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In natural odor environments, odor travels in plumes. Odor concentration dynamics change in characteristic 
ways across the width and length of a plume. Thus, spatiotemporal dynamics of plumes have informative fea-
tures for animals navigating to an odor source. Population activity in the olfactory bulb (OB) has been shown 
to follow odor concentration across plumes to a moderate degree (Lewis et al., 2021). However, it is unknown 
whether the ability to follow plume dynamics is driven by individual cells or whether it emerges at the popula-
tion level. Previous research has explored the responses of individual OB cells to isolated features of plumes, 
but it is difficult to adequately sample the full feature space of plumes as it is still undetermined which features 
navigating mice employ during olfactory guided search. Here we released odor from an upwind odor source 
and simultaneously recorded both odor concentration dynamics and cellular response dynamics in awake, 
head-fixed mice. We found that longer timescale features of odor concentration dynamics were encoded at 
both the cellular and population level. At the cellular level, responses were elicited at the beginning of the 
plume for each trial, signaling plume onset. Plumes with high odor concentration elicited responses at the end 
of the plume, signaling plume offset. Although cellular level tracking of plume dynamics was observed to be 
weak, we found that at the population level, OB activity distinguished whiffs and blanks (accurately detected 
odor presence versus absence) throughout the duration of a plume. Even ~20 OB cells were enough to accu-
rately discern odor presence throughout a plume. Our findings indicate that the full range of odor concentration 
dynamics and high frequency fluctuations are not encoded by OB spiking activity. Instead, relatively lower-
frequency temporal features of plumes, such as plume onset, plume offset, whiffs, and blanks, are represented 
in the OB. 
 

Introduction 
Brains generate complex and adaptive behavioral 

sequences (Dennis et al., 2021; Miller et al., 2022), a subset 
of which are driven by olfactory stimuli and are important 
for navigation and the search for resources (Baker et al., 
2018). Theoretical work has suggested that the 
spatiotemporal dynamics of natural odor environments 
could enable multiple types of search strategies that would 
allow for successful olfactory-guided navigation. (Boie et al., 
2018; Gardiner & Atema, 2010; Gumaste et al., 2020; P. W. 
Jones & Urban, 2018; Loisy & Eloy, 2022; Park et al., 2016; 
Rigolli et al., 2022; Vergassola et al., 2007; Vickers, 2000). 
Experimentally, recent work has focused on generating a 
better understanding of which strategies navigating mice 
use (Findley et al., 2021; Gire et al., 2016) to enable their 
repertoire of complex odor-driven behaviors. These 
strategies are constrained by the features of odor cues that 
are encoded by the brain. Olfactory cortical neurons 
respond to isolated features of natural odor dynamics 
(Ackels et al., 2021; Dasgupta et al., 2022; Lewis et al., 2021; 
Parabucki et al., 2019), but the neural substrates that enable 
odor-driven search in mice are not yet known.  

To understand the ease with which mice navigate 
plumes despite the complexity of plume dynamics, we must 

understand how plume dynamics inform olfactory search 
and what subset of dynamical features are encoded by 
olfactory processing. 

A navigating mouse encounters odors as plumes, which 
are the result of the turbulent mixing of air and odor 
particles (Celani et al., 2014). As odor moves away from a 
source, it is pulled and pushed into discrete filaments. Thus, 
plumes are necessarily encountered as “whiffs” of odor 
separated by “blanks” of pure air (Riffell et al., 2008), and 
the properties of odor encounters show characteristic 
changes across the length and width of a plume (Celani et 
al., 2014; Mylne & Mason, 1991). Since whiff properties, 
such as how often they are encountered (Murlis et al., 1992; 
Mylne & Mason, 1991) and how long they last (Young et al., 
2020; Rigolli et al., 2022), have structure across plume 
space, they contain information regarding an animal’s 
position relative to an odor source. 

Olfactory processing occurs in a relatively shallow 
system as compared to other senses with no relay through 
the thalamus (Shepherd, 2005). This means that all 
ethologically-relevant odor information must be conveyed 
by the olfactory bulb (OB), the first olfactory relay of the 
brain and the last common structure of the olfactory 
pathway (Mori et al., 1999). Single cells in the OB accurately 
resolve odor presented in isolated pulses or isolated 
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frequencies (Ackels et al., 2021; Dasgupta et al., 2022), but 
little is known about whether the OB follows stochastic 
plume dynamics, with mixed frequencies. Additionally, 
there are known adaptation effects in the OB (Martelli & 
Storace, 2021) and dynamical changes in OB responses both 
over the course of longer odor stimuli (Baker et al., 2019; 
Patterson et al., 2013; Spors & Grinvald, 2002) or over back 
to back sampling across sniffs (Fukunaga et al., 2012). Little 
is known regarding whether the dynamics of adaptation or 
the dynamics of OB responses themselves may compromise 
the ability of the OB to detect odor with naturalistic and 
complex dynamics across longer timescales. The population 
activity of mitral and tufted cells (MTCs) in the OB respond 
to stochastic plumes at the glomerular level as measured by 
widefield calcium imaging (Lewis et al., 2021). The 
collective MTC activity across dorsal OB imaging windows 
was analyzed using principal component analysis, and each 
field of view had a high-ranking principal component that 
was moderately correlated with concentration dynamics 
across the plume (~0.6 average Pearson correlation). 
Segmenting the population into individual putative 
glomeruli, spherical complexes where olfactory receptor 
neurons that express the same receptor type synapse onto 
OB cells, showed relatively weaker but still moderate 
tracking ability among glomeruli. Glomeruli varied in their 
ability to follow plume dynamics, but the best tracking 
glomeruli exhibited moderate correlations with plume 
dynamics across plumes (~0.4 Pearson correlation). 
Therefore, at the population level, plume dynamics 
structure activity in the OB, but how individual cells or cell 
types contribute to the following behavior observed in 
collective MTC activity could not be determined by the 
widefield imaging approach.  

Two main classes of OB projection neurons, mitral cells 
(MC) and tufted cells (TC), receive odor input from olfactory 
sensory neurons within glomeruli. MCs and TCs differ in 
their laminar location within the OB (Fukunaga et al., 2012; 
Igarashi et al., 2012), and the nature of the inhibitory 
surround that impinges upon them (S. Jones et al., 2020).  
Additionally, the two cells types differ in the nature of their 
input. Tufted cells receive more direct sensory input than 
MCs (Fukunaga et al., 2012; Gire et al., 2012; Gire & 
Schoppa, 2009; Najac, Jan, et al., 2011). MCs receive more 
indirect sensort input through their extensive connections 
with other MCs. This is a result of the dendrodendritic 
connections MCs form with granules cells. These 
connections also result in a greater amount of surround 
inhibition for MCs (Geramita et al., 2016), exerted upon 
their millimeter-long lateral dendrites (Aghvami et al., 
2022). This could possibly provide individual MCs with 
informative lateral inhibition from other MCs across the 
bulb. These differences between MCs and TCs have led to 
the hypothesis that the two cell types play different roles in 
encoding odor information (Nagayama et al., 2004). 

In this current study, we used high-density multi-shank 
Neuropixels 2.0 (Steinmetz et al., 2021) probes to 
simultaneously record from large populations of MTCs 
responding to plume dynamics at both the individual and 
population level in awake, head-fixed mice. We released 
odor from an upwind odor source and simultaneously 
recorded both odor concentration dynamics and cellular 

responses. We used previously-reported local field 
potential (LFP) signatures of laminar layers to separate 
cells into putative MCs and more superficial cells (EPL/SFL 
cells, predominantly putative TC). To capture odor 
concentration dynamics across plumes we used an adapted, 
miniature odor sensor (Tariq et al., 2021) to directly 
recorded the plume signal at the mouse nose. We then 
compared this sensory input with both individual cell 
spiking and population activity. We found that OB cell 
spiking encodes large-scale temporal features of odor 
plumes. Here we use large-scale in a relative manner, as 
plumes contain both high frequency and low frequency 
spatiotemporal features. OB activity resolved plume onset, 
plume offset, and whiffs and blanks, which are all lower-
frequency (~4Hz or lower) and binarized features of 
plumes (Celani et al., 2014). At the individual level, OB cells 
signaled moments when animals encountered or lost a 
plume. At the population level, the OB discerned odor 
presence accurately across the duration of the plume. 
Despite previous widefield findings that large OB 
populations can collectively track odor concentration with 
moderate strength, at a more local scale, cells were not 
observed to tightly track the full dynamics of odor 
concentration fluctuations. Instead, the majority of OB 
activity follows plume dynamics in the form of large-scale 
temporal features such as plume onset, plume offset, and 
whiff encounters, features thought to be vital for odor-
guided navigation (Park et al., 2016; Vickers, 2000) and 
source localization (Rigolli et al., 2022). 

Results 
Physiological features of cells with relation to their distance 
from the MCL 

High-density recordings from the OB of awake-headed 
mice during plume presentations was acquired using multi-
shank Neuropixels 2.0 probes (Fig 1). Mice were head-fixed 
within a wind tunnel while odor was released from an 
upwind odor source (see methods). The same odor mixture 
was released each trial, but as plume dynamics are 
stochastic, odor concentration time series differed for every 
trial (Fig 1d). We recorded the odor concentration changes 
across the plume using a modified, odor sensor (Tariq et al., 
2021) while simultaneously measuring plume-elicited 
responses in the OB.  Before analyzing neural responses to 
plume dynamics, we first sought to divide cell types by 
estimating the position of MCL.  

Known characteristics of LFP across the laminar layers 
of the bulb was used to estimate the location of the MCL (see 
methods). We used a continuous wavelet transform 
approach to estimate LFP at gamma (30-100 Hz), theta (2-
10 Hz), and spiking (300+ Hz, where 434Hz is the upper 
limit of the down sampled LFP) frequencies (see methods). 
We then manually located both polarity reversal in gamma 
and theta power and a sharp drop off in spiking power to 
estimate the position of MCL along the probe (Fig 2). In a 
single shank Neuropixels 2.0 recording that traversed the 
dorsal to ventral length of the OB, we found two striking 
examples, and only two examples, of these coincident 
changes in gamma, theta, and spiking power (Extended Data 
Fig 1), allowing localization of the dorsal and ventral 
intersections of the MCL with the probe. Using this 
approach, LFP characteristics were used to estimate the 
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location of MCL on each shank of the four shank Neuropixels 
2.0 probe.  

After estimating the location of the MCL (Extended Data 
Fig 2), the distance of each row of electrode sites from the 
center of the MCL was calculated. Cell layers were then 
defined based on their position relative to the estimated 
MCL. Across all recordings and shanks for which there were 
LFP characteristics of an MCL, we recorded 100 cells in the 
MCL, 218 cells in the EPL/SFL (external plexiform layer/ 
more superficial layers), and 147 clusters in the IPL/GCL 
(internal plexiform layer/ granule cell layer) (Extended 
Data Fig 3). Representative waveforms (Fig 3b-i) show cells 
with high amplitude waveforms in the principal cell layers. 
Waveform amplitude distributions were overlapping 
between areas (Fig 3j), but mean amplitude was highest in 

the MCL (m = 297.00 µv, std = 145.15 µv). It was 
significantly higher than the mean waveform amplitude of 
cells in the EPL/SFL (m = 231.48 µv, std = 114.42 µv) (Z = 
4.03, p < 0.001, d = 0.53) and in the IPL/GCL (m = 126.24 µv, 
std = 77.56 µv) (z = 10.05, p<0.001, d=1.55). Importantly, 
mean waveform amplitude in the IPL/GPL was significantly 
lower as compared to either other area (Table 2). Therefore, 
waveform amplitude is highest in the MCL, second highest 
in the EPL/SFL, and lowest in the GCL.  This alignment also 
reflects the fact that mean soma sizes for each area also 
decrease in size in a similar manner. MC somas are on 
average larger than most tufted cell (TC) subtypes in the 
EPL/SFL (Nagayama et al., 2010), and average GCs soma 
size is the smallest mean soma size across OB layers 
(Nagayama et al., 2014).  

Figure 1: Experimental setup for acquisition of high-desnity electrophysiological recordings using Neuropixels 2.0 electrode arrays in the 
OB. (A) The wind tunnel in which plumes released by an upwind odor source (left) are pulled past the mouse (middle) by a rear exhaust vacuum. (B). 
Neural population activity in the dorsal olfactory bulb was recorded using 4 shank, Neuropixels 2.0 probes. Odor concentration was recorded using a 
modified, passive ethanol sensor placed ~4mm from the edge of the nostril closest to the sensor. (C) Plumes of high concentration (brown) and low 
concentration (yellow) were presented (see methods). The average concentration between low flow (high concentration) and high flow (low concen-
tration) trials is significantly different for each session. (D) Plume dynamics were stochastic resulting in unique odor concentration dynamics for each 
trial. Odor concentration is plotted for all high concentration (low flow) trials in a single session aligned to the onset of the first whiff of each plume 
(red). (E) Example responses from two cells across high concentration trials are plotted beneath. Raster plots (top) and PSTHs (bottom) aligned to 
plume onset (dashed red line) exhibit different responses between the two cells to both the plume and the offset of the plume (~10 s). (F-G) Same as 
(d-e) but for low concentration (high flow) trials. 
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After defining layers, the spiking rates of sorted units 
were compare between layers. Spiking rates dropped 
moving away from MCL and deeper into the IPL/GCL, but 
spiking rates did not change to the same degree when 
moving in the direction of the superficial layers. The mean 
spiking frequency of all sorted units in the MCL (m = 16.73 
Hz, std = 9.05) and in the EPL/SFL (m = 14.03 Hz, std 
=10.13) were significantly different from clusters in the 
IPL/GCL (m = 5.14 Hz, std = 7.33) as determined by rank-
sum tests (Z = 9.69, p < 0.001, d = 1.45 and Z = 9.30, p < 
0.001, d = 0.98 respectively). The MCL and EPL/IPL firing 
rates were significantly higher, but the effect size was small 
(Z = 2.60, p = 0.02, d = 0.27). Therefore, we found spiking 

rates as calculated across the entire recording session to be 
highest in the MCL and slightly lower in EPL/SFL. 

It is to be noted that clusters found in the IPL/GCL are 
not multi-unit activity clusters, but rather seem to be good 
units from the IPL/GCL that exhibited physiologically 
feasible waveforms and refractory periods (Extended Data 
Fig 3). Despite this, they were not included in the analysis. 
In fact, it is likely that some clusters with high amplitude 
near the deep edge of the MCL (Fig 3j-k) are MCs mislabeled 
due to imperfect alignment or are cells with somas located 
in the IPL or superficial GCL such as deep short axon cells. 
Despite this, given the difficulty of differentiating between 
axonal activity and interneurons when sorting low 
amplitude waveforms from in vivo extracellular recordings 
(Barry, 2015), we refer to IPL/GCL units as clusters instead 
of cells and do not include them in further analysis.  

MCs and EPL/SFL cells show large- scale temporal 
response features  

Despite unique trial to trial plume dynamics, responses 
averaged across trials within high and low concentration 
conditions showed a variety of response profiles to the 
larger temporal structure of the plume (Fig 4). Smoothed 
kernel density functions (KDFs) calculated in the style of 
Bolding and Franks (2017) were used to visualize cell 
response profiles, the cell firing rates across trials (Bolding 
& Franks, 2017). Some cells’ responses showed bursts of 
transient activity, while other cells exhibited longer and 
drifting responses across the plume (Fig 4b-c). The most 
dominant measurable features of trial-averaged responses 
seemed to be driven by macro-level temporal features of the 
plume, namely onset and offset. Onset responses and offset 
responses are defined as a significant change in binned 
spike counts relative to baseline firing rates using a Mann-
Whitney U-test. Plume onset and offset were both manually 
scored. Plume onset was defined as the first 500 ms after 
the first whiff of the plume, and plume offset as defined as 
the first 500 ms after the last whiff of the plume ends. For 
offset responses, this means that a response that returns to 
baseline at offset will be considered non-significant, but 
responses that rebound after the plume and responses 
during the plume that do not terminate their responses at 
plume offset will both be considered offset responses. Thus, 
offset responses may signal the exact timing of odor offset 
by rebounding or may maintain a neural representation of 
the odor after offset by sustaining. Across all trials, we found 
13.5% of cells showed onset responses and 7.6% of cells 
showed offset responses. Using a Wilcoxon signed-rank test, 
we found that the number of cells exhibiting plume onset 
and offset responses did not differ significantly across 
sessions (p>0.05). 

When comparing responses across concentration 
conditions, we found that responses were elicited more 
often in high concentration trials (onset 13.2%, offset 
12.9%) than low concentration trials (onset 6.6%, offset 
4.1%). The level of observed offset responses in low 

Figure 2: Local field potential at theta, gamma, and spiking 
frequencies was used to estimate the position of the MCL along 
recording arrays. (A) Theta LFP (2-10 Hz) amplitude plotted across 
500 ms from recording sites across 1 of the probe’s 4 shanks from a 
single recording session of the ventral OB. Theta LFP, extracted using 
CWT based method, exhibits polarity reversal in the vicinity of the 
estimated MCL (red dashed line). Recording sites below the MCL are 
more superficial sites located closer to the ventral surface of the OB. (B) 
Plot of average theta power across 5 seconds of spontaneous activity 
for each recording site. (C-D) Same as (a-b) but for gamma frequency 
band amplitude (30-100 Hz) showing a drop in gamma amplitude near 
the MCL and, in this case, a reversal of amplitude polarity on either side 
of the MCL. (E-F) Same but for spiking frequencies (300+ Hz) showing 
most of the spiking amplitude decreases rapidly when moving away 
from the MCL towards the IPL/GCL (recording sites plotted above the 
MCL).  
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concentration trials  (4.1%) suggests that plume offset 
responses are not significantly elicited by the lower 
concentration plumes as the number of responses observed 
did not exceed the expected level of Type I error (p<0.05 
threshold). 

Previous research on sustained responses has not 
differentiated between MCs and TCs, and our data suggest 
that despite similar responsivity levels, EPL/SFL cells may 
be less likely to show sustained responses and more likely 
to show rebound responses than MCs (Extended Data Fig 4 
c-d). A cell response that sustains should show correlated 
activity between the end of the plume and after plume 
offset. Correlations between time windows (500 ms) across 
cell responses show differences between the two cell 
groups in how related offset responses are to end of plume 
cell responses (Fig 4d-e). When correlations are measured 
during high concentration trials that exhibit offset 
responses, correlation coefficients between the end of 
plume time bins and plume offset time bins are significantly 
different (Figure d-e, blue boxes). To quantify these 
differences between offset responses in EPL/SFLs and MCs, 
we calculated correlations using only EPL/SFL cells and 
MCs with significant offset responses as compared to 
baseline (Extended Data Fig 4). Correlation coefficients 
between the windows of spiking activity in the first two 
seconds after offset and windows from the last 2 seconds 
prior to offset were highly correlated for MCs  (µ=.90, 
std=0.07). They were also significantly more correlated 
than they are for EPL/SFL cells (µ=.67, std=0.1) as 
determined by a Wilcoxon rank sum test (p<0.001, 

z=4.3908). Higher similarity between plume end and offset 
responses for MC cells suggests MC cells are more likely to 
sustain responses at plume offset and less likely to show 
rebound responses that EPL/SFL cells. 

Plume Responsivity 

We measured responsivity to plume presentations at the 
cellular level using the ZETA-test (Fig 5, (Montijn et al., 
2021)). As the stimulus dynamic did not repeat across trials, 
there is no reason to assume cell dynamics would repeat. 
With fewer a priori assumptions for alignment and 
averaging, choosing a meaningful z-score threshold and 
meaningful time bins across the 10 second plume becomes 
a more difficult problem. ZETA analysis exhibits increased 
sensitivity in the detection of significant responses without 
the need for optimizing parameters such as timescales for 
binning spike counts or for averaging when compared to 
other standard mean driven analyses. ZETA analysis can be 
conceptualized as a K–S test with a bootstrapped null 
confidence interval which allows one to determine if an 
observed cumulative distribution function (CDF) of a cell’s 
response significantly diverges from linearity (the CDF of a 
constant baseline firing rate is linear). Thus, if the spike 
times diverges enough from linearity, a cell can be classified 
as having a significant response. Therefore, we used the  

Figure 3: Physiological features of 
cells relative to the estimated MCL. (A) 
A schematic showing the location of MCL 
cells (red squares) and EPL/SFL cells 
(blue squares) across the recording sites 
of one example electrode array from a 
ventral OB recording. The edges of the 
estimated MCL are indicated by black 
lines. (B) (top) For a single EPL/SFL 
example cell, the mean waveform (black 
line) across 9 rows of recording sites (18 
sites total) is plotted over 50 randomly 
selected individual waveforms (blue). The 
number above the plot indicates the cell’s 
location in (a). (bottom) The auto-
correlogram of the cell is plotted (±50 ms) 
showing the cell displays a refractory 
period. (C-E) The same is plotted for 
three more EPL/SFL example cells and 
(F-I) four example MCL cells. (J)  A 
scatter plot of each cell’s distance from 
the center of the MCL against its 
waveform amplitude from cells across all 
sessions shows amplitude declines 
moving toward the IPL/GCL, as displayed 
by the lower amplitude of IPL/GCL 
clusters (gray) as compared to MCL cells 
(red) and EPL/SFL cells (blue). (K) The 
same relationship can be observed for 
the average spiking rate of cells/clusters 
across the OB layers LFP (2-10 Hz) 
amplitude plotted across 500 ms from 
recording sites across 1 of the 4 probe 
shanks from a single recording session. 
Theta LFP, extracted using CWT based 
method, exhibits polarity reversal in the 
vicinity of the estimated MCL (red dashed 
line). 
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ZETA analysis to determine which cells had significant 
responses to naturalistic olfactory plumes.  

To perform this analysis, spike times are translated into 
the spike’s latency from the plume onset time of its 
corresponding trial. The CDF is then calculated from the 
onset relative spike times from all trials. Cells were 
considered to respond significantly to plumes when their 
ZETA score indicated spiking activity significantly deviated 
from a linear baseline (see methods). Cells were considered 
to have a significant response only if, in addition to their 
significant ZETA value, the timing of either the positive or 
negative linear deflection maximum (ZETA score) occurred 
during the plume period (defined as lasting from plume 
onset until 1 second after plume offset, 0-11s). Therefore, 
cells with significant ZETA scores in the pre-plume(-5-0s) 
or post offset period (12-15s) were not considered 
responsive.  

In the MCL, 41% (41/100) of cells significantly 
responded to plumes and in the EPL/SFL 43.12% (94/218) 
of cells significantly responded (Fig 5g). MCs and EPL/SFL 
cells show similar responsivity to plumes as neither the 
ZETA score magnitude (Fig 5h) nor the proportion of 
significantly responsive cells (Fig 5i) differed significantly 
when compared across all trials, across only high 
concentration trials, or across only low concentrations with 
sessions (Wilcoxon signed-rank tests p>0.05 for all 

comparisons). Thus, MCs and EPL/SFL cells showed similar 
plume responsivity. 

The majority of OB cells do not resolve odor concentration 
dynamics with high fidelity 

Responsivity levels, as measured by ZETA analysis, do not 
account for stimulus properties aside from the timing of the 
plume onset, which is used to define their latency-defined 
spike times. Therefore, responsivity scores do not address 
whether cells follow odor concentration changes across 
time. To address this question, correlation analysis was 
used to quantify how well individual cells resolve plume 
dynamics (Fig 6a-b).  For each cell, the correlation between 
a cell’s spike rate and the odor concentration across the 
plume were calculated for each trial (see methods). 
Correlation coefficients were then averaged across all trials, 
across only high concentration trials, and across only low 
concentration trials. For each cell, coefficients were 
compared to their respective 95% null confidence interval 
from a trial shuffled bootstrap analysis to determine if the 
correlation was significant. Across all cells, 105/318 cells 
had above chance level correlations with odor 
concentration on all trials (µ=0.06, std=0.03), 119/318 on 
high concentration trials (µ=0.09, std=0.04), and 32/318 on 
low concentration trials (µ=0.07, std=0. 03). Correlations 
were weak: only a minority of cells had coefficients of 

Figure 4: Cells exhibit different large-scale 
temporal response features to plume 
presentations such as characteristic onset 
and offset responses. (A) Odor across all trials 
is aligned to plume onset and the average odor 
concentration for each timepoint within low and 
high concentration trials is plotted (mn +/- 1std) 
showing the relative difference between low and 
high concentration. (B) The trial averaged firing 
rate of example cells are plotted (mn +/- 1std) 
showing that despite each trial having unique 
concentration dynamics, response features 
emerge on larger timescales that differ between 
cells. (C) The trial averaged responses are 
plotted as the change in firing rate from baseline 
(-2s to -1.5s) within high concentration trials 
(top) and within low concentration trials 
(bottom). (Color axis is cropped to 10Hz ensure 
cells with smaller firing rate changes can be 
visualized in the plot.) Cells are sorted by plume 
onset (‘on’, 0-500 ms) within EPL/SFL cells 
(indicated by left side blue bar) and within MCs 
(red bar). (D) The response of EPL/SFL cells 
(top) compared across time are plotted for high 
concentration trials to see how responses 
evolve across plume presentations. The trial-
averaged firing rate for each cell is calculated for 
each 500 ms, resulting a single array with each 
cell’s mean rate for every time window. Cell 
activity is correlated across plumes for EPL/SFL 
cells and notably decorrelated from baseline 
responses. Significant correlations between 
time bins are indicated in the upper triangle with 
asterisks (p<0.05). Correlation coefficients 
showing the relationship between the end of 
plume response and offset response are noted 
for both cell types on high concentration trials 
(blue boxes). (E) Same as (d) but for MCs. MCs 
showed high correlations between their activity 
at the end of the plume and their activity after 
plume offset when odor is no longer present. 
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magnitude greater than  0.1 (Fig 6b). The number of cells 
with coefficients above 0.1 magnitude was 8/105 cells 
across all trials, 31/119 cells across high concentration 
trials, and 2/32 cells across low concentration trials. 
Neither the proportion of significantly correlated neurons 
(Fisher’s exact test, p>0.05) nor the magnitude of those 
correlations differed between MCs and EPL/SFL cells 
(Wilcoxon signed-rank test, p>0.05). This suggests that 
despite having decreased sensitivity to odor concentration 
(Burton & Urban, 2014) and less direct input from OSNs 
relative to TCs (Gire et al.,  2012; Gire & Schoppa, 2009; 
Najac, de Saint Jan, et al., 2011), MCs exhibited comparable 
ability to follow odor concentration dynamics across a 
plume.  

Although a subset of cells weakly tracked 
continuous concentration changes, cells may still encode 
odor presence versus absence with relatively higher 
fidelity. It is possible that cell responses that do not closely 
align with concentration may still respond differently 
during odor whiffs than during odorless periods. To 
examine this at the individual cellular level using 
correlation analysis, odor was thresholded into odor on and 
odor off periods (see methods, Fig 6c) and correlation 
coefficients were calculated between neural firing rates and 
the binarized odor signal across the plume (Extended Data 
Fig 5). The distribution of correlation coefficients for cells 
when calculated using the binary odor signal was not 
qualitatively different from coefficients calculated using the 
full odor concentration dynamics. Therefore, at the 
individual level, cells do track odor presence versus absence 
with high-fidelity in a concentration invariant manner. This 

indicates that, in general, individual cells may not respond 
as consistently to whiffs across a plume as they do to 
isolated odor pulses.  

In summary, a portion of the population exhibited 
weak but significant correlations with plume dynamics, 
suggesting many cells in the OB respond to odor during 
plume presentations but do not reliably follow 
concentration fluctuations across plumes at the individual 
level. 

OB populations discern whiffs and blanks across the 
duration of a plume at the population level 

Despite this lack of high-fidelity tracking of plume 
dynamics at the cellular level, we next tested whether cells 
resolved odor at the population level and found whiffs and 
blanks could be accurately discerned across the plume 
using a nonlinear decoding method. To test whether 
population activity was significantly different during 
periods with versus without odor, Support Vector Machine 
(SVM) binary classifiers were used to measure the accuracy 
with which these periods could be decoded from OB 
population activity. Linear decoding performed above 
chance level for some, but not the majority, of sessions 
(Extended Data Fig 6 a), but even those where linear 
decoding was above chance level, decoding was much more 
robust using a nonlinear kernel (Extended Data Fig 6 b-f). 
Odor concentration time series were binarized (Fig 6 c) and 
MCs and EPL/SFL cells together were trained to classify 
timepoints as either odor on (above threshold) or odor off 
(below threshold). To determine chance level decoding, 
decoding accuracy was compared to a shuffled 95% 
confidence interval.  

Figure 5: Significant responsivity to 
plume presentations as measured 
by ZETA analysis. (A) Odor 
concentration aligned to plume onset 
is plotted for all high concentration 
trials (left) and all low concentration 
trials (right). Onset (0s) and estimated 
offset (10s after onset) are indicated 
dashed white lines. (B) Raster plots 
and (C) PSTHs are plotted for a single 
example cell exhibiting a reliable, 
robust, and sustained response across 
high and low concentration trials and 
its response profile represents a small 
minority of the dataset. (D-F) The 
same is plotted for a cell that exhibits a 
response profile of lower magnitude 
and which is more representative of 
the majority of responsive cells in the 
dataset. (G) ZETA values are plotted 
for all MCs (red) and EPL/SFLs (blue) 
as calculated across all trials (left), 
within high concentration trials 
(middle), or within low concentration 
trials (right). (H) The distribution of 
ZETA scores is plotted for significantly 
responding cells as calculated within 
each condition and distributions do not 
significantly differ across conditions. (I) 
The plotted proportion of significantly 
responding cells for each condition 
shows responsivity does not 
significantly differ between cell types 
within any concentration condition. 
Higher concentration trials elicit more 
cell responses from the population. 
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The majority of classifiers discerned whiff and blank 
timepoints significantly above chance level (Fig 6d-e), with 
334/360 time bins across sessions having mean decoding 
accuracy exceeding a shuffled confidence interval 

(Extended Data Fig 6, see methods). Accuracy was high 
(µ=89.73%±7.48% std), with performance exceeding 
chance level by ~30% on average across sessions 
(µ=29.85%±10.99% std). Many cells exhibit drift or a wane 

Figure 6: Despite weak correlation between individual cell responses and odor concentration dynamics, populations decode odor 
concentration with high accuracy. (A) The cross-correlation between the odor concentration and each cell’s spiking rate is calculated within each 
trial and then averaged across trials. Each row depicts the mean correlation coefficient between the cell’s spiking rate and the odor concentration 
for each indicated lag ±1 s. Cells are sorted in order of decreasing magnitude of the max mean correlation coefficient within 0-500 ms lag of neural 
activity following odor concentration. (B) The mean correlation coefficients of all cells are plotted against their respective bootstrapped 95% 
confidence interval for all trials (top), for high concentration trials only (middle), and for low concentration trials only (bottom) and 30.2%, 37.4% and 
10.1% (respectively) of cells were weakly but significantly correlated. (C) A binarized odor signal was used to test decoding accuracy of OB spiking 
activity at the population level to discern whiffs (above threshold) and blanks (below threshold). A single example trial is plotted showing the odor 
concentration of the plume binarized as blanks (black) or whiffs (magenta). (D) Predicted labels are plotted over the odor concentration of timepoints 
from an example classifier from a middle of the plume time window (5s -5.25 s). Nonlabelled samples were used as training data. (E) The mean 
decoding accuracy for radial kernel SVM classifiers run across the 40 time bins (250 ms binned windows from onset to offset) from each session 
show the majority of cell populations decode odor presence at above-chance level accuracy (black) across the duration of the plume. Grey points 
indicate time windows for which the mean classifier accuracy did not exceed the mean accuracy its respective shuffled confidence interval. (F) The 
mean Type I and Type II error rate is plotted for each classifier suggesting that classifiers tend to bias the errors towards misses and are more likely 
to incorrectly label a whiff as a blank than vice versa. (G) The mean decoding accuracy of radial kernel SVM classifiers across the entire plume are 
plotted for the MCL (red) and EPL/SFL (blue) populations for sessions and calculated across increasing sample sizes within each cell type. MCL 
populations exhibit sharper accuracy increases per added cell than EPL/SFL populations compared within session. (H) To directly compare changes 
of decoding accuracy of the two cells type within sessions using matched sample sizes, the mean accuracy of MC and EPL/SFL populations are 
plotted against each other for increasing samples sizes. The first dark blue circle indicates the smallest sample size of 2 neurons for sessions and 
each shade closer to red indicates an increase in the population size by 1 neuron. (For each sessions, the largest matched sample size is constrained 
by the minimum number of cells across the two types). (I) The mean gained accuracy for each added MC and each added EPL/SFL is calculated 
across all sessions (calculated from the derivative of mean accuracy curves plotted in (h)). On average the addition of a single MC to a population 
added significantly more explanatory power than the addition of an EPL/SFL cell as exhibited by the majority of points falling below the diagonal 
line. 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 1, 2024. ; https://doi.org/10.1101/2024.03.01.582978doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.01.582978
http://creativecommons.org/licenses/by-nd/4.0/


Mitral and tufted output encode temporal features of natural odor environments on longer timescales 

Lewis et al. 2023 (preprint)   9 

in their mean response between plume onset and offset (Fig 
4b-c), therefore, decoding accuracy was measured for each 
250 ms window from plume onset (0s) to plume offset 
(10s). Despite changes in mean cell responses as a function 
of plume duration, population level decoding accuracy did 
not decrease as a function of plume duration and stayed 
robustly above change detection across the plume 
(Extended Data Fig 6). In general, classifiers were more 
likely to make Type II error (Fig 6 f), meaning that whiffs 
were more likely to be classified as blanks than vice versa. 
The same was error bias was found for linear classifiers 
(Extended Data Fig 6c). Our results suggest that although 
individual cells do not track concentration well, odor 
presence, whiffs, versus absence, blanks, could be decoded 
accurately from the population activity. 

To determine the relative contribution of MCs and 
EPL/SFL cells to decoding accuracy, accuracy was assessed 
within cell type across populations of increasing cell count 
(Fig 6g). This determined how decoding changed as a 
function of cell count within each of the two groups (see 
methods). To quantify the average contribution of each 
added cell to the population decoding accuracy, we took the 
average change in mean performance with each increase in 
population size for both cell types. The mean rate of 
accuracy increase per cell was larger for MCs as compared 
to EPL/SFL cells as measured by a K-S test (D=0.45, 
p<0.001). MC populations were typically smaller than 
EFL/SFL populations for recording sessions. The addition of 
a cell to a small population will likely yield a higher increase 
in performance than the addition of a cell to a larger 
population. To ensure that the smaller size of MCL 
populations did not drive the observed results of MCs 
having higher mean contributions to decoding accuracy, an 
additional analysis was performed where EPL/SFL curves 
were truncated at the same size as their corresponding MCL 
population within each session. For the matched sample 
sizes, the additional accruacy with each MC was plotted 
against the additional accruacy for each added EPL/SFL cell 
for each sessions (Fig 6 h). The average change in mean 
performance with each added MC was plotted against the 
change in performance for each added EPL/SFL cell for the 
matched sample sizes (Figure 6 i). Results were 
qualitatively similar, showing that the addition of a single 
MC increases decoding accuracy more than the addition of 
a single EPL/SFLs when CDFs were compared using a 2-
sample KS test (D=0.32,  p<0.001).  

As the decoded odor is binary and the threshold is set to 
discriminate when odor is present or absent during the 
plume, these results do not speak to differences in overall 
excitability between OB cells types. Tufted cells show higher 
excitability at lower concentration ranges (Burton & Urban, 
2014; Chae et al., 2020). Our results speak to a possible 
difference between OB cells in tracking odor presence 
across intermittent plumes. Individual MCs may be more 
informative than individual EPL/SFL cells in discerning 
whiffs and blanks across plumes. It is clear though, that both 
cell types distinguish odor presence (whiffs) from odor 
absence (blanks), and properties of whiffs and blanks are 
tools that can be used to estimate odor source location 
(Pannunzi & Nowotny, 2019; Park et al., 2016; Rigolli et al., 
2022; Yee et al., 1995). 

Discussion 
Summary 

Using Neuropixels 2.0 probes to collect large-scale OB 
population activity and a modified odor sensor to assess 
real time plume dynamics, we have shown how natural 
plumes are encoded in the olfactory system of awake mice, 
examining both the cellular and population levels. Our work 
is the first to record plume dynamics at the nose while 
simultaneously capturing OB activity using high-density 
electrophysiology. In summary, cells respond to key 
temporal features of plumes, including plume onset, plume 
offset, and whiff-and-blank structure. 

Our findings suggest individual cells signal when 
animals enter and exit plumes as they navigate their 
environment, but only weakly follow fine fluctuations in 
odor concentration. Despite an observed lack of high-
fidelity tracking at the cellular level, SVM decoders 
demonstrated that cell populations accurately distinguish 
whiffs from blanks throughout the entire plume duration. 
Together, these findings at the cellular and population level 
support the idea that as a mouse navigates a plume, OB 
output relays macrolevel temporal plume features to higher 
olfactory cortex. 

 

Broadly encoded, large-scale temporal plume dynamics 
may support switching between behavioral motifs during 
olfactory search 

Salient events, such as entering or exiting a plume, are 
foundational aspects of odor searches capable of triggering 
behavioral changes in navigating animals (Vickers, 2000). 
Our data indicate that while we did not observe fine-scale 
temporal tracking, large-scale temporal features are 
prominent in the OB activity elicited by plumes (Figs 4,5 and 
6). It is known that MTCs show odor on and off responses to 
square odor pulses, but we did not observe individual cells 
with reliable odor off and on responses across a plume, as 
individual cells were only weakly correlated with odor 
across plumes. Instead, we found that plume onset and 
offset are globally encoded across the OB. Around 1 in every 
10 cells had significant onset responses across all plume 
trials, and 1 in every 10 cells show offset responses when 
odor concentration is sufficiently high. This suggests that 
the OB broadly encodes the moment when an animal enters 
and exits a plume at the level of individual cells. 

While mouse behavioral motifs during odor tracking are 
not as well characterized as those of invertebrates such as 
moths (Vickers, 2000), these global signals predict that 
similar behavioral switching could occur in mice upon 
plume entrance and exit during odor tracking. This idea that 
plume dynamics could cue switches in search behavior 
motifs is in good accordance with recent computational 
work investigating behavioral switching during simulated 
airborne-odor tracking (Rigolli, Reddy, et al., 2022) and 
recent work showing changes in behavior result from 
plume encounters (Tariq et al., 2023) 

Onset and offset responses were elicited by high 
concentration plume trials, but not low concentration trials. 
The increase in onset responses during high concentration 
trials is consistent with the idea that higher concentrations 
recruit stronger glomerular responses. The increase is 
offset responses for high concentration conditions is 
consistent with previous research that MTC responses 
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which persist after odor offset grow stronger as odor 
concentration increases (Patterson et al., 2013). As odor 
concentration increases with proximity to an odor source 
(Webster & Weissburg, 2001), our data suggests that plume 
onset and offset responses increase as an animal nears odor 
sources. Mice are more likely to switch to odor-guided 
search as they grow nearer to odor sources, and less likely 
to rely solely on other means of navigation such as memory 
or visual cues (Jackson et al., 2020). Increased OB activity 
regarding odor onset and offset near odor sources could be 
one of the tools that facilitates this behavioral switch.  

It should be noted that odor offset responses also 
increase with the length of an odor stimulus (Patterson et 
al., 2013). In our study, concentration and intermittency 
(here defined as the proportion of time odor is above 
threshold) cannot be disentangled. High concentration 
trials were created using lower windspeeds. Lower 
windspeeds increase intermittency. Therefore, high 
concentration plumes also had higher intermittency, and 
odor was above threshold more often in these trials. Future 
research quantifying how concentration and intermittency 
each moderate plume offset responses is needed. This 
would inform when plume offset responses are strongest,  
and, in turn, how they may be used by olfactory navigators. 

Odor offset responses of MTCs have been previously 
documented in two ways. The first and more commonly 
reported odor offset response is that some MTCs exhibit 
rebound responses (Balu & Strowbridge, 2007; Cavarretta 
et al., 2018). We observed these classic rebound responses 
at plume offset (Fig 4b). A second and less well documented 
odor off response is sustained odor responses, referred to 
previously as olfactory ‘after-images’ (Patterson et al., 
2013). These rebound responses are defined as sustained 
odor responses after odor is no longer present. We also 
observed sustained responses that continued in the same 
direction of the original odor elicited response, whether 
excitatory or inhibitory.  

Plume offset responses observed were not all transient 
neural events, similar to previously reported. Longer odor 
offset responses to constant odor pulses have been 
observed (Patterson et al., 2013), and we found, that in 
addition to transient plume offset responses, some 
sustained offset responses were also observed. For 
EPL/SFLs and MCs with significant offset responses, we 
found significant correlations between end of plume 
responses and offset responses that extend for seconds 
after plume offset. This suggests plume offset responses are 
on a timescale consistent with short-term memory. 
Previous research has found that MTCs have odor offset 
responses after odor pulses. These responses can be used to 
decode odor identity and they scale with odor 
concentration (Patterson et al., 2013). The accuracy of odor 
representations diminishes over time following the odor 
pulse offset. This means that the OB may maintain 
representations of targets odor as animals navigate plumes 
even while navigating through blanks within a plume when 
odor is not detected. Additionally, this representation may 
wane as the time since the last whiff encounter lengthens. If 
so, waned plume offset responses could indicate that it has 
been too long since the last whiff was encountered, and a 
switch in behavior or search strategy is necessary. From a 

navigating mouse’s perspective, a period without odor 
could mean the animal is experiencing a blank within a 
plume or could mean the animal has exited the plume and is 
out of the range of further whiffs. The longer the blank, the 
more likely the second scenario becomes and the more 
likely a change in search behavior is needed, such as an 
aggressive turn back towards the lost plume. It is possible 
the number of cells still exhibiting sustained responses and 
the strength of those sustained responses may help discern 
the difference between a blank within a plume and an out of 
range positioning. Previous odor offset research did not 
specify between MCs and TCs, and our findings show that 
the sustained relationship of these offset responses was 
stronger for MCs. Thus, MCs may play a special role in 
maintaining target odor representations even when a 
mouse loses the air-borne odor trail. 

Sustained and rebounding offset responses may also 
work together to provide important cues for tracking 
behavior. Rebound responses could signal the exact timing 
of when the last whiff encounter ended, and sustained 
responses, as mentioned, may help keep a neural correlate 
for time since the last whiff encounter in the OB. Hence, 
these two types of offset responses may both signify the 
disappearance of the target odor while retaining a form of 
short-term memory of the target odor as mice navigate 
plume-guided searches. This suggests that offset responses 
may play an informative role in tracking plume edges as 
mice navigate closer to the odor source and the plume cone 
narrows. 

The OB encodes whiffs and blanks across plumes 

In turbulent plumes, “whiffs”, or periods of odor contact 
are interspersed with “blanks”, or time in which animals do 
not encounter odor (Celani et al., 2014; Riffell et al., 2008). 
Blank and whiff duration is known to vary with distance 
from an odor source (Celani et al., 2014; Murlis et al., 1992; 
Young et al., 2020). As one traverses downwind away from 
the source, whiffs begin to spread apart (Murlis et al., 1992) 
and each whiff expands (Young et al., 2020) resulting in a 
more diluted plume. Put another way, both blank and whiff 
duration increase, and there is a relationship between blank 
and whiff duration and distance from the odor source. Thus, 
the temporal structure of these encounters is a useful signal 
for source localization (Vickers, 2000). 

We show that whiffs and blanks are reliably decoded 
across populations of MTCs, even when the firing of 
individual cells demonstrate weak correlations with the 
odor plume (Fig 6). Interestingly, our data suggests MCs and 
EPL/SFL cells may differ in the amount of information they 
carry regarding the presence of odor during a plume, with 
individual MCs carrying more information than individual 
EPL/SFL cells (Fig 6f). Since these cell types target different 
arrays of downstream structures (Igarashi et al., 2012), 
with TCs restricted to anterior piriform cortex (APC) and 
MCs projecting to a diverse collection of cortical and 
subcortical areas, including across the piriform cortex (PIR) 
and to the lateral entorhinal cortex (LEC), the difference in 
plume information content per cell has functional 
implications. As results are predominantly driven by a 
subgroup of sessions, future studies exploring the degree to 
which these cell types differ in the ability to resolve odor 
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across plumes and its implication for downstream targets 
would be useful. 

A possible role for piriform cortex in odor-guided 
navigation 

Convergence of multiple MTCs onto individual 
pyramidal cells in the anterior olfactory nucleus (AON) 
(Brunjes et al., 2005) and the PIR (Franks et al., 2011) could 
broadly convey whiffs and blanks to downstream targets. 
The rate of convergence of MTCs onto AON pyramidal cells 
have yet to be quantified, but the rate of convergence in the 
PIR has been estimated to be 200:1. This number is an order 
of magnitude higher than the number of cells we observed 
to be necessary for accurate decoding. Populations of only 
around ~20 MTCs sufficiently discerned whiffs and blanks 
across the plume at above 90% accuracy. Since a radial 
kernel SVM decoder was required to achieve high decoding 
performance, the absence of robust linear decoding 
requires further investigation to determine how 
downstream targets may encode or interpret this signal. If 
PIR cells resolve whiff and blank timing from OB output, this 
opens the possibility that PIR carries a global whiff and 
blank signal for foraging animals.  

It has been well documented that odor concentration, in 
addition to odor identity, can be decoded from PIR (Bolding 
& Franks, 2017; Stettler & Axel, 2009). Recently, a study 
showed how to infer the distance from a distant odor source 
using intensity and timing (including whiff and blank 
duration) dependent measures (Rigolli et al., 2022) and 
assessed the ability of these different cues to accurately 
predict odor source location. An important finding was that 
the combination of intensity and timing cues was more 
effective in predicting odor source location than the use of 
either cue type in isolation. Thus, it is possible that PIR 
integrates timing and intensity cues, which would be 
informative for localizing odor sources. 

Lastly, odor place cells have recently been found in 
posterior PIR (Poo et al., 2022). The possibility of 
integrating odor identity, location, and plume cues (blanks, 
whiffs, and intensity) makes PIR a convincing target for 
future research into the neural mechanisms underlying 
olfactory search. 

Limitations for determining the limits of cellular level 
resolution of concentration dynamics 

In this study, only a few cells were observed that 
exhibited correlation coefficients with comparable 
magnitude of those observed at the glomerular level in 
similar recordings using wide field imaging of glomerular 
activity (Lewis et al., 2021). This observation does not 
exclude the existence of cells that tightly track odor 
concentration, but correlations at the glomerular level 
observed using wide-field imaging techniques were greater 
than those observed at the cellular level using 
electrophysiological techniques.  

It is possible that, aside from a more minor 
population of high performers, the majority of individual OB 
cells carry limited or nonlinear information regarding odor 
concentration changes or that OB cells respond to latent 
features of a plume that are yet to be tested. 

One interpretation of these differences in tracking is that 
collective activity within a glomerulus is able to resolve 

concentration dynamics better than individual cells. This 
suggests that the average fluorescence of MTCs within a 
glomerulus has a stronger correlation with concentration 
dynamics compared to the activity of individual cells. Since 
we do not assign cells to glomeruli in our 
electrophysiological recordings, this question is outside the 
scope of this study as without identified sister cells from the 
same glomerulus we cannot assess the relative tracking 
ability of cells within a glomerulus. Another possible 
interpretation is that the widefield technique of Lewis et al., 
2021 recorded from larger cellular populations across the 
bulbar surface, making it more likely to capture less 
prevalent, but highly responsive, glomeruli and that 
electrophysiological recordings without a targeted 
approach are less likely to capture this activity. Therefore, 
we cannot ascertain whether individual cells exist that track 
concentration to the same degree as observed at the 
glomerular level. However, we do note that our recordings 
did not sample any such cells.  

Additionally, on a more technical note, the odor mixture 
used consisted of 5 odors known to show strong dorsal 
expression, but the majority of our recordings (8 of 10 
sessions) were in ventral OB. Research on ventral 
expression levels of glomeruli is less extensive than that of 
dorsal or lateral OB areas due to the challenges associated 
with imaging ventral brain regions. The majority of our 
recordings were performed in ventral OB, as often spiking 
was not as strong in dorsal areas. This is in line with 
previous findings of stronger spiking in ventral OB 
(Paseltiner et al., 2020). Therefore, there may have been 
less highly responsive glomeruli in the ventral OB, leading 
us to capture fewer highly responsive MTCs. Regardless, 
information regarding large-scale features of the plume was 
still broadly encoded. 

Our findings support the idea that the majority of cells in 
the OB do not resolve plume dynamics to the degree 
observed at the glomerular level, but does not speak to the 
limits of cellular level encoding of plume dynamics. Future 
studies could avoid this limitation by testing an odor panel 
before the session to target highly responsive cells or by 
using widefield imaging to target highly responsive 
glomeruli as the probe insertion site for proceeding 
electrophysiological recordings. Nonetheless, given that the 
number of highly sensitive glomeruli responding to each 
odorant is typically scarce, this study offers valuable 
insights into the responses of other constituent cells to 
natural olfactory scenes. 

Technical considerations of studied natural olfactory 
scenes and future directions  

Plumes are stochastic due to turbulence (Celani et al., 
2014; Riffell et al., 2008). This creates a significant problem 
for administering controlled and repeatable cues for the 
olfactory system.  

In these recordings, we monitored input to the olfactory 
system using passive ethanol sensors. There are two things 
to consider given the accuracy of MOX sensors at measuring 
exact odor concentration levels at the mouse’s nose. First, 
sensors are placed with 4mm of the mouse’s nose and at 
that scale of distance (<5mm) there is some decorrelation 
of odor between any two spots in a plume (Tariq et al., 
2021). Second, MOX sensors are robustly but not perfectly 
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correlated with odor concentration as measured by photo-
ionization detectors. The odor concentration at the mouse’s 
nose is estimated to be strongly correlated (~0.6 Pearson 
correlation), but not perfectly correlated, with the signal 
measured by the sensor (Lewis et al., 2021).  Therefore, the 
correlations and decoding accuracy reported in our findings 
should be considered to provide a lower bound estimate of 
the relationship between odor concentration across a 
plume and OB activity.  

Since odor plumes are stochastic, difficulties exist in 
adapting statistical methods that are usually applied to 
repeated stimuli in the analysis of odor plume features. In 
general, we found that aligning to reproducible plume 
features was difficult, since fluctuations in odor 
concentration during a plume did not recur in the same 
context (due to the stochastic nature of the plumes) across 
multiple presentations. Olfactometers deliver repeatable 
odor stimuli, and recent development of olfactometers 
using high speed solenoid valves (Ackels et al., 2021) 
provides a way to design an odor concentration time series 
that mimics a stochastic plume and present this stimulus in 
a repeated and controlled manner. Changing air dilution 
over time using mass flow controllers to vary concentration, 
while also flickering fast solenoid valves final valves for fast 
transitions between whiffs and blanks, one may be able 
largely recreate the time series of odor concentration from 
a previously recorded plume.  

Using reproducible stimuli with the full complexity of 
natural odor scenes is important. A problem with studying 
plume features exclusively in isolation is that recent 
stimulus history plays an important role in the processing 
of natural scenes. Presenting a stimulus embedded in 
dynamics relevant to natural odor environments is 
important, as it could help disentangle the effects of recent 
stimulus history across plumes. Odor representations are 
moderated by recent stimulus history as they can change 
over prolonged odor presentations or between sniffs even 
when a mouse smells a constant, unchanged stimulus 
(Baker et al., 2019; Fukunaga et al., 2012; Patterson et al., 
2013; Spors & Grinvald, 2002). And varied odor off OB 
responses may moderate future responses depending on 
the size and intensity of recent whiffs within a plume. 
Additionally, neural activity in the OB has been shown to 
directly encode recent stimulus history, as some MTCs 
directly encode direction changes of odor concentration 
(Parabucki et al., 2019). Presenting dynamical features both 
embedded in plumes as well as isolated in dynamic motifs 
could help determine the degree to which encoding in the 
OB changes as a function of the recent history of plume 
dynamics. Just as other sensory systems have been 
documented to have more complicated encoding of stimuli 
in natural scenes than when those same stimuli are 
presented in isolation, it is important to understand how 
olfactory processing rules may change when odor is 
embedded in the complex dynamics of natural odor 
environments. 

 In addition to employing reproducible odor 
dynamics, an alternative approach involves harnessing 
optogenetics to stimulate cells in a time course that aligns 
with various aspects of plume dynamics. Temporally 
patterned optogenetic stimulus of the OSN terminals and 

simultaneous electrophysiology recordings of OB activity 
could help determine MTC responses to plume features in a 
reproducible and temporally precise manner. Although the 
advancement of optogenetic stimulus delivery methods 
(Chong et al., 2020) allows for this approach, the 
morphological complexity of the olfactory turbinates, as 
well as the specifics of receptor binding and signal 
transduction in OSNs are formidable obstacles to optically 
recreating naturalistic plume encounters. Additionally, 
divorcing sensory cues of the plumes from odor processing 
could affect responses. Odors are carried by fluid flow, 
which may create an inextricable link between plumes 
sensed by the olfactory system and local fluid dynamics, as 
sensed by the whiskers (Yu et al., 2016). Despite these 
caveats, optogenetics provide a promising avenue for future 
research of dynamic odor stimulus processing. 

In summary, this work provides a pioneering attempt to 
understand some of the natural processing dynamics of the 
first olfactory relay in response to plume dynamics and 
considerations for future research. 
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Materials and Methods 
Mice 
Experiments were performed on seven B6 mice (one female and six male) 
from the Jackson Laboratory (Strain # 000664) between 14-17 months of 
age. Animals were maintained on a 12-hour reverse light/dark cycle. All 
experimental procedures were approved by the Institutional Animal Care 
and Use Committee at the University of Washington.  

Olfactory Stimuli 
Olfactory stimuli were released in a manner similar to Lewis et al., 

2021 (Lewis et al., 2021). An automated odor port released odor within a 
40cm x 40cm x 80cm acrylic wind tunnel where airspeed was controlled 
by a vacuum at the rear of the wind tunnel, posterior to the animal’s loca-
tion (Fig 1a). Concentration dynamics of olfactory stimuli varied stochasti-
cally from trial to trial creating plumes with unique concentration dynam-
ics on each trial. Plumes were created using the methods as described in 
Lewis et al., 2021, such that odor vapor was released upwind of the animal 
in the wind tunnel, and then a vacuum exhaust at the rear of the wind tun-
nel pulled the odor plume past the animal. To capture a variety of plume 
dynamics, flow was changed between low and high airflow speed in 10 
block trials which resulted in trials with significantly different odor con-
centration levels. The location of the upstream odor port varied between 
either 13.5 cm to 18.5 cm upwind, and either 0 cm or 2 cm off centerline, 
but are not used as a factor in the analysis of neural responses. Each session 
consisted of 60 trials (except two sessions, 22 and 31 trials in duration re-
spectively, were terminated early due to odor sensor acquisition errors). 
In each trial, mice passively experienced a 10-second-long plume presen-
tation of the odorant mixture. 

Ethanol concentration throughout each trial was measured in a similar 
manner to that described in Lewis et al., 2021 by using a modified, com-
mercially available ethanol sensor placed within 3.5-4mm from the 
mouse’s right nostril (Fig 1b). Sensor signal was acquired at 125 Hz. The 
Short-Time Fourier transform of the ethanol sensor recording was taken 
using the Matlab stft() function and slow drift of sensor baseline was re-
moved by setting all low frequency components under 3Hz to 0 before in-
verting the signal back using the Matlab istft() command. For all sessions, 
an odorant mixture of 5 odorants was used to try to increase the number 
of responsive glomeruli and ethanol was used as a tracer for the ethanol 
sensor to capture the odor concentration. The same mixture ratio (0.3% 
ethyl tiglate, 0.3% methyl tiglate, 0.3% allyl butyrate, 0.3% isobutyl propi-
onate, 0.3% ethyl valerate, 92.8% 200 proof ethanol, and 5.7% distilled wa-
ter) was used for 9 of the 10 sessions. For the first session of the 10 sessions 
a mixture with a slightly lower ethanol percentage was used (0.6% ethyl 
tiglate, 0.6% methyl tiglate, 0.6% allyl butyrate, 0.6% isobutyl propionate, 
0.6% ethyl valerate, 85.7% 200 proof ethanol, and 11.3% distilled water), 
but the ethanol was increased for future sessions to optimize the odor con-
centration signal of the ethanol sensor. Odor solutions were stored in odor 
reservoirs (centrifuge tubes) with air-tight, customized tops. Tops had two 
openings connected by tubing. One tube was connected to a Clippard elec-
tric valve (part no. EV-2-12) to create airflow and the other was attached 
to a 3D printed odor port. For each plume presentation, the valve was 
opened to allow airflow into the tube such that odor vapors exited the odor 
reservoir and traveled through cylindrical tubing (1/16” inner diameter) 
to the release point at the odor port. 

Surgery  
The mice underwent two surgeries prior to electrophysiological 

recordings. During the time between surgeries, animals were conditioned 
to the head-fix setup. For the first surgery, a cannula and head plate were 
implanted. After a complete recovery was made from surgery, mice were 
conditioned to the head-fix setup. The second surgery, a craniotomy over a 
dorsal area of the main olfactory bulb, was then performed. For both 
surgeries, mice (n = 7) were anesthetized with isoflurane for surgery.  

During the first surgery, a custom-built cannula was implanted in the 
style of (Findley et al., 2021) over one of the mouse's nostrils, although data 
from cannulas was not used in this study. Next, a customized stainless-steel 
head plate was glued directly on the skull centered near lambda 
coordinates. Metabond was then added to cover all exposed skull. Once the 
animal recovered from this surgery (2-3 days), handling and subsequent 
conditioning to the head-fix setup began. 

Once the animal was conditioned to the head-fix setup (1-2 weeks), the 
second surgery, a craniotomy, was performed where a 1mm x 1.5mm 
rectangle was removed above one of the two olfactory bulbs. First, a dental 
drill was used to remove the Metabond over one bulb. Then, a small well 
was drilled into the Metabond caudal to the bulb to hold more ringer’s 
solution during the grounding (this protected the grounding solution from 
evaporating in the wind tunnel during recordings). A gold-plated socket 

(Newark D Sub contact socket, 66504-9) was attached with super glue into 
the bath space for the grounding pin.  The craniotomy was then performed 
and then Kwik-Cast (Silicone Elastomer) was applied to seal off the 
craniotomy. Afterwards a small wall was built using rings of superglue 
each cured with Zip Kicker (CA accelerator) immediately after application 
to create a pool (Fig 1b) to hold the ground solution. After, a layer of Krazy 
glue was applied to the outside of the wall and cured with the accelerant to 
make sure the pool was leakproof. Last, the pool was gently rinsed multiple 
times with sterile saline solution. 

Electrophysiological Recordings 
Four shank Neuropixels 2.0 electrode arrays were used to record OB 
activity during plume presentations. Probes were mounted on dovetail 
caps (uMp-NP2-CAP) with Metabond. The caps were attached to extension 
rods (uMp-NPR-200) by Neuropixel adapter heads (uMp-NPH). The 
extension rods were held by a four-axis micromanipulator (uMp-4). 
Across the 5,120 possible recording sites, up to 384 can be chosen for 
simultaneous data acquisition. For all recording sessions, the bottom most 
96 sites from each of the four shanks (the bottom 48 rows on each shank) 
were selected. The four shanks span an area of ~750µm wide and ~720µm 
deep, allowing for multiple layers of the OB to be captured simultaneously. 
Probes were inserted into one olfactory bulb such that the four shanks ran 
in a rostral to caudal direction along the sagittal plane of the OB. 
Recordings targeted either the dorsal (3/10) or ventral (7/10) OB. 
Recording sessions favored the ventral OB as stronger spiking activity was 
observed there, as has been previously reported (Paseltiner et al., 2020), 
facilitating stronger signal to noise ratio for isolating units in spike sorting. 
 Recordings were either performed on the same day as the 
craniotomy (n = 8 of 10) or on the day after (n = 2 of 10). For recordings 
performed on the same day, the mouse was anesthetized using isoflurane 
for surgery performed in the morning, and then recordings were 
performed in the afternoon once the mouse had fully recovered. Before the 
recording began, the Kwik-cast was removed and the grounding pool was 
filled with Ringer’s solution. Recording were made using an external 
reference, and for grounding, a gold-plated pin (Newark D Sub contact pin, 
66506-9) soldered to an Ag wire (A-M Systems, No. 787000) was inserted 
into the socket in the grounding bath (see Surgery) with the other end of 
the wire soldered to the probe. The probe was then advanced into the OB 
and allowed to settle for 15-25 minutes prior to the start of the recording. 
For the single shank recording of spontaneously evoked activity used in 
(Extended Data Fig 1), surgery and electrophysiological acquisition are 
done in the style of Steinmetz et al., 2021. Data from the single shank 
recording shows that the findings of LFP and spiking near the estimated 
MCL from four-shank recordings spanning ~750 µm (a distance shorter 
than the dorsal/ventral axis across most of the OB) qualitatively reflects 
activity near the estimated MCLs of a single shank spanning ~1.8mm. This 
recording was done during an odor-less, spontaneously evoked period of 
activity. As this recording did not use the same experimental setup 
described in the methods, spontaneously evoked activity is plotted, but 
data is not included further in any analysis reported in this paper. 

Data Analysis 
Neural recordings were acquired using SpikeGLX 
(https://github.com/billkarsh/SpikeGLX). The data was next 
automatically spike sorted using Kilosort3 
(https://github.com/MouseLand/Kilosort), and then manually curated 
using phy2 (https://github.com/cortex-lab/phy). 
Units with contaminated refractory periods, unstable firing rates across 
the session, or waveforms indicative of multi-unit activity were marked as 
‘Multi-Unit Activity’, and their use is explicitly labeled as such whenever 
discussed in the paper. 
Matlab 2021a was used to analyze data and plot figures. Code by Nick 
Steinmetz from the Spikes repository (Waveform statistics and plotting: 
https://github.com/cortex-lab/spikes) and the npy-matlab repository 
(https://github.com/kwikteam/npy-matlab) were used, as well as code by 
David Tingley from the Buzcode Repository (CCG plots: 
https://github.com/buzsakilab/buzcode). 
reported in this paper. 

Analysis of Frequency Bands Using a Continuous Wavelet Transform 
Based Method 

To estimate power across frequency ranges, we used a continuous wavelet 
transform method (CWT) as described in Cartas-Rosado et al 2020 (Cartas-
Rosado et al., 2020). Amplitude plots and power estimates for each 
frequency band were calculated using neural activity across 5 seconds of 
the inter-trial interval, a time in which no odor or other stimulus was 
presented. The signal was first down sampled from 30 kHz to 1 kHz, and 
then transformed into the time frequency domain using the CWT Matlab 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 1, 2024. ; https://doi.org/10.1101/2024.03.01.582978doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.01.582978
http://creativecommons.org/licenses/by-nd/4.0/


Mitral and tufted output encode temporal features of natural odor environments on longer timescales 

Lewis et al. 2023 (preprint)   17 

function (cwt). The amplitude of these frequency ranges over time were 
extracted using the inverse continuous wavelet transform Matlab function 
(icwt). Frequency ranges extracted were theta (2-10 Hz), gamma (30-100 
Hz), and spiking (300+ Hz) frequency ranges. Due to limits of the down 
sampled data, 434 Hz was the upper limit of the 300+Hz spiking frequency.  
The power for each frequency band was defined as the square of the root 
mean square amplitude values. The activity from an 8 second long clip was 
transformed and inverted, but only the middle 5 seconds of the clip were 
used for the power estimation to ensure all CWT coefficients used were 
located outside the cone of influence, protecting against known edge 
effects of the CWT. 

 Estimation of the Mitral Cell Layer 
The position of the MCL(s) across each shank was estimated by 
eyemanually based on previous findings of LFP changes near the MCL in 
gamma (30-100 Hz) and theta (2-10 Hz) frequency ranges and expected 
changes in the unique spiking activity (measured as 300 +Hz) of granule 
cells (GCs) which dominate the population in deep bulbar cortex (Extended 
Data Fig 1). Thus, the row of recording sites estimated to lie along the MCL 
was manually scored using the 3 parameters of gamma amplitude, spiking 
amplitude, and theta amplitude. Gamma amplitude was the most 
important factor in determining the location of the MCL as dipoles in 
gamma oscillations have previously been used to estimate the location of 
MCL previously in OB recordings without histology (Fourcaud-Trocmé et 
al., 2014). The second most important measure was spiking power, or 
amplitude in frequency ranges that capture cell spiking (300+Hz). As 
cortex located deeper than the MCL is dominated by axon-less GCs, which 
are thought not to spike during spontaneous activity (Cang & Isaacson, 
2003), sharp decreases in spiking power were used. Last, theta power was 
used a corroborating evidence. Theta dipoles are not as strongly associated 
with MCL, but rather expected to reverse between the glomerular layer 
(GL) and the granule cell layer (GCL), which are located to superficial to 
and deeper than the MCL accordingly. Therefore, a nearby theta dipole 
should be reflected as nearby changes in theta power. Thus, coincident 
changes in gamma power, spiking power, and theta power were used to 
estimate the MCL location along each recording shank. 
The strong oscillatory activity of the OB has been shown to exhibit 
observable relationships between OB layers and LFP characteristics, 
particularly in the form of LFP polarity reversals of gamma and theta 
oscillations. Dipoles are a known byproduct of transitions between sources 
and sinks in extracellular recordings. The OB has dipoles that can be 
observed in the LFP at both theta (Hu et al., 2022; Kay, 2015) and gamma 
frequencies (Rall & Shepherd, 1968; Rojas-Líbano & Kay, 2008; Wróbel et 
al., 2020). As gamma and theta frequencies are thought to be generated by 
unique circuitry in the OB (Fukunaga et al., 2014), the sources and sinks 
associated with these oscillations are not interchangeable. In our study, we 
searched for transitions looked for gamma and theta dipoles, as indicated 
by areas of low amplitude in the LFP, to aid in MCL estimation. 
For gamma oscillations, polarity reverses near the MCL, between the EPL 
and the IPL (Rojas-Líbano & Kay, 2008). In previous research, the point of 
gamma polarity reversal in LFP across the depth of the bulb has been used 
to locate the MCL in extracellular LFP recordings without histological 
identification of the MCL (Fourcaud-Trocmé et al., 2014). Gamma, is often 
hypothesized to be a result of reciprocal dendrodendritic interactions 
between mitral and granule cells (Lagier et al., 2004; Rojas-Líbano & Kay, 
2008). In support of this hypothesis, optogenetic silencing of GCs was 
observed to significantly lowers the power of gamma oscillations in the OB, 
despite not significantly altering theta power (Fukunaga et al., 2014). The 
dendrodendritic hypothesis suggests that the excitation of an MC excites 
GCs to which it has dendrodendritic connections. The GCs then inhibit the 
MC in return, as well as other MCs to which they share dendrodendritic 
connections. This creates a negative feedback loop and expands the 
influence of the inhibition to larger MC populations via lateral inhibition. 
Over a window of time, the excitation of MCs combined with the local 
negative feedback loop leads to alternating phases of excitation and 
inhibition periods in the gamma frequency range (Rojas-Líbano & Kay, 
2008). These gamma oscillations create sinks and sources in the 
extracellular LFP that reverse polarity across the MCL (Rojas-Líbano & 
Kay, 2008). When the MCs are excited, there is a net influx of current to 
their dendrites and to dendrites of GCs they have excited, resulting in a sink 
in the LFP superficial to the MCL. In turn, deep dendrites and granule 
somas have a net outflux of current, creating a source in the LFP beneath 
the MCL. Thus, the sinks and sources of gamma oscillations lead to a 
polarity reversal near the MCL. Calculating gamma power across time, the 
area near the center of the reversal will display low amplitude. As the MCL 
should display less gamma power than its surroundings, creating a local 

minimum, transition to low gamma power were predominantly used to 
estimate the position of the MCL across shanks.  
For theta oscillations, polarity reverses across the principal cells, between 
the GL and the GCL (Kay, 2015). Recent in vitro recordings across an entire 
slice of the olfactory bulb, found theta frequency primarily in the GL and 
GCL, corroborating the hypothesis that theta power should be lower in the 
EPL/MCL/IPL area. As the EPL/SFL side of the estimated MCL on each 
shank is only measured within 240 µm of the edge of the MCL, it is likely to 
consist largely of the EPL as opposed to more superficial layers as the EPL 
is around ~200 µm in width (Hamilton et al., 2005). Therefore, although 
changes in theta power are not exclusively positioned within the MCL, 
theta power should decrease moving from the GCL to more superficial 
cortex before increasing again to high theta power in the GL. As theta 
dipoles are not as closely associated with the MCL location as gamma 
dipoles, decreases in gamma power were prioritized and decreases in theta 
power near the MCL was used as supporting evidence. Therefore, 
reductions in gamma power at the MCL and reductions in theta power in 
the vicinity of the MCL were both used as localizers.  
In addition to dipoles, the distinct properties of OB cell populations exhibit 
an observable relationship across OB layers. Central OB layers located 
deeper than the MCL, the internal plexiform layer (IPL) and the GCL, 
consist predominantly of axon-less granule cells (Nagayama et al., 2014). 
As GCs are axon-less cells and rely on reciprocal dendrodendritic 
connections, the spiking activity observed in the GCL is generally dendritic 
spiking which exhibits lower amplitude waveforms in the extracellular LFP 
than axonal spiking (Häusser et al., 2000). Additionally, spiking power was 
evaluated only during spontaneously evoked activity, and the majority of 
GCs are not observed to spike during spontaneously evoked activity (Cang 
& Isaacson, 2003). Therefore, we expect spiking power should drop when 
crossing the MCL into deeper tissue. In fact, in a Neuropixels 2.0 single 
shank recording that spanned the entire dorsal to ventral length of the OB, 
we observed a central, pronounced area of low spiking amplitude 
sandwiched between the dorsal and ventral OB regions. Lower spiking 
power in deep bulbar cortex implies higher spiking power to be observed 
when moving from deeper cortex into the MCL. Therefore, sharp increases 
in spiking power are expected at the transition between IPL/MCL. It should 
be noted that shanks were not aligned to a local maximum in spiking 
power, but rather to a drop off or decline in spiking power that was 
coincident with an increase in gamma power and a nearby change in theta 
power. For example, a maximum in spiking power at the MCL or a plateau 
in power across both the MCL and the more superficial areas would lead to 
the same final alignment. Thus, a sharp increase in spiking power as a 
result of differing cell populations across OB layers provided the second 
important class of evidence for MCL estimation. 
Taken together, coincident transitions to low theta power, low gamma 
power, and high spiking power were used to pinpoint the recording sites 
within the MCL. Once the MCL was estimated, two rows above the MCL and 
two rows below the MCL (±30µm) were labeled as falling within the MCL. 
All recording site rows more superficial than the estimated MCL edge are 
classified as EPL/SFL sites. Those deeper are referred to as IPL/GCL sites. 
If a shank did not have a drop in gamma power coincident with a rise in 
spiking power, the shank was labeled as not crossing the MCL. Data from 
these shanks were not used in the analysis as location within the bulb could 
not be estimated. Also, any sites showing a strong reduction in all power 
frequencies were discarded as this indicates the recording sites are above 
the dorsal surface. 

Observing Post Alignment LFP Power Across the Estimated MCL 
We evaluated the relationship between gamma, theta, and spiking power 
across and between shanks by analyzing the correlation of the three 
measures across recordings sites and by evaluating the mean power 
changes around the MCL as averaged across shanks after alignment. Power 
was normalized between 0-1 for each shank within each frequency band 
so that only relative changes within frequency bands across each shank 
were considered. 
We found reliable relationships between gamma, theta, and spiking power 
across recording sites used for the analysis. Power was estimated for all 
three band for each recording site and sites from all shanks were 
concatenated in order to form an array for each frequency band. Pearson 
correlation was then used to assess the relation between the three 
frequency bands. Mean gamma power was positively correlated with mean 
theta power for each electrode sites (p<0.001, r(1113) = -0.48), confirming 
electrode sites with higher gamma power were more likely to have higher 
theta power as well. Additionally, spiking was significantly inversely 
correlated with both theta (p < 0.001, r(1113) = -0.37) and gamma (p < 
0.001, r(1113) = -0.60), suggesting that transitions to high spiking power 
were more likely to be observed with coincident reductions in gamma and 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 1, 2024. ; https://doi.org/10.1101/2024.03.01.582978doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.01.582978
http://creativecommons.org/licenses/by-nd/4.0/


Mitral and tufted output encode temporal features of natural odor environments on longer timescales 

Lewis et al. 2023 (preprint)   18 

theta power. Thus, there exists a relationship in the way these three 
oscillatory frequencies changes across the depth of recording shanks that 
encourages the idea that reliable coincident features can be determined 
across the 3 frequency bands. 
We also evaluated the average power changes across all shanks around the 
estimated MCLs. To do this, power for each side was calculated using all 
sites within 240µm of either edge of the MCL. For the shanks in which the 
MCL was positioned such that there were less than 240µm of recording 
sites before the edge of the shank, the available sites were to calculate the 
average. If the MCL was at the edge of the probe and no electrode sites were 
available on one side of the MCL, only the sites on the available side were 
included for that shank in the analysis. As a result, samples on either side 
of the MCL across shanks were not strictly paired. Results were visualized 
by plotting normalized theta, gamma, and spiking powers (Extended Data 
Fig 2) for each electrode site against the depth of the site relative to the 
MCL to visualize the resulting relationship of gamma, theta, and spiking 
power after alignment. Theta power shows more variation, consistent with 
polarity reversal of theta being less closely associated with the position of 
the MCL as discussed previously. To quantify coincident transitions to low 
theta power, low gamma power, and high spiking power around the 
estimated MCLs as averaged across all electrode arrays and Wilcoxon rank-
sum test was used to access differences in power after alignment (Table 1).  
Power was also calculated across theta, gamma, and spiking frequencies 
for one single shank recording of spontaneously evoked activity (Extended 
Data Fig 1). A single shank traversing the dorsal/ventral axis will cross the 
MCL twice, and the single shank recording accordingly shows only 2 areas 
on the shank consistent with our assumptions of LPF activity near the MCL. 
These two locations, the resulting MCL estimates, both exhibit increases in 
spiking power and drops in theta and gamma power indicating polarity 
reversals. 
As this study uses no histology and MCL estimates may have some 
variability, we do not assign other layers of the OB other than the MCL. 
Therefore, we do not try to distinguish between cells types outside of the 
MCL. Therefore, cells more superficial to the MCL are referred to as 
external plexiform layer and superficial layer cells (EPL/SFL cells), but do 
not distinguish cell type further to assign putative tufted or external tufted 
cell types. 

Waveform Analysis of Cells 
To calculate the location of cells and their waveform amplitudes, 1000 
waveforms were randomly extracted using the Spikes Repository 
(https://github.com/cortex-lab/spikes) function getWaveForms. The 
mean waveform was then calculated for each recording site. The recording 
site with the largest amplitude change between the minimum and 
maximum amplitude value was used to define the location of the cell or 
cluster across the electrode array. Waveform amplitude was defined as the 
maximum amplitude change across all recording sites. 

Mean Responses 
Unless otherwise specified, mean responses, or response profiles, are 
defined by smoothed kernel density functions in the style of Bolding and 
Franks 2017, and responses were aligned to plume onset. KDFs were 
smoothed with a guassian kernel with a 100 ms standard deviation 
(Bolding & Franks, 2017). KDFs were first normalized using the mean and 
standard deviation across the entire KDFs, and then were baseline 
normalized using the mean and standard deviation across all timepoints 
from -4.5s to -1s relative to plume onset. KDFs plotted in the paper are all 
calculated aligned to plume onset. Plume onset was manually scored as the 
beginning of the first whiff of each plume.  
For the calculation of ‘offset’ responses plotted in Extended Data Figure 4c-
d, we also calculated offset aligned KDFs. We first manually scored plume 
offset as the end of the last whiff of each plume. This allowed for more 
precise ‘off’ means as the unique offset time of each trial is different. For 
consistencty, each cell’s offset KDF was normalized using the mean and 
standard deviation from their onset aligned KDF. 

Plume Responsivity of Cellular Responses 
To determine the responses profiles of individual cells to plume 
presentations, an open-source package ZETA 
(https://github.com/JorritMontijn/ZETA) determine if the cumulative 
density function (CDF) of spike latencies relative to stimulus onset is 
significantly different from a linear (i.e. baseline) spike rate by employing 
a Kolmogorov-Smirnov based approach (Montijn et al., 2021). This 
approach avoids any binning or averaging across trials, and thus has been 
shown to be a useful tool for examining neural responses to natural scenes 
where there is not a priori knowledge of the relationship between the 
stimulus and the expected response profile. When testing Neuropixels 
recordings of cell populations responding to natural movies, the ZETA test 

exhibited similar performance to running multiple ANOVAs at different 
timescales. Thus, without having to optimize the timescale of binning or 
averaging, the ZETA analysis was used to determine significant 
responsivity of cells to the complex odor concentration dynamics of 
natural olfactory scenes. 
For this analysis, spike times for each cell were first translated into their 
latency from plume onset of their respective trial. Only spikes that fell 
between the time window of 5 seconds prior to plume onset to 5 seconds 
after estimated plume offset (-5:15 s) were used for the analysis. The CDF 
of all spike times for a cell is assumed to be a diagonal line with a slope 
equal to baseline firing rate if the cell has a constant firing rate that does 
not change after plume onset. A bootstrapped null confidence interval (CI) 
is created by jittering plume onset times (±2s) and recalculating spike 
times as latency from the jittered onset to create a null distribution of CDFs. 
If the CDF significantly deters from linearity, meaning that it sufficiently 
exceeds the null CI, then the cell is considered to significantly respond to 
the plume. The most extreme deterrence from linearity in the positive 
direction is called the ZETA (Zenith of Event-based Time-locked 
Anomalies) peak and represents the point at which spiking maximally 
exceeds baseline firing rate. The negative peak of deterrence is called the 
inverse ZETA peak and represents when the firing rate maximally 
subceeds baseline firing rates. Thus, the timing of the ZETA peaks is not 
equal to response onset, as onset could occur before the maximal 
deterrence from linearity is reached. But if the maximum deterrence of 
ZETA was not reached between plume onset and 1 second after offset, the 
ZETA response was not considered significant regardless of its strength.  

Measuring cellular responses to plume concentration dynamics 

Cross correlation was used to quantify the relationship between cellular 
responses and plume dynamics in the method used to calculate correlation 
coefficients between glomerular responses and plume dynamics in Lewis 
et al., 2021. Briefly, for every cell, the cross-correlation between the odor 
concentration and the cell spike rate was calculated for each trial. First, the 
spiking activity of the cell was binned to match the sample timepoints of 
the odor concentration (125 Hz) and then convolved with a gaussian 
kernel with a standard deviation of 100 ms. The odor signal and cell spike 
rate were then both normalized and the Matlab xcorr() function was used 
to calculate the Pearson correlation coefficient of the two signals for every 
lag. Coefficients were then averaged at each time lag across all trials of the 
indicated condition (all trials, high concentration trials only, or low 
concentration trials only). The maximum absolute mean coefficient within 
a 500 ms lag of the cell spiking lagging behind the odor concentration 
defined the correlation between cell spiking and plume dynamics. To 
determine significance, coefficients were compared to a 95% confidence 
interval calculated using a trial shuffled bootstrap analysis with 1000 
iterations. 

Decoding odor presence with nonlinear binary SVM classifiers 

To determine the ability of cell populations to discern whiffs and blanks 
across plumes, decoding accuracy of the binarized odor signal was 
measured by training and testing Support Vector Machine (SVM) 
classifiers. Each timepoint was an instance for classification and each cell’s 
spiking rate was a feature vector. The open source Matlab package libsvm 
(https://github.com/cjlin1/libsvm) was used to implement SVMs (Chang 
& Lin, 2011).  

To binarize the odor concentration signal into whiffs (odor on) and blanks 
(odor off), an odor threshold was calculated for each session. Odor 
threshold was determined by dividing the odor signal into baseline periods 
(-9:-2 s before plume onset) and plume periods (plume onset to 10 s after 
onset). Threshold was defined as the mean of the baseline period plus 0.25 
standard deviation of the odor on period (Fig 6c). 

The spiking rate of the cell was first binned to match the sample timepoints 
of the odor concentration (125 Hz) and then convolved with a gaussian 
kernel with a standard deviation of 100 ms.  

The binary odor signal was decoded using radial kernel SVM binary 
classifiers with 5-fold cross-validation using a split data ratio of 90:10 for 
training and testing, respectively. Decoding accuracy was measured two 
ways, first as a function of time across the plume presentation for the entire 
cell population and second as a function of cell number within MCL and 
EPL/SFL populations. For both analyses, all MCs and EFL/SFL cells were 
used for classification regardless of whether their were significantly 
responsive to the plume as measured by the ZETA analysis. The one 
exception is that one of the ten sessions was excluded from the analysis as 
only 7 cells were recorded and no cells exhibited significant plume 
responses. It should be noted that inclusion of this session does not 
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qualitatively change any findings as mean classifier perfomance across 
sessions with this session included still accurately classifies whiffs and 
blanks 27.21% above chance level (as opposed to %29.86 above chance 
when this session is excluded). Pseudo-population level decoding accuracy 
was not measured as cells can not be pooled across trials since 
concentration time series are stochastic and are reproduced across neither 
trials nor sessions. 

Decoding accuracy was first measured for different time windows across 
the 10 second plume to see if populations could discern when odor was 
present and, if so, whether this ability changed across the duration of the 
plume. Decoding accuracy of combined MCL and EFL/SFL populations was 
measured using 100 iterations of SVM classifiers for each 250 ms time 
window stretching from plume onset (0 s) to estimated plume offset (10 
s). The classifier was run for each 500 ms window from onset to offset 
resulting in 40 time windows for classification. For each window, instances 
consisted of all time points from all trials that fell within the designated 
time window. For example, for the first window (0-250 ms), all time points 
from the first 250 ms of the plume for each trial were used.  

To determine if decoding accuracy was above chance level, bootstrapped 
confidence intervals were calculated. As the exact proportion of the time 
odor was above threshold not 50%, bootstrapped 95% confidence 
intervals of 100 iterations of 5-fold cross-validated classifiers defined 
chance level performance. For the shuffled analysis, binary odor labels of 
the training data set were shuffled. Odor presence was particularly skewed 
at the very beginning and end of the window due to the alignment process, 
therefore chance detection tended to be higher at these times. More 
specifically, for the 0-500 ms window, odor is often on more than 50% of 
the time due to plume onset being defined as the start of the first whiff of 
each plume. Since the estimated plume offset is set at 10 seconds after 

onset, odor tends to be absent when nearing estimated offset. This is 
because in a sparser plume, odor has begun to be released from the 
upstream odor port before a whiff comes into contact with the sensor. The 
odor port will always close 10 seconds after it first opens, not 10 seconds 
after the first whiff is measured at the sensors location. Therefore, the last 
second before estimated offset tends to have less odor than the middle of 
the plume. Thus, chance levels are assessed relative to the bootstrapped 
null confidence window for each window.  

To determine the relative contribution of each MC cell to decoding 
accuracy as compared to the contribution of each EPL/SFL cell, decoding 
accuracy within each cell type was measured for each session. Classifiers 
were run for multiple population sizes ranging from a single cell to the full 
number of MCs or EPL/SFL cells recorded in the session. As decoding 
ability did not seem to vary as a function of plume duration, a single time 
window was used for classification which included all timepoints from 
onset to offset across all trials. For each possible cell sample size, 100 
iterations of the 5-fold cross-validated SVMs were performed. This 
resulted in a mean decoding accuracy curve across iterations for both MCL 
and EPL/SFL populations within each session as a function of cell number 
(Fig 6g-h). For each session, the derivative of the mean performance curve 
was used to quantify the average change in decoding accuracy each time a 
cell was added to the sample size (Fig 6i). The derivatives for all sessions 
were then concatenated to create an MC distribution and an EPL/SFL 
distribution. In this way, the two distributions measured the mean increase 
in decoding performance achieved by adding one cell to the sample size 
(Gig 6f). The mean rate of accuracy increase per cell was then compared 
between MCs and EFL/SFL cells to assess the relative contribution to 
classifier accuracy of adding an MC as compared to adding an EFL/SFL cell.  
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Extended Data Figures 

 
 

 
 
 

Extended Data Figure 1: Single shank Neuropixels recording shows changes in LFP and spiking activity across the dorsal to ventral span of the OB.  

(A) Bandpass filtered LFP activity (1-100 Hz) from a single shank Neuropixels electrode array, (smoothed with 3.3m gaussian filter), covering ~1.8 
mm from the dorsal surface (green line) to the ventral OB. The estimated dorsal and ventral locations of the MCLs (mitral cell layers) are plotted 
(center of MCL dark red, bounds of MCL light red). The plot displays changes in LFP activity when moving from the dorsal surface (green line) towards 
the ventral OB. (B) A second plot of the same recording segment plotted in (a) is filtered for spiking activity (300-3000 Hz), showing dense clusters 
of spiking stretching from the dorsal and ventral superficial layers to the estimated MCLs. Notably, the central OB (deep layers, internal plexiform 
layer and granule cell layer) displays the least spiking across the bulb. (C) After MCL estimation, the resulting location of each recording site is 
labeled. (D) Theta LFP (2-10 Hz) amplitude extracted using Continuous Wavelet Transform based method and shows polarity reversal in theta 
frequency amplitude in the vicinity of the estimated MCLs. (E) Theta power is plotted one of the two columns of recording sites from the shank pictured 
in (c) showing local minima near the estimated MCLs. (F-G) Same as (d-e) is plotted for gamma amplitude (30-100 Hz) and shows a drop in amplitude 
near the MCL and a strong polarity reversal near the ventral MCL. (H-I) Same is plotted for spiking (300+ Hz) showing amplitude decreases rapidly 
when moving away from the MCL towards the IPL/GCL. (J) The waveform amplitude for each cell is plotted against its distance from the center of 
the MCL (positive distance indicates moving towards superficial cortex, negative distance indicates deeper OB). (K) The same is shown for the 
relationship between average spike rate and the distance from the MCL. 
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Extended Data Figure 2: LFP changes relative to the estimated MCL.  

(A) A schematic for estimated layers across all four shanks from a single recording session of the ventral OB with the IPL/GCL (black), the MCL (red), 
and the EPL/SFL (blue) indicated. (B) Mean theta power (line) ±2 std (shading) across all shanks plotted as a function of distance from the MCL 
center shows that the exact point at which theta power drops off or reverses polarity relative to the estimated MCL (gamma drop off and spiking rise) 
is not reliable resulting in high variance for the drop in Theta power relative to the estimated center of the MCL. (C) The same is plotted but for gamma 
power. The drop off or polarity reversal of gamma power was more prominent and consistent across recordings and used to estimate MCL location. 
(D) The same is plotted for spiking power, showing a reliable rise in power when moving the GCL to EPL/SFLs, consistent with higher waveform 
amplitude and spiking rates of pyramidal cell activity in the OB as compared to axon-less granule cell in deep OB. 
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Extended Data Figure 3: Clusters with waveforms in the IPL/GCL display low amplitude and low firing rates.  

(A) Distance from the MCL center (moving towards deeper OB) is plotted against waveform amplitude for all IPL/GCL (internal plexiform layer/ granule 
cell layer) clusters, showing a decline of both waveform amplitude and firing rate for clusters when moving away from the estimated MCL towards 
deeper OB. (B) (top) The mean waveform (black line) of an example cluster from the IPL/GCL area is plotted for 9 rows of recording sites (18 sites 
total). The mean waveform is plotted over 50 randomly selected individual waveforms (gray). Numbers for each cell correspond to the red highlighted 
clusters plotted in (a). (bottom) The auto-correlogram of the cluster (±50 ms) displays a refractory period. (C-F) The same is plotted for 4 additional 
IPL/GCL clusters. IPL/GCL clusters are shown to illustrate the physiological features of these clusters, but are not included in the analysis of cell or 
population activity. 
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Extended Data Figure 4: MC responses at the end of the plume correlated with responses after plume offset. 

(A) The average firing rate (Hz) of EPL/SFL cells exhibiting offset responses during high concentration trials (n=27 cells) is calculated for each 500ms 
time windows across the plume. Correlations between time windows are calculated within each concentration condition. The color axis is restricted 
to positive correlations for visualization purposes. (B) Same as (a) but for MCs with significant offset responses during high concentration trials (n=14 
cells). Correlations between the last 2 seconds of the plume, and the first two seconds after plume offset (correlation coefficients that lie within the 
blue dotted square) are highly correlated for MCs (µ=.90, std=0.07), and significantly more correlated than they are for EPL/SFL cells (µ=.67, std=0.1) 
as determined by a Wilcoxon rank sum test (p<0.001, z=4.3908). This suggests MCs are highly likely to exhibit sustained offset responses. (C) For 
only EPL/SFL cells with significant offset responses compared to baseline activity before the plume (see methods, each trial is aligned to the end of 
the last whiff of each plume) offset response profiles are plotted. To visualize sustained versus rebounding offset responses within each cell type, 
each KDF is mean centered to show the change in firing rate between the end of the plume (-500 to 0 ms) and plume offset (0 to 500 ms). Therefore, 
all cells have significant offset responses relative to baseline, but as plotted here a sustained response will have no change in firing rate, and a 
rebounding response at offset would have a large change in firing rate. Reponses are sorted by the change in firing rate between these two time 
windows. (D) Same but for MCL cells with significant offset responses visualizing that in the 2 seconds following the plume, MCs are more likely to 
maintain activity after offset, as is shown by offset responses that are more similar to plume-elicited activity as compared to EPL/SFL cells. 
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Extended Data Figure 5: Binary correlation analysis indicated cells do not follow odor in a concentration invariant across the plume at the cellular 
level. 

(A) The cross-correlation between the binary odor signal and each cell’s spiking rate is calculated within each trial and then averaged across trials. 
Each row depicts the mean correlation coefficient between the cell’s spiking rate and the odor for each indicated lag ±1 s. Cells are sorted in order 
of decreasing magnitude of the max mean correlation coefficient within 0-500 ms lag. Color axis is restricted to -0.1-0.1 coefficient range for visuali-
zation purposes. (B) The mean correlation coefficients of all cells are plotted against their respective bootstrapped 95% confidence interval for all 
trials (top), for high concentration trials only (middle), and for low concentration trials only (bottom) and 23.9%, 26.7% and 5.4% (respectively) of cells 
were weakly but significantly correlated. Correlation coefficients are similar to those computed OB cell spiking and a non-binarized odor signal (Fig 
6). 
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Extended Data Figure 6: Radial Kernel SVM classifier is needed for robust decoding of whiffs and blanks.  
(A) Linear kernel SVM classifiers (red, mn±1std) run within each session show the majority of cell populations decode odor at above-chance level 
accuracy (grey, mn±1std) across the duration of the plume (250 ms binned windows from onset to offset). The number of cells in each session’s 
population is indicated above each plot. The binarized odor signal was biased towards odor being present at the start of the plume and biased towards 
odor being absent at the end of the plume as a byproduct of the alignment process (see methods: Decoding odor presence with nonlinear binary 
SCM classifiers), and as a result the shuffled chance level decoding performance increased at the beginning and end of the plume. (B) The mean 
accuracy for all time bins across all sessions are plotted against mean shuffled accuracy. If the mean accuracy did not exceed the shuffled confidence 
interval it is plotted in grey. (C) The mean Type I error, false positives where a timepoint during an odorless period is incorrectly classified as a whiff, 
and mean Type II error, false negatives where a timepoint during a whiff is incorrectly classified as a blank, are plotted for all classifiers from all time 
bins across sessions. (D-F) The same is plotted for radial kernel classifiers. Mean accuracy and mean error behavior (Fig 6e-f) are plotted again for 
comparison to (b-c), showing more robust classification across sessions and higher classification accuracy. Additionally, both linear and nonlinear 
classifiers tend to have a bias towards Type II Error. 
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Tables 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Comparing physiological features relative to the estimated MCL. Significant changes in both waveform amplitude and mean spiking 
rate were observed between indicated areas.  Difference in physiological features between areas were calculated using a Wilcoxon rank-sum test, 
and effect size was calculated using Cohen’s d. Cells or clusters located on an electrode array that did not have an identifiable MCL were excluded 
from the analysis. 
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Table 2: Comparing theta, gamma, and spiking power relative to the MCL. Significant differences were observed on either side of the MCL for 
all frequency bands evaluated. Significant differences were also observed between the MCL and the IPL/GCL for all frequency bands, but only 
spiking power showed a significant difference between the MCL and the EPL/SFL, suggesting power changes were steeper on the deeper side of 
the MCL. To test for significant changes in power, a Wilcoxon’s rank-sum test was used for the average power as calculated within 240 µm of either 
side of the MCL. If there were less than 240 µm of electrode array, available sites were used to calculate the mean. If there were no electrode arrays 
on one side of the MCL then no measure for that side of the electrode array was included in the rank-sum analysis, thus the number of electrode 
arrays used to calculate the mean across the layers for each power is indicated (n). Effect sizes were computed using Cohen’s d. 
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