHD dataset), while tested 

the prediction model on the case groups (AUD group for the AUD dataset and the HiFHD group 

for the FHD dataset), as it is usually done in the brain age studies [2]. Predicted brain age was 

subjected to an age-bias correction procedure [8,35]. While training the model, the values of the 

predictor variables (i.e., the neuroanatomical features) were scaled using the robust scaler [59] 

from the scikit-learn library [58], which removes the median and scales the data according to the 

quantile range [8]. Hyper parameter tuning was implemented in order to obtain the best model 

parameters to use in the training phase based on the previous work [8]. We tuned the model 

parameters using inner 3-fold and outer 5-fold cross-validation procedure, following the work by 

de Lange et al. [8]. The SearchTerm space parameters in the model were: max_depth = 
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range(1, 11, 2), n_estimators = range(50, 400, 50), learning_rate = [0.001, 0.01, 0.1, 0.2]. 

According to this procedure, a correction is applied to the predictions by first fitting Y = α × Ω + 

β, where Y is the modelled predicted age as a function of chronological age (Ω), and α and β 

represent the slope and intercept [8]. The derived values of α and β are then used to correct 

predicted age with Corrected Predicted Age = Predicted Age + [Ω − (α × Ω + β)]. The brain age 

gap, a measure of lag or difference between the chronological age and the predicted brain age 

[8,60], was also computed. The model performance was measured using the correlation 

coefficient (r), r-square (R2), Mean Absolute Error (MAE), and Root Mean Squared Error 

(RMSE). In this study, the correlation coefficient (r) between the chronological age and corrected 

predicted age served as the primary model performance. Higher r-value (regardless of the 

direction) indicated better performance. While R2, which is not the square of r in this case, is a 

measure of predictive power of the regression in terms of how much variation is explained by 

the regression, and therefore higher R2 represents better performance. The MAE represents the 

average of the absolute value of each residual, and lower MAE will imply better performance. 

On the other hand, the RMSE is computed as the square root of the average of squared errors, 

where the errors are squared before they are averaged. Similar to MAE, higher RMSE signifies 

lower performance. The MAE and the RMSE together are useful to estimate the variation in the 

errors in a set of predictions. The RMSE is larger or equal to the MAE and difference between 

the two measures reflects the magnitude of the variance in the individual errors in the sample. 

2.4. Neuropsychological Assessment 

Participants in both datasets were administered two computerized tests from the Colorado 

assessment tests for cognitive and neuropsychological assessment [61], namely, the Tower of 

London Test (TOL) [62], and the visual span test (VST) [63]. Details are available in our previous 

publication [64]. 

The TOL assesses the planning and problem-solving ability of the executive functions. In 

this test, participants were asked to solve a set of puzzles with graded difficulty levels by 

arranging a specific number of colored beads one at a time from a starting position to the 

desired goal position in as few moves as possible. The test consisted of 3 puzzle types, with 3, 

4, and 5 colored beads placed on the same number of pegs, with 7 problems/trials per type and 

a total of 21 trials. The following performance measures from the sum total of all puzzle types 

were used in the analysis: (i) actual moves made (MovMade), (ii) excess moves, which is the 

additional moves beyond the minimum moves required to solve the puzzle (“ExcMovMade”); (iii) 

percentage of excess moves (PctAbvOpt), (iv) average pickup time, which is the initial 
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thinking/planning time spent until picking up the first bead to solve the puzzle (“AvgPicTime”); (v) 

average total time, which is the total thinking/planning time to solve the problem in each puzzle 

type (“AvgTotTime”); (vi) total trial time, which is the total performance/execution time spent on 

all trials within each puzzle type (“TotTrlTime”); and (vii) average trial time, which is the mean 

performance/execution time across trials per puzzle type (“AvgTrlTime”). 

The VST measured visuospatial memory span from the forward condition and working 

memory from the backward condition. In this test, a set of randomly arranged squares, ranging 

from 2 to 8 squares per trial, flashed in a predetermined sequence depending on the span level 

being assessed. Each span level was administered twice, with a total of 14 trials in each 

condition. During the forward condition, subjects were required to repeat the sequence in the 

same order by clicking on the squares using a computer mouse. In the backward condition, 

subjects were required to repeat the sequence in the reverse order (starting from the last 

square). The following performance measures were collected during forward and backward 

conditions: (i) total number of correctly performed trials (“TotCor_Fw” and “TotCor_Bw”); (ii) 

maximum span or sequence-length achieved (“Span_Fw” and “Span_Bw”); (iii) total average 

time, which is the sum of mean time-taken across all trials performed (“TotAvgTime_Fw” and 

“TotAvgTime_Bw”); and (iv) total correct average time, which is the sum of mean time-taken 

across all trials correctly performed (“TotCorAvgTime_Fw” and “TotCorAvgTime_Bw”). 

2.5. Statistical Analysis 

Statistical analyses were done using the SPSS software package (Version 28.0.1.1). We 

compared the demographic and clinical characteristics across the groups of AUD and FHD 

datasets respectively using independent samples t-tests. Pearson correlations were used to find 

association among all age variables (i.e., chronological age, uncorrected brain age, corrected 

brain age, uncorrected brain age gap and corrected brain age gap) as well as between specific 

age measures and neuropsychological and clinical measures. Distributions of some of the brain 

age measures were plotted for visualization.  

3. Results 

3.1. Comparison of Clinical Variables Across the Groups 

As shown in Table 1, abstinent AUD participants were significantly younger than control 

participants. AUD participants started drinking earlier than controls. During their past heavy use 

period, AUD participants drank more in terms of quantity and frequency than control participants 
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who endorsed drinking. However, the quantity and frequency of drinking during the past 6 

months were not significantly different between the AUD and control participants. At the time of 

assessments, the AUD individuals were maintaining abstinence from drinking longer than the 

control participants who endorsed drinking. Tobacco use was significantly higher among the 

AUD participants during the past 6 months than the control participants who endorsed tobacco 

use, although the frequency of use was not statistically significant. Marijuana use during the 

past months was also higher among AUD participants compared to the controls. 

 

Table 1: Comparison of clinical features between the AUD and control participants. 

Variables 
AUD Control 

t p 
Na Mean SD Na Mean SD 

Age (in years) 30 41.25 7.20 30 27.24 4.78 8.78 <0.0001 

Alcohol: Age of onset (regular use)b 30 15.77 2.58 12 20.5 3.8 −4.67 <0.0001 

Alcohol: Quantity/day (heavy use period)c 30 11 7.66 12 3 1.6 5.58 <0.0001 

Alcohol: Frequency/month (heavy use period)c 30 20 9.01 12 4 4.09 7.97 <0.0001 

Alcohol: Quantity/day (last 6 months)c 30 3 6.61 18 3 1.98 0.045 NS 

Alcohol: Frequency/month (last 6 months)c 30 4 8.02 18 3 3.62 0.6 NS 

Length of Abstinence (in days)d 30 672.93 844.94 18 57 149.76 3.89 <0.0005 

Tobacco: Quantity/day (last 6 months)c 20 10 5.8 6 2 1.63 5.19 <0.0001 

Tobacco: Frequency/month (last 6 months)c 20 28 4.83 6 14 13.82 2.47 NS 

Marijuana: Frequency (last 6 months)c 10 99 91.38 4 19 27.61 2.58 <0.03 

a Note that all participants were assessed but the data of participants who did not report on specific items 
were omitted from the analysis here.  
b Drink one day/per month for 6 months or more.  
c Quantity and Frequency mean values were rounded to the nearest whole numbers as per the reviewers’ 
suggestion.  
d Range (5–4228 days). 
 

 

 Comparisons of clinical features related to diagnosis and symptom counts of DSM-IV 

substance dependence and abuse in the FHD dataset (HiFHD vs. LoFHD group) are shown in 

Table 2. None of the substance use features were significant. 
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Table 2: Comparison of substance use features between the HiFHD and LoFHD groups. 

Substance Category 
HiFHD LoFHD 

t-value p-value 
N Mean SD N Mean SD 

Age Demography 40 25.33 3.74 31 25.47 3.40 0.1435 0.4430 

Alcohol 

Dependence Dx 40 0.03 0.16 31 0.10 0.30 1.2980 0.1990 

Dependence Sx 40 0.78 1.37 31 0.94 1.12 0.5290 0.5980 

Abuse Dx 40 0.13 0.34 31 0.06 0.25 -0.8400 0.4040 

Abuse Sx 40 0.30 0.76 31 0.16 0.45 -0.9000 0.3710 

Tobacco 
Dependence Dx 40 0.15 0.36 31 0.10 0.30 -0.6610 0.5110 

Dependence Sx 40 0.85 1.64 31 0.97 1.60 0.3030 0.7630 

Marijuana 

Dependence Dx 40 0.53 1.45 31 0.16 0.37 -1.3600 0.1780 

Dependence Sx 40 1.45 2.01 31 1.19 1.70 -0.5690 0.5710 

Abuse Dx 40 0.38 1.44 31 0.06 0.25 -1.1810 0.2420 

Abuse Sx 40 0.48 0.82 31 0.26 0.63 -1.2230 0.2250 

Cocaine 

Dependence Dx 40 0.05 0.22 31 0.00 0.00 -1.2590 0.2120 

Dependence Sx 40 0.28 1.26 31 0.03 0.18 -1.0620 0.2920 

Abuse Dx 40 0.00 0.00 31 0.00 0.00 NA NA 

Abuse Sx 40 0.13 0.56 31 0.00 0.00 -1.2340 0.2220 

Opioid 

Dependence Dx 40 0.03 0.16 31 0.00 0.00 -0.8790 0.3830 

Dependence Sx 40 0.13 0.79 31 0.06 0.36 -0.3950 0.6940 

Abuse Dx 40 0.00 0.00 31 0.00 0.00 NA NA 

Abuse Sx 40 0.03 0.16 31 0.00 0.00 -0.8790 0.3830 

Stimulant 

Dependence Dx 40 0.00 0.00 31 0.00 0.00 NA NA 

Dependence Sx 40 0.00 0.00 31 0.00 0.00 NA NA 

Abuse Dx 40 0.00 0.00 31 0.00 0.00 NA NA 

Abuse Sx 40 0.00 0.00 31 0.00 0.00 NA NA 

Sedative 

Dependence Dx 40 0.00 0.00 31 0.03 0.18 1.1380 0.2590 

Dependence Sx 40 0.05 0.32 31 0.19 1.08 0.8010 0.4260 

Abuse Dx 40 0.00 0.00 31 0.00 0.00 NA NA 

Abuse Sx 40 0.00 0.00 31 0.10 0.54 1.1380 0.2590 

     Dx – Diagnosis, Sx – Symptom Counts, NA – Not Applicable due to zero values 

 

3.2. Brain Age Prediction in the AUD Dataset 

In the XGBoost regression model with AUD dataset, the best model parameters were the 

following: n_estimators=200, max_depth=9, and learning_rate=0.01. The prediction 

performance during the training phase in terms of the absolute mean (SD) values for R2, MAE, 

and RMSE are: 0.096 (0.096), 3.814 (1.828), and 4.443 (1.672), respectively. Fig. 1 shows the 

distribution of the individual values of Corrected Brain Age against Chronological Age (left 

panels) and Corrected Brain Age Gap (right panels) for the Control group (top panels) and the 
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AUD group (bottom panels). It can be observed that a majority of the AUD individuals (bottom 

left panel) show increased brain age (shown over the referenced diagonal line).  

 

 

Fig. 1. Distribution of the individual values of Corrected Brain Age against Chronological Age 
(left panels) and Corrected Brain Age Gap (right panels) for the Control group (top panels) and 
the AUD group (bottom panels). The individual values (marked in dots) above the diagonal line 
in the left panels represent increased brain age while the values below the diagonal line 
represent decreased brain age. 

 

 Bar Graphs in Fig. 2 show the mean values for all age measures in the AUD dataset for the 

age measures (Chronological Age, Uncorrected Brain Age, and Corrected Brain Age) [top panel] 

as well as for the brain age gap measures (Uncorrected Brain Age Gap and Corrected Brain 

Age Gap) [bottom panel] for the AUD dataset. It is shown that the Uncorrected Brain Age (29.01 

years) in the AUD group was possibly underpredicted by the model (before age-bias correction) 

against the Chronological Age (41.25 years) during the testing phase. On the other hand, the 
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Corrected Brain Age (42.95 years) was 1.70 years higher than the Chronological Age (41.25 

years) as illustrated in the bar graphs. Control group, which was the training dataset), did not 

show visible changes in the brain ages. The same trend is seen in terms of the Brain Age Gap 

(i.e., the difference between chronological age and the brain age) measures shown in the 

bottom panel in Fig. 2. 

 

Fig. 2. Bar Graphs showing the mean values for Chronological Age, Uncorrected Brain Age, and 
Corrected Brain Age (top panel) as well as for Uncorrected Brain Age Gap and Corrected Brain 
Age Gap (bottom panel) for the AUD dataset. 

 

3.3. Brain Age Prediction in the FHD Dataset 

In the XGBoost regression model with FHD dataset, the best model parameters were the 

following: n_estimators=300, max_depth=9, and learning_rate=0.001. The prediction 

performance in terms of the absolute mean (SD) values for R2, MAE, and RMSE are: 0.704 
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(0.985), 2.822 (0.697), and 3.431 (0.959), respectively. Fig. 3 shows the distribution of the 

individual values of Corrected Brain Age against Chronological Age (left panels) and Corrected 

Brain Age Gap (right panels) for the Lo-FHD group (top panels) and the Hi-FHD group (bottom 

panels). It can be observed that a considerable portion of the HiFHD individuals (bottom left 

panel), especially after the age 22, show increased brain age relative to their respective 

chronological age. 

 
Fig. 3. Distribution of the individual values of Corrected Brain Age against Chronological Age 
(left panels) and Corrected Brain Age Gap (right panels) for the LoFHD group (top panels) and 
the HiFHD group (bottom panels). The individual values (marked in dots) above the diagonal 
line in the left panels represent increased brain age while the values below the diagonal line 
represent decreased brain age. 

 

 Bar Graphs in Fig. 4 show the mean values for all age measures in the AUD dataset for the 

age measures (Chronological Age, Uncorrected Brain Age, and Corrected Brain Age) [top panel] 

as well as for the brain age gap measures (Uncorrected Brain Age Gap and Corrected Brain 
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Age Gap) [bottom panel] for the AUD dataset. These graphs show that the Uncorrected Brain 

Age in the HiFHD group was the highest followed by the Corrected Brain Age (during the testing 

phase). The Corrected Brain Age (25.42 years), which is the measure of our interest, was 0.09 

years (1.08 months) higher than the Chronological Age (25.33 years). Interestingly, the brain 

age starts to steadily increase from age 22 until early 30s in this group, and the mean difference 

between Chronological Age and Corrected Brain Age in this subgroup (age ≥22; N=30) rises to 

0.2334 years (2.80 months) [see Fig. 3, bottom left panel]. On the other hand, the LoFHD group 

did not show any visible changes in the Corrected Brain Age (during the training phase), as 

expected.  

 

 

Fig. 4. Bar Graphs showing the mean values for Chronological Age, Corrected Brain Age, and 
Uncorrected Brain Age (top panel) as well as for Brain Age Gap (bottom panel) for the FHD 
dataset. 
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3.4. Correlations of Age Measures with Themselves and Other Variables 

3.4.1. Correlations across the Age Measures 

 Pearson correlations among the brain age measures in the AUD dataset are shown in 

Table 3. In the Control group, significant correlations were observed between (1) Chronological 

Age and Uncorrected Brain Age, (2) Chronological Age and Uncorrected Brain Age Gap, (3) 

Uncorrected Brain Age and Corrected Brain Age, (4) Uncorrected Brain Age and Uncorrected 

Brain Age Gap, (5) Uncorrected Brain Age and Corrected Brain Age Gap, (6) Corrected Brain 

Age and Uncorrected Brain Age Gap, (7) Corrected Brain Age and Corrected Brain Age Gap, 

and (8) Uncorrected Brain Age Gap and Corrected Brain Age Gap. On the other hand, the AUD 

group showed significant correlations between (1) Chronological Age and Corrected Brain Age, 

(2) Chronological Age and Uncorrected Brain Age Gap, (3) Uncorrected Brain Age and 

Uncorrected Brain Age Gap, (4) Uncorrected Brain Age and Corrected Brain Age Gap, (5) 

Corrected Brain Age and Uncorrected Brain Age Gap, and (6) Uncorrected Brain Age Gap and 

Corrected Brain Age Gap. 

Table 3: Pearson correlations among the brain age measures in the AUD dataset. The 
correlation values in the lower triangle represent the control group and those in the upper 
triangle represent the AUD group. 

  

AUD 
Chronological 

Age 
Uncorrected 

Brain Age 
Corrected 
Brain Age 

Uncorrected 
Brain Age Gap 

Corrected 
Brain Age Gap 

CTL 

Chronological Age - -0.1457 0.9691*** -0.9731*** -0.1502 

Uncorrected Brain Age 0.0022 - 0.1031 0.3696* 1.0000*** 

Corrected Brain Age 0.8903** 0.4574* - -0.8861*** 0.0985 

Uncorrected Brain Age Gap -0.8900** 0.4539* -0.5847** - 0.3739* 

Corrected Brain Age Gap 0 1.0000** 0.4555* 0.4559* - 
***p<0.001; **p<0.01;      *p<0.05 

 

Pearson correlations among the brain age measures in the FHD dataset are shown in 

Table 4. The Low-FHD (LoFHD) group showed significant correlations between (1) 

Chronological Age and Uncorrected Brain Age, (2) Chronological Age and Uncorrected Brain 

Age Gap, (3) Uncorrected Brain Age and Uncorrected Brain Age Gap, (4) Uncorrected Brain 

Age and Corrected Brain Age Gap, and (5) Corrected Brain Age and Uncorrected Brain Age 

Gap. On the other hand, significant correlations in the High-FHD (HiFHD) group were observed 

between (1) Chronological Age and Corrected Brain Age, (2) Chronological Age and 

Uncorrected Brain Age Gap, (3) Chronological Age and Corrected Brain Age Gap, (4) 
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Uncorrected Brain Age and Corrected Brain Age Gap, (5) Corrected Brain Age and Uncorrected 

Brain Age Gap, and (6) Corrected Brain Age and Corrected Brain Age Gap. 

Table 4: Pearson correlations among the brain age measures in the FHD dataset. The 
correlation values in the lower triangle represent the Low-FHD (LoFHD) group and those in the 
upper triangle represent the High-FHD (HiFHD) group. 

  
Hi-FHD 

Chronological 
Age 

Uncorrected 
Brain Age 

Corrected 
Brain Age 

Uncorrected 
Brain Age Gap 

Corrected 
Brain Age Gap 

Lo-FHD 

Chronological Age - 0.1431 0.9875*** -0.9846*** 0.4387** 

Uncorrected Brain Age -0.2847 - 0.2975 0.0323 0.9521*** 

Corrected Brain Age 0.9805*** -0.0907 - -0.9446** 0.5750*** 

Uncorrected Brain Age Gap -0.9826*** 0.4580** -0.9268*** - -0.2747 

Corrected Brain Age Gap 0 0.9586*** 0.1966 0.1859 - 

***p<0.001; **p<0.01;      *p<0.05 

 

Table 6: Correlations of specific age measures with neuropsychological scores from the Tower 
of London (TOL) Test and the Visual Span Test (VST) in the AUD dataset.  

Neuropsychological 

Variables 

AUD CTL 

Chronological 
Age 

Corrected Brain 
Age 

Chronological 
Age 

Corrected Brain 
Age 

TOL_MovMade 0.4909* 0.4924* 0.0236 0.0535 

TOL_ExcMovMade 0.4909* 0.4924* 0.0236 0.0535 

TOL_PctAbvOpt 0.4909* 0.4924* 0.0235 0.0535 

TOL_AvgPicTime 0.0761 0.0334 0.1849 0.2519 

TOL_AvgTotTime 0.1555 0.0901 0.1759 0.2296 

TOL_TotTrlTime 0.3801 0.3399 0.1843 0.2374 

TOL_AvgTrlTime 0.3801 0.3399 0.1843 0.2374 

VST_TotCor_Fw -0.4275* -0.3956 -0.0183 -0.0254 

VST_Span_Fw -0.4147* -0.3906 -0.0339 -0.0265 

VST_TotAvgTime_Fw 0.0037 -0.0366 0.1010 0.1133 

VST_TotCorAvgTime_Fw -0.0101 -0.0514 0.1400 0.1322 

VST_TotCor_Bw -0.2895 -0.2549 -0.1274 -0.0815 

VST_Span_Bw -0.2859 -0.2628 -0.0717 -0.0245 

VST_TotAvgTime_Bw -0.0793 -0.1233 -0.0228 -0.0206 

VST_TotCorAvgTime_Bw -0.0548 -0.1297 -0.0993 -0.0226 

 *p<0.01 

 Refer Section 2.4. for the details of the neuropsychological variables listed in this table. 

 

3.4.2. Correlations of Age Measures with Neuropsychological Performance 

Correlations of specific age measures with neuropsychological scores from the Tower of 

London (TOL) Test and the Visual Span Test (VST) in the AUD dataset are shown in Table 6. It 
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is observed that three of the TOL neuropsychological variables related to number of moves 

made (i.e., total moves, excess moves, and percentage above optimal moves) showed 

significant positive correlations with both chronological age and corrected brain age but only in 

the AUD group, suggesting poorer performance in executive functioning (planning) with 

increasing chronological and brain ages. Further, two of the VST neuropsychological variables 

related to forward trials (i.e., total correct and maximum span) significant negative correlations 

with chronological age in the AUD group, suggesting poorer memory performance with 

advancing age. There were no significant correlations observed in the CTL group participants. 

In the FHD dataset (Table 7), two of the TOL neuropsychological variables on performance 

time (i.e., average pickup time, and average total performance time) showed significant positive 

correlations with both chronological age and corrected brain age but only in the High FHD 

group, suggesting poor neuropsychological performance with increasing age. None of the VST 

variables were significant. There were no significant correlations observed in the CTL group 

participants.  

Table 7: Correlations of specific age measures with neuropsychological scores from the Tower 
of London (TOL) Test and the Visual Span Test (VST) in the FHD dataset.  

Neuropsychological 

Variables 

High FHD Low FHD 

Chronological 
Age 

Corrected Brain 
Age 

Chronological 
Age 

Corrected Brain 
Age 

TOL_MovMade -0.2339 -0.2201 -0.2811 -0.3194 

TOL_ExcMovMade -0.2339 -0.2201 -0.2811 -0.3194 

TOL_PctAbvOpt -0.2339 -0.2201 -0.2811 -0.3194 

TOL_AvgPicTime 0.4535** 0.4545** 0.2700 0.2789 

TOL_AvgTotTime 0.4191** 0.4147** 0.3197 0.3172 

TOL_TotTrlTime 0.2971 0.2982 0.2677 0.2536 

TOL_AvgTrlTime 0.2971 0.2982 0.2677 0.2536 

VST_TotCor_Fw 0.0703 0.0525 0.1657 0.1335 

VST_Span_Fw 0.0205 0.0089 0.0906 0.0535 

VST_TotAvgTime_Fw 0.0049 0.0033 0.0741 0.0475 

VST_TotCorAvgTime_Fw 0.0381 0.0498 0.2047 0.2000 

VST_TotCor_Bw 0.0240 0.0049 0.1323 0.0794 

VST_Span_Bw 0.1062 0.0751 0.0139 -0.0187 

VST_TotAvgTime_Bw 0.1193 0.1061 -0.0644 -0.1241 

VST_TotCorAvgTime_Bw 0.1086 0.0956 -0.1007 -0.1457 

 **p<0.01 

 Refer Section 2.4. for the details of the neuropsychological variables listed in this table. 
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4. Discussion 

 The objective of the present study was to predict brain age using neuroanatomical features 

such as cortical thickness and brain volume in individuals with a lifetime diagnosis of AUD as 

well as in those with increased family history density (FHD) in their first- and degree relatives. 

Results showed that both AUD and high-risk individuals showed an increase of 1.70 and 0.09 

years (1.08 months), respectively, in their brain age relative to their chronological age, 

suggesting accelerated brain aging in these individuals. Increased brain age was found to be 

associated with poor neuropsychological performance. The significance and implications of the 

major findings of the current study are detailed below.  

4.1. Brain Age Measures in the AUD Dataset 

 As shown in Fig. 2, the corrected brain age for the AUD individuals was 1.70 years higher 

than the chronological age. A vast majority of the AUD individuals, as illustrated in the 

distribution plot in Fig.1, consistently showed increased brain age. Further, there was a 

significant correlation between chronological age and corrected brain age (r=0.9691; Table 3). 

These findings indicate that AUD individuals, despite their current abstinence status, have 

accelerated brain aging. Previous neuroimaging studies have suggested that chronic alcohol 

use can lead to accelerated aging [21,65], as evidenced by anomalies in brain morphology as 

well as neurocognitive functions [66,67], which might further contribute to age-related dementia 

as an end outcome [21]. As the current study has used brain morphological features to estimate 

brain age, it is also worth mentioning that the same set of AUD participants had shown 

significantly smaller volumes in frontal lobe regions, such as left pars orbitalis, right medial 

orbitofrontal, right caudal middle frontal cortices, and in bilateral hippocampal regions in our 

previous study [39]. Numerous studies have confirmed that both gray and white matter volume 

loss in the brain contribute to accelerated aging in individuals with chronic alcohol use [68,69]. 

Past research has also reported that decreased cortical thickness seen in abstinent AUD 

individuals could be associated with severity of past alcohol misuse [70]. Furthermore, age‐

related cognitive decline is further accelerated by chronic alcohol misuse [71].  

 It may also be worthwhile to interpret the current findings in terms of other relevant domains 

of the brain and cognition. It is well-known that brain structural abnormalities often seen in AUD 

individuals are often associated with accompanying cognitive impairments [72-74], which can 

lead to accelerated cognitive aging and even dementia in chronic alcohol users [75-78]. This 

view is further confirmed by our previous findings on this dataset that the AUD participants 
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showed relatively poorer performance in neuropsychological tests of problem-solving ability, 

visuospatial memory span, and working memory, compared to the healthy controls, in addition 

to changes in brain volume and white matter integrity [39]. Additionally, our past study also 

found that neuropsychological performance was correlated with several features of brain volume 

and white matter integrity [39], further validating the intricate relationship among brain structure, 

cognitive functioning, and brain aging.  

4.2. Brain Age Measures in the FHD Dataset 

 The results showed that the corrected brain age for the High-FHD individuals was found to 

have increased by 1.08 months relative to their chronological age (Fig. 4). Similar to the AUD 

group, there was a significant positive correlation of chronological age and brain age (r=0.9875; 

Table 4), indicating that brain age increase was in tandem with chronological age. Interestingly, 

as illustrated in Fig. 3, the brain age starts increasing relative to the chronological age only after 

the age of 22, and the corrected brain age gap for this subset (age 22 and over, N=30) rose to 

0.2334 years (2.80 months), showing that impairments in cognition and brain health may have 

started to appear as early as early 20s even through their clinical profiles on alcohol and 

substance use were not statistically different than the Low-FHD group. Previous studies have 

shown that children, adolescents and young adults with strong family history of AUD had 

reduced cortical thickness and decreased brain volume [79] and decreased brain volumes of 

cortical and subcortical structures [80-85]. These findings were present in alcohol-naïve high-

risk offspring individuals [86], of whom a majority were yet to develop AUD or SUD [81-83,85], 

suggesting that these neuroanatomical differences may predate the development of AUD and 

reflect an underlying genetic susceptibility [87]. It is likely that genetic factors due to family 

history, in interaction with environmental factors, may predispose these individuals with atypical 

brain development [84]. Further, studies have also confirmed that these structural anomalies are 

also related to higher prevalence of externalizing traits, such as impulsivity and substance use 

behaviors, in these high-risk individuals [79,88,89], suggesting that both behavioral [90,91] and 

neural disinhibition [92] may predispose or mediate these individuals in developing substance 

use and other externalizing disorders [90-93]. 

 Nevertheless, in the current study, it should be noted that the clinical profile (i.e., AUD/SUD 

diagnosis and symptom counts) between the High- and Low-FHD groups were not statistically 

significant, possibly suggesting that either the high-risk participants have not yet developed 

more severe symptoms relative to their low-risk counterparts, or alternatively, there could have 

been a selection bias while recruiting the participants leading to the selection of these 
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individuals. It is quite likely that the young adults with fewer substance use problems were more 

readily available and amenable for the MRI scanning (especially since there is a minimum of 5-

day non-drinks days required for scanning). In any case, future large-scale studies are 

warranted to further understand this phenomenon. However, our finding that there was a 

significant association between neuroanatomical features and brain age in the High-FHD group, 

but not in the Low-FHD individuals, is very compelling and in line with the findings from the 

literature. Future studies may also examine the association between brain age and 

neuroanatomical as well as multimodal features (genomic, clinical, and environmental factors) in 

different age cohorts (e.g., children, adolescents, young adults, etc.) to improve our 

understanding of mechanisms and interplay of various etiological factors underlying AUD and 

related disorders across the lifespan and brain development. 

4.3. Brain Age and Neuropsychological Performance 

 Correlational analysis (Tables 6 & 7) showed that increase in the brain age values were 

significantly associated with poor scores in specific neuropsychological performance related to 

executive functions such as planning and problem solving in both AUD and High-FHD groups. 

This finding supports the view that brain age could be a reliable measure to estimate cognitive 

decline in various neurocognitive disorders, including in individuals diagnosed with AUD and in 

high-risk individuals who are likely to develop AUD later in life. Interestingly, increased brain age 

in the AUD group was associated with lack of efficiency in planning and problem solving (as 

reflected by the number of trials taken by the individuals to solve the puzzles), while on the other 

hand the brain age related cognitive impairment in the High-FHD group was observed in the 

time taken during planning and problem solving (as indicated by the pickup time and total time). 

These differences in cognitive profiles between AUD and High-FHD could be related to specific 

developmental stage and aging process of the two groups, as the AUD group is significantly 

older than the High-FHD group. On the other hand, in the memory task, only the chronological 

age showed negative association with the short-term memory performance (forward recall), 

suggesting poor memory performance with advancing chronological age in the AUD group. It 

should also be noted that the negative correlation between the same short-term memory 

variables and brain age was >0.39 in the AUD group, although this association did not reach 

statistical significance due to relatively a smaller sample size. Thus, brain age measure can be 

an efficient marker of cognitive performance and brain health in AUD individuals. 

Overall, it is clear from our findings that increased chronological age as well as brain age 

were significantly associated with poor cognitive performance in both AUD and High-FHD 
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groups, although the pattern of deficit may vary between the groups. It has been widely reported 

that individuals with chronic AUD diagnosis often manifest neuropsychological impairments in 

multiple domains, such as deficits in executive functioning, memory, and visuospatial processing 

[94-100]. A meta-analysis confirmed that planning, problem solving, and inhibitory abilities are 

significantly affected by alcohol misuse [101]. While the recovery of some cognitive processes 

are known to occur due to abstinence in AUD individuals, certain deficits can persist even after 

a prolonged abstinence [94]. In the similar vein, there is also a strong literature support to show 

similar neuropsychological impairments in high-risk offspring of AUD individuals. Several studies 

have reported neuropsychological deficits in individuals with positive family history of AUD 

[79,102-104]. While the High-FHD individuals, with a relatively smaller increase in their brain 

age, have manifested specific neuropsychological deficits in executive functioning, it is expected 

that these anomalies will further exasperate when they develop more alcohol problems during 

their mid- and later life as they advance in their age. Brain age measures could thus serve as a 

reliable proxy for measuring brain health and cognitive functioning in the high-risk individuals as 

well, as they did for the AUD individuals in this study. 

4.4. Limitations of the Current Study and Suggestions for Future Research 

While the study has yielded some interesting findings, there are some limitations that need 

to be mentioned. First, the sample sizes of the datasets were relatively smaller for the predictive 

models of machine learning, and therefore the validity of the prediction as well as the 

generalizability of the findings are rather limited in scope. Second, the study groups were not 

matched for age in the AUD dataset, in which the control participants were significantly younger 

than their AUD counterparts. Third, the AUD dataset comprised only male participants and 

therefore generalizability is limited. Fourth, in the FHD dataset, the sample sizes were not equal 

between the Hi-FHD and Lo-FHD groups. Fifth, the sex composition in the Low-FHD group was 

not perfectly matched. Lastly, while it is well-known that the diagnosis and symptoms of 

AUD/SUD were more prevalent in the high-risk group with a dense FHD, the study sample of Hi-

FHD group did not differ from the Lo-FHD individuals in terms of their substance use profiles as 

seen in Table 2.  

Future studies should use large samples of AUD and high-risk groups, preferably matched 

for age, sex, and other important sample characteristics to obtain realistic brain measures. 

Further, the association among brain age, neural features, and behavioral/cognitive features 

may be examined by the future studies using samples from different age cohorts (e.g., children, 

adolescents, young adults, etc.) to understand potential etiological mechanisms underlying 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2024. ; https://doi.org/10.1101/2024.03.01.582844doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.01.582844
http://creativecommons.org/licenses/by-nc-nd/4.0/


alcohol use and related disorders across brain development. Future research that would aim to 

study brain age in AUD related groups may also consider using other important structural and 

functional brain features, including brain connectivity measures, as done by some of the recent 

brain age studies on other neuropsychiatric disorders. Since there is a critical paucity of EEG 

studies on brain age in AUD and high-risk individuals, more such studies are warranted using 

large samples to understand subtle and nuanced brain dynamics in milliseconds time scale. It 

may be interesting and important to compare various prediction algorithms of both machine 

learning and linear models to ascertain and validate the findings across multiple studies. Finally, 

future studies may also try to understand correlations between brain age and measures from 

various domains such as neuroimaging (i.e., structural and functional MRI measures), 

neurocognition (e.g., neuropsychological scores), personality (e.g., internalizing and 

externalizing characteristics), genomics (e.g., polygenic scores), and environment (e.g., SES, 

family, peers, etc.). 

5. Conclusions 

Brain age measures are assuming greater importance to predict cognitive decline and 

accelerated biological aging in various disorders, including substance use disorders. The 

current study estimated brain age measures using the XGBoost regression algorithm in two 

distinct datasets, namely, the AUD dataset containing 60 adult participants (30 individuals with a 

history of AUD and 30 control individuals without any AUD diagnosis) and the FHD dataset with 

71 young adults (40 individuals with high FHD scores and 31 individuals with low FHD scores). 

The major finding was that both AUD group and the High-FHD group showed an increase of 

1.70 and 0.09 years (1.08 months), respectively, in their brain age relative to their chronological 

age, suggesting an accelerated brain aging and cognitive decline/deficit in these individuals. 

Brain age in both groups (AUD and High-FHD) was significantly associated with specific 

neuropsychological deficits. The accelerated brain aging in the AUD group, despite maintaining 

abstinence, could be due to brain damage caused by chronic alcohol use in the past. On the 

other hand, a small increase in brain age, relative to the chronological age, in the high FHD 

group may indicate an underlying neurocognitive deficit, possibly due to genetic and/or lifestyle 

related factors. Further studies using larger samples in different age cohorts and involving 

multimodal measures are needed to understand the neurobiological and genetic mechanisms 

underlying alcohol use and related disorders. It is recommended that future studies may 

circumvent the limitations of the current study and improve their research designs by using 

suggestions rendered from this study.  
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Appendix: Table A1: List of 187 anatomical features used in the prediction of brain age. 

Cortical Thickness Features (75 LH and 75 RH ROIs) Brain Volume (37 ROIs) 

1. G&S_frontomargin 39. Lat_Fis-ant-Horizont 1. Left-Lateral-Ventricle 

2. G&S_occipital_inf 40. Lat_Fis-ant-Vertical 2. Left-Inf-Lat-Vent 

3. G&S_paracentral 41. Lat_Fis-post 3. Left-Cerebellum-White-Matter 

4. G&S_subcentral 42. Pole_occipital 4. Left-Cerebellum-Cortex 

5. G&S_transv_frontopol 43. Pole_temporal 5. Left-Thalamus-Proper 

6. G&S_cingul-Ant 44. S_calcarine 6. Left-Caudate 

7. G&S_cingul-Mid-Ant 45. S_central 7. Left-Putamen 

8. G&S_cingul-Mid-Post 46. S_cingul-Marginalis 8. Left-Pallidum 

9. G_cingul-Post-dorsal 47. S_circular_insula_ant 9. 3rd-Ventricle 

10. G_cingul-Post-ventral 48. S_circular_insula_inf 10. 4th-Ventricle 

11. G_cuneus 49. S_circular_insula_sup 11. Brain-Stem 

12. G_front_inf-Opercular 50. S_collat_transv_ant 12. Left-Hippocampus 

13. G_front_inf-Orbital 51. S_collat_transv_post 13. Left-Amygdala 

14. G_front_inf-Triangul 52. S_front_inf 14. CSF 

15. G_front_middle 53. S_front_middle 15. Left-Accumbens-area 

16. G_front_sup 54. S_front_sup 16. Left-VentralDC 

17. G_Ins_lg&S_cent_ins 55. S_interm_prim-Jensen 17. Left-vessel 

18. G_insular_short 56. S_intrapariet&P_trans 18. Left-choroid-plexus 

19. G_occipital_middle 57. S_oc_middle&Lunatus 19. Right-Lateral-Ventricle 

20. G_occipital_sup 58. S_oc_sup&transversal 20. Right-Inf-Lat-Vent 

21. G_oc-temp_lat-fusifor 59. S_occipital_ant 21. Right-Cerebellum-White-Matter 

22. G_oc-temp_med-Lingual 60. S_oc-temp_lat 22. Right-Cerebellum-Cortex 

23. G_oc-temp_med-Parahip 61. S_oc-temp_med&Lingual 23. Right-Thalamus-Proper 

24. G_orbital 62. S_orbital_lateral 24. Right-Caudate 

25. G_pariet_inf-Angular 63. S_orbital_med-olfact 25. Right-Putamen 

26. G_pariet_inf-Supramar 64. S_orbital-H_Shaped 26. Right-Pallidum 

27. G_parietal_sup 65. S_parieto_occipital 27. Right-Hippocampus 

28. G_postcentral 66. S_pericallosal 28. Right-Amygdala 

29. G_precentral 67. S_postcentral 29. Right-Accumbens-area 

30. G_precuneus 68. S_precentral-inf-part 30. Right-VentralDC 

31. G_rectus 69. S_precentral-sup-part 31. Right-vessel 

32. G_subcallosal 70. S_suborbital 32. Right-choroid-plexus 

33. G_temp_sup-G_T_transv 71. S_subparietal 33. SubCortGrayVol 

34. G_temp_sup-Lateral 72. S_temporal_inf 34. TotalGrayVol 

35. G_temp_sup-Plan_polar 73. S_temporal_sup 35. SupraTentorialVol 

36. G_temp_sup-Plan_tempo 74. S_temporal_transverse 36. SupraTentorialVolNotVent 

37. G_temporal_inf 75. MeanThickness 37. EstimatedTotalIntraCranialVol 

38. G_temporal_middle   
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