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Abstract

Although hippocampal place cells replay nonlocal trajectories, the computa-
tional function of these events remains controversial. One hypothesis, formal-
ized in a prominent reinforcement learning account, holds that replay plans
routes to current goals. However, recent puzzling data appear to contra-
dict this perspective by showing that replayed destinations lag current goals.
These results may support an alternative hypothesis that replay updates
route information to build a “cognitive map.” Yet no similar theory exists to
formalize this view, and it is unclear how such a map is represented or what
role replay plays in computing it. We address these gaps by introducing a
theory of replay that learns a map of routes to candidate goals, before reward
is available or when its location may change. Our work extends the planning
account to capture a general map-building function for replay, reconciling it
with data, and revealing an unexpected relationship between the seemingly
distinct hypotheses.
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1. Introduction

Much recent attention has been paid to experience replay as a candi-
date mechanism subserving learning and complex behaviour. In particular,
sequential replay of nonlocal trajectories during sharp-wave ripples in the
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hippocampal place cell system [1, 2, 3, 4, 5, 6] (and similar events else-
where [7, 8, 9]) serve as a tantalizing example suggesting some kind of
navigation-related computation [10, 5, 11, 12, 13, 14, 15, 16]. However, the
precise functional role for these events — what replay is actually computing
— remains a central question in the field.

There are, broadly, two schools of thought about this question. One
view, the “value hypothesis,” suggests that a purpose of replay is to facili-
tate planning or credit assignment, in the service of directly guiding current
or future choices [17, 3, 18, 19, 5, 20, 21, 22, 23, 16, 24, 25, 26]. Under
this view, the replay of extended trajectories facilitates connecting candi-
date actions at some location with their potential rewarding consequences
elsewhere in space (e.g., by updating a decision variable such as the value
function). A contrasting view, the “map hypothesis,” argues instead that
replay is concerned with building (or remembering/consolidating) some ab-
stract representation of the environment per se (e.g., a “cognitive map” of its
layout), and is not straightforwardly tied to subsequent behaviour or to re-
ward [1, 27, 4, 28, 29, 30, 31, 32]. Both interpretations have been argued to be
consistent with data, though their differential predictions in many situations
are often not obvious.

A recent theoretical model suggested an approach for improving the em-
pirical testability of these functional ideas. Mattar and Daw [17] formalized a
version of the value hypothesis in a reinforcement learning (RL) model, spec-
ifying the particular computation (a DYNA-Q [33] value function update)
hypothetically accomplished by each individual replay event. This reasoning
implies testable claims about how each replay event should affect subsequent
choices (by propagating reward information to distal choice-points) [26, 34].
Furthermore, they argued that, given a precise enough hypothesis about the
effects of a replay on behavior, it is possible to derive a corresponding formal
hypothesis about the prioritization of replayed trajectories; that is, if this
were indeed the function of replay, then the brain would be expected to favor
those trajectories that would maximize expected reward by best improving
choices. This idea led to testable predictions (e.g., about the statistics of
forward vs. reverse replay in different situations) that are well fit to data in
many contexts.

Sharper empirical claims in turn have permitted clearer falsification and
refinement. Accordingly, multiple authors using goal-switching tasks (here
we focus on work by Gillespie et al. [32] and Carey et al. [35]) have recently
reported that replayed trajectories tend to be systematically focused on past
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goals rather than current ones, and thus to lag rather than lead animals
learning updated choice behavior. The decoupling between the change in
behavior and the content of replay has been suggested to disfavor the value
hypothesis, which would predict that these quantities should track each other,
and instead support the map hypothesis. In the present work, we aim to
explain these results, and reconcile them with an updated general account of
replay by extending Mattar’s approach to encompass the map hypothesis.

Indeed, although the value/map division appears intuitively straightfor-
ward, a critical challenge is that the cognitive map hypothesis remains in-
completely specified. On one side, the concept of long-term reward prediction
from RL theories offers a precise formalization of the value hypothesis, while
on the other there has been less formal attention to the map hypothesis, start-
ing with the question of what the “map” is, and therefore what it means for
replay to be building it. Outside the replay context, RL models generally
operationalize the cognitive map as the local connectivity and barriers (the
“one-step” state-action-state adjacency graph) of the environment [36]. How-
ever, it seems paradoxical to assert that replay events are involved in building
this representation, because replayed trajectories already reflect local con-
nectivity, even immediately after encountering novel barriers [11]. Another
suggestion in the “map” camp is that the goal of replay is to form or main-
tain memories about visited locations [32]; however, it remains unclear what
memory content is maintained and also what specific locations are favored
for maintenance and why. In short, it remains a central open question what
“map” structure is hypothetically being built by trajectory replay, and what
the precise computational role of replay is in building it.

Our new account addresses these questions by providing a new view of
“map” replay that extends the key logic from Mattar’s model (that trajec-
tory replay propagates local reward information over space to produce long-
run value representations) to a setting where the locations of rewards are
unknown or dynamic. The analogue of the value function (the target of com-
putation in the Mattar model) in the new setting is a set of long-run routes
(effectively, goal-specific value functions) toward different possible goals, sim-
ilar to a successor representation (SR) [37]. This provides a formal notion
of a “cognitive map” that goes beyond local information; a role for trajec-
tory replay in computing it (like DYNA-SR [38, 39]); and a corresponding
priority metric quantifying which replays should be most useful. The new
prioritization rule generalizes the Mattar one: replay has value to the extent
it helps you reach either current goals or potential future ones, weighted ac-
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cording to learned beliefs about which goals are more likely. This account
strictly generalizes Mattar’s and in this way reconciles the planning and map
views: value replay arises as a special case of map replay when the agent’s
behavioural goals are fixed and known.

We show that this theory addresses the Gillespie and Carey results, while
maintaining the key insights offered by the original Mattar account when a
single, static set of goals predominates. Furthermore, we present predictions
made by our model that may be used to validate it using future studies.

2. The model

2.1. The Geodesic Representation

We begin by describing how we operationalize the term “cognitive map”.
In principle, a cognitive map may be understood as any representation of an
agent’s task contingencies. In particular, in RL models, a cognitive map (or
“internal world model”) is traditionally associated with the one-step transi-
tion function T (st, at, st+1) = P (st+1 | st, at) that captures how local actions
a (e.g., directional steps) affect the current state s (e.g., location).

However, given just this local map, plus local goal information (e.g., the
one-step reward values r(s) associated with each location), it still takes sub-
stantial computation to find the long-run optimal actions, e.g. by comput-
ing the long-run aggregate rewards resulting from different candidate ac-

tions. Formally, this is the state-action value Q(s, a) = Es′∼P (s′|s,a)

[
r(s′) +

γmaxa′ Q(s′, a′)
]
. Previous theories [17] suggest that a goal of replay is to

facilitate computing Q by aggregating reward over replayed trajectories. The
resulting value function is goal-specific, in the sense that if the one-step re-
wards change (e.g., if a rewarding goal moves from one location to another), a
new value function must be computed. Thus Q-learning and similar methods
are inflexible in the face of changing goals, requiring additional computation.

One way to address this limitation of Q-learning is to represent a map
not in terms of local adjacency relationships between neighboring states, but
instead shortest path distances from start states to many possible goal states.
An alternative way to conceptualize the same approach is to maintain not
a single value function, instead a set of value functions for many different
reward configurations. One common version of this idea is the successor
representation (SR) [37, 40]. Here we introduce a variant of the SR, the
Geodesic Representation (GR), inspired by Kaelbling [41], which is based on
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the same state-action value function as Q-learning and allows for “off-policy”
learning that facilitates transfer to later tasks. The GR aims to learn the
shortest paths from each state in the environment to a distinguished subset
of possible “goal” states (which may be, in the extreme case, all other states).

In particular, consider an episodic task taking place in an environment
with a single terminal state g that delivers unit reward. The state-action
value function Q(s, a) for this environment measures, for each state s and
action a, their distance from g (i.e. the terminal value 1 discounted by the
number of steps optimally to reach it; Fig. 1a). Consequently, the optimal
policy in this task can be thought of as a “distance-minimizing” policy that
maximizes return by minimizing the number of times the eventual reward is
discounted by the temporal discount factor.

Accordingly, we define the GR as a stack of these Q-value tables (Fig. 1b),
with each “page” in the stack encoding the state values in a modified ver-
sion of the underlying environment where the corresponding goal is the only
rewarding state, confers a unit reward, and is terminal. As in the earlier
example, policies derived from each of these pages facilitate optimal naviga-
tion to their associated goal state, as they are return-maximizing (distance-
minimizing) in the associated MDP. That is:

G(s, a, g) ≡ Eπg

[ ∞∑
t=0

γtIst=g|s0 = s, a0 = a
]

(1)

where g is any state distinguished as a potential goal, γ ∈ [0, 1) is a temporal
discount rate, πg is the optimal policy for reaching g1, and I• is the indicator
function that is 1 if • is true and 0 otherwise. This definition simply encodes
the intuition from above: G(s, a, g) is the expected (discounted) reward for
taking action a in state s, and thereafter following the optimal policy for
reaching state g, in an environment where only g is rewarding. Example slices
of the GR in an open field environment with a walled area are illustrated in
Fig. 1c.

Another way of characterizing the GR is by its Bellman equation:

G(s, a, g) = Es′∼P (s′|s,a)

[
Is′=g + γIs′ ̸=g max

a′
G(s′, a′, g)

]
(2)

1i.e., is reward-maximizing in the MDP where g is terminal and is the only rewarding
state.
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Figure 1: The Geodesic Representation. (a) Left: an open-field environment with
a walled corridor that encloses a single rewarded state. Right: the state-value function
induced by the single reward. The reward state has been assigned a value of 1 for clarity.
(b) The GR is a stack of state-action value functions, one for each goal. (Note that for
simplicity, we illustrate the value functions over states rather than over state-action pairs.)
(c) Illustrations of three different slices of the GR in an open field environment with...
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Figure 1: ... a walled enclosure. The candidate goal state corresponding to the slice is
indicated with a yellow asterisk. (d) An agent learns how to reach a variety of goals via a
single learning step from s1 to s2. Black arrows: knowledge prior to learning, red arrows:
knowledge gained after the transition from s1 to s2. Solid lines: one-step transitions,
dashed lines: implied longer-horizon connections. Top-left: the agent’s knowledge about
the environment’s one-step transition structure before learning. Top-right: the agent’s
knowledge about the environment’s long-run connections before learning. Bottom-left:
the agent’s knowledge about one-step structure after learning. Bottom-right: the agent’s
knowledge about multi-step structure after learning. (e) Visualisations of need, gain, and
EVB in a simple open field environment where the agent starts in the top left corner, and
there are candidate goal locations in the other three corners. Top row: before replay has
occurred, bottom row: after the GR has converged. In the gain and EVB plots, arrow
colour and opacity indicates the value of the relevant metric (only arrows corresponding
to transitions with > 0 gain or EVB are shown).

Intuitively, if s′ is the goal state g, then transitioning to it should accrue a
reward of 1 and if s′ is not, then the current value should be γ times the
value at wherever we arrived based on taking the best available action there.
This can be also written compactly in vector form:

G(s, a, :) = Es′∼P (s′|s,a)

[
1s′ + 0s′ ⊙ γmax

a′
G(s′, a′, :)

]
(3)

where ⊙ denotes the Hadamard (elementwise) product, 1s′ is a one-hot vector
at s′, 0s′ is a vector that is 0 at s

′ and 1 everywhere else, and the max is taken
separately over each goal state. This form of the equation demonstrates that
information about distances to multiple goals can be updated through a single
learning step (e.g. via a vector of off-policy temporal-difference updates, one
for each goal, based on this Bellman equation, as has been proposed for the
SR [37, 42]). Consider, for example, the setup in Fig. 1d where an agent
knows how to get to goals g1, ..., g4 from state s2 but not s1. If the agent
were to undergo the transition s1 → s2, they could learn how to get to all of
the goals that s2 is already connected to in a single learning step.

It is worth noting explicitly that the GR object itself is updated strictly
based on observing a state-action-successor state tuple (s, a, s′). The off-
policy nature of the update, combined with the lack of an environmental
reward term, means that the GR is not sensitive to either the exploratory
policy generating the updates nor the reward function governing the agent’s
behavior during learning. This means that once a GR is learned, an agent
can adapt to a new goal (e.g., reward moved from one location to another)
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simply by switching which “page” G(:, :, g) controls behavior. Such nimble
switching is unlike Q-learning (which must relearn a new value function in
this case), and importantly implies that replay can have utility (in the sense of
increasing future reward by improving future choices) due to “pre-planning.”
That is, since the GR is robust to changes to goal locations, learning updates
made to it in one goal regime remain relevant even when goals change. This
means that replay can improve the choices that the agent makes, even later
when the goals are different than they were at the time of learning.

Finally, consider the GR’s relationship to Q-learning. The GR with a
single goal location is exactly equivalent to Q-learning in the case of a single,
terminal reward. Thus the new theory generalizes an important case of its
predecessor: from one goal to several, mutually exclusive candidate goals,
which may be available at different times. Although in the present work
we concentrate on this case, the GR can also be used for a more general
class of reward functions: those containing multiple, simultaneously available
terminal rewards of different magnitudes. (The Q function is then given by
the max over per-goal value functions across the corresponding GR “pages,”
each weighted by their reward magnitudes.)

2.2. Prioritizing replay on the GR

Previous work [17] considered the problem of prioritizing experience re-
play for Q-value updating. In particular, to extend a theory of replay’s
function to a theory of replay content, it was proposed that replay of a par-
ticular state-action-state event (so as to perform a Q-value update, known
as a Bellman backup, for that event) should be prioritized greedily accord-
ing to its expected utility, i.e. the difference between the agent’s expected
return after vs. before the update due to the replay. Replay can increase
expected return if the update improves future choices. This “expected value
of backup” (EVB) can be decomposed as a product of a “need” term and a
“gain” term. Briefly, need roughly corresponds to how often the agent ex-
pects to be in the updated state (i.e., the state’s relevance) and gain roughly
corresponds to the magnitude of the change in the updated state’s value (i.e.,
how much additional reward the agent expects to accrue should it be in that
state by virtue of the update improving the choice policy there). Under this
theory, different patterns of replay then arise due to the balance between
need (which generally promotes forward replay) and gain (which generally
promotes backward replay) at different locations.

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2024. ; https://doi.org/10.1101/2024.02.29.582822doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.29.582822
http://creativecommons.org/licenses/by-nc-nd/4.0/


Since the GR aggregates a set of Q functions, it can also be decomposed
into the product of need and gain terms. Generalizing the approach from
Mattar and Daw [17], we begin by defining an analogue of the state value
function for any single goal g in the current setting:

H(s, g) ≡
∑
a

πg(a|s)G(s, a, g) (4)

where πg is the policy that tries to reach g as fast as possible. It can be
shown that the expected improvement in H after backing up the experience
ek = (sk, ak, s

′
k) with respect to a particular goal g factorizes (see Methods):

Hpost(s, g)−Hpre(s, g) = need(sk, g)× gain(ek, g)

need(sk, g) =
∞∑
i=0

γiP (s → sk, i, πg,pre)

gain(ek, g) =
∑
a

(
πg,post(a|sk)− πg,pre(a|sk)

)
Gpost(sk, a, g)

(5)

Here, •pre and •post refer to • before and after the update, respectively (and
so, while ak and s′k do not explicitly appear above, they affect the equation
by affecting the update from •pre to •post). P (s → sk, i, πg,pre) is the proba-
bility that a trajectory starting in s at time 0 arrives at sk at time i when
following policy πg,pre. Intuitively, the need term Equation 5 measures how
often the agent will reach the state being updated sk given its current state
s and its policy2. The gain term quantifies how much additional reward the
agent should accumulate due to a change in policy due to the performed up-
date. Roughly, we can understand this equation as saying that the utility of
backing up some experience ek, measured through the expected improvement
Hpost(s, g) − Hpre(s, g), is driven by i) how relevant that experience is and
ii) by the magnitude of the change induced by the update. See Fig. 1e for
visualizations of the need, gain, and EVB terms in a simple environment.

So far, we have essentially followed Mattar’s definition of EVB for a single
value function. Here, since the GR comprises a set of value functions for
multiple goals, and replay of a single experience (via Equation 3) updates all
of them, we need to aggregate their value into an overall EVB. We did this
simply by taking the expectation (or more generally the expected discounted

2In fact, it is precisely the SR evaluated under πg.
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sum) of these per-goal EVBs under a distribution over them encoding the
agent’s belief about which ones are likely to be relevant in the future. (How
this distribution is learned or constructed is itself an interesting question; we
make simple assumptions about it in this article since our main point is to
expose the effects that goal uncertainty can have on replay.) In particular,
an agent may prioritize replay by picking the memory that maximizes the
expected improvement from the current state s averaged over all possible
goals:

e∗ = argmax
ek

Eg∼P (g)

[
Hpost(s, g)−Hpre(s, g)

]
(6)

Once an experience is picked for replay, the GR can then be updated for all
goals towards the target in Equation 3.

3. Results

3.1. GR replay favors elements of routes shared between multiple goals

Since prioritized GR replay is a generalization of the prioritized replay
account by Mattar and Daw [17] it retains all of its notable properties (e.g.,
exhibiting coherent forward and reverse sequences, spatial initiation biases,
etc.). As such, we focus on exploring the novel properties of GR replay,
which would not be attributable to Q-value replay for a single goal or reward
function.

First, the explicit representation of distinguished goal states in the GR
allows for simultaneous planning across multiple candidate goals. To expose
this distinction clearly, we first consider a stylized situation. In Fig. 2a,
we simulated prioritized replay, using both Q-learning and GR agents, on
an asymmetric T-maze task in which the ends of each arm of the T contain
rewards (and both are candidate goals), but one arm is shorter than the other.
(We assume for the sake of simplicity that the reward states are terminal,
that there is a single, known start state, and that the maze is viewed without
online exploration, such as through a window as in Ólafsdóttir et al. [21].)
In this case, the Q-learning agent (Fig. 2a, middle) replays a path from the
closest reward location to the starting location and then stops, whereas the
GR agent (Fig. 2a, right) replays paths from both the close and far candidate
goal locations to the start, in order of distance. This distinction illustrates
the fact that the Q-learning agent’s objective is to build a reward-optimal
policy – and as such, all it needs to learn how to do is to reach the nearest
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Figure 2: The GR supports replay to multiple goals, and respects environmental
structure. (a) In an asymmetric T-maze task, Q-value replay only learns a path to the
nearest goal, whereas GR replay learns paths to both goals. Left: task schematic, middle:
Q-value replay, right: GR replay. (b) Replay in a bottleneck maze where every state
is a candidate goal and also a potential starting location is biased towards topologically
important states. Left: environment schematic, middle: asymptotic across-goal mean
need after GR convergence in a single simulation, right: mean state replay across n = 250
simulated replay sequences. (c) As in (b), but in a maze analogue of the community
graph. Left: schematic, middle: asymptotic need, right: mean state replay across n = 250
simulations.

reward – whereas the GR agent’s objective is to learn the structure of the
environment.

We next consider a less constrained setting, in which all locations in an
environment are both candidate goals and potential starting locations, so
that the target GR is an all-to-all map of shortest paths. One hallmark of
GR-based replay in this case is that, because priority is averaged over goals,
replays are particularly favored through locations that are shared between
optimal routes to many different goals. For example, replay should be focused
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around bottleneck states — states through which many optimal routes must
pass in order to connect different starting states and goal states. To exemplify
this prediction, we simulated GR replay while learning two environments
with bottleneck states: a chamber with two large rooms, connected by a
narrow corridor (Fig. 2b), and a four-room environment (based on Schapiro
et al.’s [43, 44] community graph) in which each room can only be entered
or exited by passing through a single location (Fig. 2c).

Recall that replay priority in the model is the product of need and gain
terms. A preference for bottleneck states arises algebraically from the need
term, as can be seen in the middle figures, which plot the need term under
the optimal GR (i.e., after learning has converged). In both graphs, the
bottleneck states have the highest need since they are required for all paths
that cross between the rooms. This preference arises formally because need
in the GR model corresponds to a variant of graph-theoretic betweenness
centrality (BC, or the fraction of shortest paths in which a node participates;
GR need is the same but counts participation for each step discounted by its
distance from the goal). Supp Fig. A.6 shows that BC closely corresponds
to need.

The analysis so far neglects the contribution of gain, and of the step-by-
step progression of learning. These reflect the partly opposing contribution
of one additional key feature of the model: the ability of a single replay
event to drive learning about many different paths at once. Accordingly,
the full simulated replay distributions (right plots) reflect the asymptotic
need, but with an interesting elaboration. Namely, the internal states of
the corridor (and similarly, the door states in the community graph) are
replayed relatively less when compared to the BC values of those states.
This is because (to the extent the agent first learns to come and go from the
exit state to all other states in a room), all paths between the rooms can
be bridged by a replay through the bottleneck. Stated differently, since a
single GR update facilitates learning across many goals simultaneously, it is
in principle adaptive to learn as much as possible about paths to goals within
a given room, transfer that knowledge to the mouth of the bottleneck, and
then carry it through to the next room in a single replay sequence (indeed,
the “globally optimal” learning sequence for the bottleneck chamber should
clearly only visit the interior states of the bottleneck precisely twice: once
to update their policies for reaching left-room goals from right-room states,
and once more for the reverse). Thus the model tends particularly to favor
the endpoints of bottlenecks, relative to the middles.
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3.2. GR replay accounts for previous-goal bias in maze navigation tasks

Recent studies [32, 35] examining replay in mazes with dynamically chang-
ing goals have presented a critical challenge to the “value view.” Specifically,
replay in these contexts tends to “lag” choice behavior in adapting to new
goals, and thus displays a bias away from the current behavioral goal. This
pattern appears incompatible with models in which replay directly drives be-
havioral adjustment; for instance, if replay modifies (for example) Q-values,
and these Q-values dictate choice behavior, then replay should, if anything,
lead changes in choice behavior. In this section, we show how this decoupling
of replay from behavior is naturally explained in our GR model, due to the
way it separates learning to reach candidate goals from learning what the
current and likely future goals are.

In one study by Gillespie et al. [32], rats dynamically foraged for reward
in an eight-arm maze, in which a single arm stably dispensed reward for a
block of trials, but this target moved after the rewarded arm was sampled a
fixed number of times (Fig. 3a). In each block, rats thus had to first identify
by trial and error which arm was rewarding (the “search” phase) and then
repeatedly go to it once it was found (the “repeat” phase). The value view is
challenged by two key findings about the content of replay during the repeat
phase (i.e., once the rats have discovered the new target and reliably visit
it):

1. Overall, replayed locations featured the goal arm from the previous
block more often than any other arm.

2. Replay of the current goal arm increased gradually throughout the
repeat phase (i.e., over repeated sampling of that arm).

To capture these effects, we simulated the Gillespie task using a GR agent.
The agent separately learned a GR (a set of routes to each goal), a represen-
tation of the current goal (a value estimate for each arm, used with a softmax
to select goals for the GR agent to visit), and finally a representation of the
overall distribution of goals (to prioritize replay for maintaining the GR).

The key insight explaining Gillespie et al.’s findings is the distinction
between these two representations of the goals, which serve different pur-
poses: while choice behavior needs to nimbly track the current goal (i.e.,
it must track the within-block reward function), replay must be prioritized
in part to learn routes to locations where future rewards are likely to be
found (i.e., it must be guided by the across-block distribution of goals). Ac-
cordingly, in the model simulations we capture these two timescales using
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Rescorla-Wagner learning with different learning rates (higher to track the
current goal; lower to capture the distribution of goals across blocks). The
former achieves quick behavioral switching while the slower rate focuses re-
play on previously rewarded arms (reflecting where reward density, viewed
across blocks, has recently been most common), thus only gradually turning
its focus to the current goal. We have also assumed that the agent’s GR
was subject to a small amount of decay (i.e., forgetting) on every time-step
(see Methods). This is a standard assumption in learning models, typically
justified by the possibility of contingency change [45, 46], and has the effect
of ensuring that learning continues in ongoing fashion rather than stopping
at asymptote. As such, one can interpret the role of replay after the initial
structure learning as maintaining the learned representation in the face of
forgetting or environmental change.

Accordingly, prioritized GR replay from our agent qualitatively matched
the patterns observed in Gillespie et al. [32]. Overall, within a block, GR
replay displayed a bias for the previous-block goal arm; in contrast, a Q-
learning agent using the prioritized replay scheme from Mattar and Daw [17]
preferred the current goal arm (Fig. 3b). Furthermore, and also consistent
with the data, replay of the current goal arm increased over the course of the
block for the GR agent while it decreased for the Q-learning agent (Fig. 3c).

The same considerations explain similarly challenging results from Carey
et al. [35]. Here, rats repeatedly traversed a T-maze where one arm provided
food reward and the other provided water reward (Fig. 4a). Each day, the
rats were alternately deprived of either food or water. Echoing the goal-
switching result [32], even though choice behavior favored the motivationally
relevant reward, replay recorded during the task was largely biased towards
the behaviourally non-preferred arm (Fig. 4b).

We again simulated the Carey task using a GR agent equipped with a
fast-learning behavioural module and a goal distribution created by slow
Rescorla-Wagner learning. The effects of alternating food and water depri-
vation were realized by having asymmetric reward values for the two arms
that switched between sessions [47]. Replay simulated from this model re-
capitulated the mismatched behaviour-replay pattern observed in the data
(Fig. 4b), as before, because GR updates are guided by across-block reward
experiences. In contrast, replay simulated from a Q-learning agent displayed
a matched preference for the relevant reward in both behavior and replay
(Fig. 4b).
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Figure 3: GR replay captures replay-behavior lag in Gillespie et al. [32] (a) Task
schematic. (b) Fraction of replays including either the current goal arm, the previous
goal arm, or any of the other six arms (normalized per arm). Left: replotted data from
Gillespie et al., averaged across rats, middle: Q-value replay, right: GR replay. (c) Rate of
current goal replay within a block as a function of rewarded visit number. Left: replotted
data from Gillespie et al., averaged across rats, middle: Q-value replay, right: GR replay.

3.3. GR replay trades off current goals against future goals by occupancy

We have so far emphasized that the current model extends the previous
value view to, additionally, favor replay of routes to candidate goals to the
extent these may be expected in the future. This role of expectancy in
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Figure 4: GR replay captures replay-behavior lag in Carey et al. [35] (a) Task
schematic. (b) Probability of seeking the food reward (“behavior”) and of replaying the
food arm (“replay”) as a function of session number/deprived substance. Left: replotted
data from Carey et al., middle: Q-value replay/behavior, right: GR replay/behavior.

weighting the utilities of replays with respect to different goals also implies
one of the key predictions of this model to be tested in future empirical work:
that replay of current vs. other possible goals in an environment should be
sensitive to their switching statistics.

To illustrate this, we simulated a dynamic maze navigation task with a
detour re-planning manipulation (Fig. 5a). Here, an agent learned to navi-
gate a maze to get to one of two candidate goal states. On any trial only one
of the goals was active; given the active goal on trial t− 1, the active goal on
trial t was determined by the dynamic switching process in Fig. 5b. In this
maze structure, the shortest path from the start state to either goal state
passes through the middle bottleneck state. Consequently, an agent execut-
ing this task should learn to always route through that bottleneck regardless
of the current goal. However, if on some trial it were to find that the middle
bottleneck is inaccessible (for example, if the path to it was blocked by a
wall), it would need to re-plan using replay in order to build new policies for
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Figure 5: GR replay trades off future and current goals. (a) Maze schematic. (b)
Goal dynamics process. p11 indicates the probability of goal 1 being active on trial t if it
is active on trial t− 1. (c) First and, if relevant, second replays for different models and
parameter settings when an agent discovers that the middle bottleneck is inaccessible on
a trial where g1 is active (denoted by the green circle). Top-left: Q-value replay, top-right:
GR replay with high p11, bottom: GR replay with low p11.
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reaching each goal. Furthermore, if goal 1 is the currently active goal on this
trial, then the p11 parameter controls the extent to which an agent should
prioritize navigating to the current goal vs. optimizing for future goals. This
is because it controls for how long the current goal will likely persist, and
conversely how imminent will be the need to visit the alternative.

We simulated this setup using both a Q-learning agent and a GR agent
performing prioritized replay. Unsurprisingly, the Q-learning agent only
plans how to reach the current goal, regardless of the setting of p11 (Fig. 5c,
top-left). In contrast, the GR agent is sensitive to the environment’s statis-
tics. If p11 = 0.5 (high), it first replays a path to g1 and then a path to g2
(Fig. 5c, top-right). In contrast, if p11 = 0.05 (low), it replays the path to g2
first (Fig. 5c, bottom). In general, in this model the priority (e.g., relative
ordering and prominence) of replay of different possible routes, to both cur-
rent and future goals, should depend parametrically on how often and how
soon they are expected to be obtained.

4. Discussion

We have presented an RL account of prioritizing replay in order to build
cognitive maps. The first contribution of this work is to formalize a hypoth-
esis about how replay might be useful for building maps or routes separate
from their reward value, giving the map hypothesis the same degree of formal
specificity as the value hypothesis. In particular, our account distinguishes
a set of candidate goal states in the environment and uses replay to learn
shortest-path policies to each of them. For this, we introduced a cognitive
map-like representation that we term the Geodesic Representation (GR),
which learns the state-action value function from all states to each goal in
a modified MDP where that goal is both terminal and rewarding. This
separates “map” information (a collection of routes to possible goals, each
equivalent to a Q function) from value information (which goals obtain, and
how rewarding they each are), and suggests a role for replay in updating the
former.

The second contribution of this work is to characterize which replay se-
quences would be adaptive if this were indeed the function of reply, and
clarify how these predictions differ from the value view. To build replay se-
quences, we generalized the approach of Mattar and Daw [17], computing
the expected utility of performing an experience update to the GR for any
particular candidate replay. This takes advantage of the separation of map
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from value by averaging per-goal expected utilities over a distribution of ex-
pected goals to yield an overall expected utility for replay. The expected
utility of updates made to the GR rests in their shortening the lengths of
paths from states to potential goals, rather than directly adjusting current
decision variables such as Q-values in order to better harvest current rewards.

This decoupling of the current goals from the candidate future ones helps
to capture a number of recent results that challenge the value view’s tight
coupling of replay content to choice behavior. In particular, two recent stud-
ies [32, 35] separately found that in maze navigation tasks with moving re-
wards, replay was systematically biased towards goal locations associated
with the previous reward block rather than (as prioritized Q-value replay
predicts) the current reward block. The current model captures these pat-
terns naturally as arising from the fact that the distribution of candidate
goals (hypothesized to drive replay) must be learned across multiple goal
instances, across blocks or sessions, thus necessarily slower than the learning
that drives within-block behavioral adjustment to each new goal.

Since the Mattar account is a special case of GR replay, the new model
inherits many of the earlier model’s successes: indeed, the two models co-
incide when goals are sparse, stable, and focused. The GR replay model
also displays several new qualitative replay dynamics, related to the bal-
ancing of potential vs. current goals. These offer a range of predictions
for new empirical tests. For instance, unlike replay for Q-values, replays to
build a GR are predicted even before any rewards are received in an envi-
ronment. Thus, for instance, our model predicts replay of paths during and
after the initial unrewarded exposure to an environment in latent learning
tasks [48, 27]. GR replay is also sensitive to the spatial statistics of the
set of candidate goal states in the environment. Consequently, we predict
that in environments with multiple potential goals, replay should focus on
“central,” topographically important states that are shared across the short-
est paths to and between those goals. Moreover, we predict that the replay
prioritization of goals, relative to each other and any currently active goals,
should be modulated by their statistical properties – that is, if one goal is
more common than the others, states associated with the path to it should
be comparatively overweighted.

Accordingly, the model exposes two key potential avenues for future re-
search in goal-directed navigation: what happens in the brain during latent
learning of environment structure and the effect of goal dynamics on the de-
velopment of cognitive map representations. Previous work has shown that
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goals and routes play an important role in the population code in both the
hippocampal formation and prefrontal cortex. For example, place cell remap-
ping has been linked to the movements of goals within an environment [49] or
the introduction of new goals to a familiar environment [50]. Similarly, grid
cells distort their place fields upon discovery of goals in an environment [51].
Goal representations have been detected in rodent replay during awake rest
in a flexible navigation task [5], as well as in human fMRI [52, 53, 54]. It
remains to be seen how all these effects are modulated when the agent must
arbitrate between multiple candidate choices, especially when incentives due
to future options are pitted against the present reward structure.

On the theoretical level, our model offers a new perspective on the func-
tion of replay in navigation and beyond. It exposes deep but not previously
obvious parallels between the value hypothesis and the map hypothesis, and
in so doing addresses a high-level theoretical question in the replay litera-
ture: what does it mean for replay to build a cognitive map? We take the
view that replay’s role is to perform computations over memories, trans-
forming them (here, by aggregating knowledge of local paths into plans for
long-run routes) rather than simply strengthening, “consolidating” or relo-
cating memories. In this respect, our model is spiritually connected with
other views, such as complementary learning systems theory [55] and recent
proposals (supported by human MEG experiments [56, 57]) suggesting that,
beyond navigation, replay supports learning and remodeling of compositional
schemas and structures more generally. Our teleological analysis enables us
to reason about the value of replay, in terms of facilitating future reward
gathering, and make precise predictions about prioritization. Although in
the current model we do not yet consider non-spatial tasks or more general
compositional structure, our work represents a first step in extending this
type of analysis from value functions toward updating more abstract knowl-
edge (here, maps) and points the way to extend this program in the future
toward these other even more general domains.

Regarding the alternative view of replay as maintaining memory per se,
our theory also provides a way to conceptualize even this as an active, pri-
oritized computational process. In our simulations of these experiments, the
GR underwent decay during each step of online behavior; this provided re-
play a formal role in terms of rebuilding and maintaining the GR, thereby
preserving the accuracy of the agent’s world model. Thus, even if the overall
goal is simply to maintain a faithful representation of the local environment,
there is still nontrivial computation implied in selecting which parts of that
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representation are most important to maintain.
Relatedly, the analysis of replay prioritization in terms of its value (and

the resulting empirical predictions about goal statistics) is a main distinction
between our work and other theories of replay that are more focused on
memory per se. For instance, Zhou et al. [58] recently extended a successful
descriptive model of memory encoding and retrieval, the Temporal Context
Model (TCM), to encompass replay, viewed as associative spreading and
strengthening over associations formed during encoding. Though it has a
different rationale and goals, this model makes broadly similar predictions to
Mattar’s and the current one; this likely relates to technical similarities owing
to the fact that TCM’s associations actually coincide with the SR [59, 60],
which constitutes the need term in the RL-based models. Differences in
the models’ predictions are thus likeliest to arise for situations where replay
patterns turn on gain, which quantifies the value of particular replays in
serving the animal’s (current or future) goals and is not naturally or directly
a consideration in pure memory models (though see [61]).

Our model leaves open a number of issues that are opportunities for fu-
ture theoretical work. First, as with Mattar and Daw [17], the GR replay
account is not a mechanistic or process-level model of how replay is pro-
duced in the brain; instead we aim to unpack the principles driving replay,
by characterizing how replay would behave, if it were optimized (through
whatever process, exact or approximate) to serve the hypothesized goals. A
biologically plausible implementation of geodesic replay prioritization would
primarily require a tractable approximation for computing gain (which here,
given our aims and following Mattar, we compute unrealistically by brute
force enumeration of possible computations).

Second, our analysis is based on the GR, which we chose to expose the
close algebraic relationship to Q-learning and the Mattar model. However,
the spirit of our argument generalizes readily to similar map-like representa-
tions. The key feature of the GR for our purposes is that, unlike the classic
SR, it is off-policy: that is, it learns paths that would be appropriate when
generalizing to other goals. We have also recently explored a different SR
variant [62], the Default Representation (DR), which accomplishes similar
off-policy generalization and could equally serve as a target map in the re-
play context. Both of these representations achieve flexibility over goals by
addressing a restricted setting in which goals are terminal (i.e., the map
learns to plan to one goal, or choose between goals, rather than how best to
visit a series of goals as in the full RL setting). To the extent this is undesir-
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able, it can be addressed in another variant by maintaining a set of SRs for
different policies (“generalized policy improvement” [40, 63]). Finally, both
the GR prioritization and Q-value prioritization frameworks are so far only
well-defined in the tabular setting. It remains an exciting opportunity to
understand how to import these ideas into RL with feature-based function
approximation.

5. Methods

5.1. Derivation of one-step need and gain for the GR

Our derivation of the need and gain factorization for GR EVB follows the
approach of Mattar and Daw [17]. First, we describe the notation. Through-
out this section, s is the current state of the agent and g is the goal state
under consideration. •′ refers to • after learning, except for the state s′ which
is simply the successor state to s. H(s, s′) will be denoted Hss′ and G(s, a, s′)
will be denoted Gsas′ . Similarly, the subscript will be dropped from πg and
π(a|s) will be denoted πas.

Recall from Equation 4 the definition of the GR state-value function:

Hsg ≡
∑
a

πasGsag

To reach our need-gain factorization, we start by considering the expected
utility of performing a Bellman backup for H with respect to a single, fixed
goal g. To that end, we examine the increase in value due to performing a
learning update:

H ′
sg −Hsg =

∑
a

π′
asG

′
sag − πasGsag

=
∑
a

(π′
as − πas)G

′
sag + (G′

sag −Gsag)πas (7)

Now, we use the environmental dynamics to observe that:

Gsag = P (g|s, a) + γ
∑
s′ ̸=g

P (s′|s, a)Hs′g (8)

and therefore:

G′
sag −Gsag = γ

∑
s′ ̸=g

P (s′|s, a)
(
H ′

s′g −Hs′g

)
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Plugging that into Eq. 7, we get:

H ′
sg −Hsg =

∑
a

(π′
as − πas)G

′
sag + γπas

∑
s′ ̸=g

P (s′|s, a)
(
H ′

s′g −Hs′g

)
Note the recursive term H ′

s′g−Hs′g in the right-hand side. We can iteratively
unroll this recursion, yielding:

H ′
sg −Hsg =

∑
a

(π′
as − πas)G

′
sag + γπas

∑
s′ ̸=g

P (s′|s, a)
(
H ′

s′g −Hs′g

)
=

∑
x∈S\g

∞∑
i=0

γiP (s → x, i, π)
∑
a

(π′
ax − πax)G

′
xag

Since backups are local, π′
ax − πax = 0 for all x not equal to sk, the start

state of the backup. Thus we can simplify to:

H ′
sg −Hsg =

{∑∞
i=0 γ

iP (s → sk, i, π)×
∑

a(π
′
ask

− πask)G
′
skag

∀sk ̸= g

0 sk = g

(9)

The case where sk ̸= s∗ is clearly a need × gain factorisation (first sum is
a need term, second sum is a gain term). The case where sk = s∗ is also
such a factorisation but gain = 0 since there is no need to update transitions
out of our goal-state with respect to our goal state (one does not need to
navigate from g to g). To generalise this to a goal set of arbitrary size, we
simply compute the expected value of backup as the mean goal-specific EVB
averaged across the goal set under a distribution indicating their relative
weights.

5.2. Elaborations on need and gain

5.2.1. Multi-step backups

We briefly note a special case of the need-gain computation. If the cur-
rent step under consideration ek is an optimal continuation of the previously
replayed step ek−1 with respect to g, then we extend the one-step replay to
a two-step replay (i.e., we update both G(sk, ak, g) and G(sk−1, ak−1, g)). In
general, if the previous sequence of replayed experiences constitutes an op-
timal (n − 1)-step trajectory towards g, and ek is an optimal continuation
of that trajectory, we perform the full n-step backup. When doing this, the
need is computed identically, but the gains are added across all the updated
states. This has been shown to favor coherent forward replays [17].
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5.2.2. Prospective need evaluation

In some scenarios, an agent may prefer to compute EVB not with respect
to its current state s, but with respect to a potentially distinct set of other
states (e.g., the set of starting states on the next trial) that we denote S0.
This corresponds to the prioritization rule:

e∗ = argmax
ek

Eg∼P (g),s0∼P (s0)

[
Hpost(s0, g)−Hpre(s0, g)

]
(10)

where P (s0) defines a distribution over S0. Formally, the only change that
needs to be made in order to facilitate this is to compute need in expectation
over s0:

need(sk, g) = Es0∼P (s0)

[ ∞∑
i=0

γiP (s0 → sk, i, πg,pre)
]

(11)

5.2.3. Prioritization under a goal dynamics process

In Section 2, we motivated the GR by describing a scenario in which no
goals are currently active, but the agent has some belief distribution about
which states in the world could become active in the future. Here we describe
a related, yet distinct, setup in which one goal is currently active, but the
trial-by-trial evolution of goal activity is described by a Markovian transition
matrix Tg (e.g., the goal dynamics process in Fig. 5).

Within such a paradigm, the per-goal EVB computation EVB(ek, g) ≡
Hpost(s, g) − Hpre(s, g) does not change, but the way these are aggregated
no longer involves computing the mean over a stationary goal distribution.
Instead, they need to be aggregated over the dynamics process as a whole. To
do this, we note that one reaps the benefits of performing a Bellman backup
with respect to any goal only when that goal is active. As such, we can say
that the total EVB under a given dynamics process for a fixed goal g is:

DEVB(ek, g) =
∞∑
t=0

ηtP (gt = g)EVB(ek, g)

where P (gt = g) is the probability that g is the active goal at trial t and
η ∈ [0, 1) is an episodic temporal discount factor operating at the trial-level

timescale. Letting
#                 »

EVB(ek) denote the vector of goal-specific EVB values for

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2024. ; https://doi.org/10.1101/2024.02.29.582822doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.29.582822
http://creativecommons.org/licenses/by-nc-nd/4.0/


ek, we can compactly compute DEVB(ek, g) as:

DEVB(ek) =
#                 »

EVB(ek) ·
∞∑
t=0

ηtP (gt = g)

=
#                 »

EVB(ek) ·
∞∑
t=0

ηtT t
g

#»g0

=
#                 »

EVB(ek) · (I − ηTg)
−1 #»g0

The (I − ηTg)
−1 term may be thought of as the successor representation

computed over the goal dynamics process.

5.3. Simulation details

We simulated a variety of “grid-world” environments – that is, deter-
ministic environments in which an agent may move in each of the cardinal
directions. We describe here structure shared across all simulations and then
elaborate on each one in its respective section below.

In cases where behavior was simulated (i.e., the models of the Carey and
Gillespie tasks), Q-learning agents selected actions via the softmax choice
rule π(a|s) ∝ exp

(
Q(s, a)/τ

)
. In contrast, GR agents selected actions by first

picking a goal to pursue (according to some independent behavioral module),
and then executing the policy associated with that goal. That policy was
usually a softmax policy πg(a|s) ∝ exp

(
G(s, a, g)/τ

)
. Upon selecting action

a in state s, the agent would transition to successor state s′ and receive
reward r (where relevant). In cases where no behavior was simulated (i.e., the
asymmetric T-maze, the bottleneck/community graphs, and the prediction
task), the agent simply sat at a fixed state and performed replay without
selecting actions.

For replay simulation, the agent was forced to perform a fixed number
of replay steps (number depending on task) prioritized by its corresponding
EVB metric. If the GR or Q-value table had converged, replay was cut off
to avoid nonsense replay steps being emitted. Due to the determinism of
the environment, both agents updated their internal representations with
learning rate α = 1. Unless otherwise mentioned, α was used as the learning
rate for both learning due to online behaviour and due to replay.

5.4. Asymmetric T-maze

In the asymmetric T-maze, Q-value and GR agents were placed at the
start state (the bottom of the stem of the T), behind an impassable wall. The
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GR agent was placed in a reward-free environment and assigned the terminal
states at the end of each arm of the T-maze as candidate goals. The goal
distribution was uniform. In contrast, the Q-learning agent was placed an an
environment where the terminal states at the end of each arm of the T-maze
each conferred a reward of 1/2. Both agents were simulated using a temporal
discount rate γ = 0.95, though the precise value of this parameter does not
noticeably affect the results.

5.4.1. Bottleneck chamber/Community graph

In the bottleneck chamber, two 5x3 chambers were connected by a 3x1
corridor. The GR agent was assigned every state as a possible start state
with a uniform distribution (and so performed replay prospectively over every
state in the environment). It was also assigned every state as a candidate goal
state, again with a uniform distribution. The “final need” plot is the mean
need, taken across all starting locations, after GR convergence for a single
simulation (and so may display asymmetries associated with tie-breaking).
In contrast, the “simulated replay distribution” is computed by simulating
replay until convergence many times (n = 200) and counting across every
step of replay, across every simulation, where individual replay steps are
initiated.

In the community graph maze, four 2x2 chambers were connected by
1x1 corridors. Simulations and analysis were otherwise conducted as in the
bottleneck chamber.

5.4.2. Modeling the Gillespie task

In our model of the Gillespie [32] task, agents were placed in the starting
state of an eight-arm maze (state diagram available at Supp. Fig. A.7). On
every trial, a single arm dispensed a unit reward, and would continue to do
so until it was visited fifteen times; once this threshold was reached, a new
rewarding arm was pseudorandomly selected from the remaining seven arms.
Analysis was conducted using both GR and Q-learning agents simulated over
ns = 200 sessions, each composed of nt = 200 trials.

Since we are largely not interested in the timestep-by-timestep evolution
of the learning dynamics of each agent, and instead in how they perform
replay conditioned on the arms they have visited, neither agent actually
performed a timestep-by-timestep action choice process. Instead, at the be-
ginning of every trial, each agent selected an arm to navigate to and was
then handed the optimal sequence of actions to be executed in order to reach
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that arm’s associated goal state. During this online behaviour phase, the
agent updated its internal Q-value matrix or GR in accordance with the
states, actions, successor states, and rewards it observed. In practice, this
does not qualitatively affect the replay dynamics emitted by either agent and
simply standardizes the length of each trial (e.g., skipping the exploratory
phase in which the subject may go back and forth through the arm, or run-
ning into the walls, before it realizes that such motion is not productive).
Both agents selected their navigational goal arm via the softmax choice rule
π(arm) ∝ exp

(
V (arm)/τ

)
implemented over per-arm values learned with the

Rescorla-Wagner algorithm:

Vnew(chosen armt) = Vold(chosen armt) + η
(
Rt − Vold(chosen armt)

)
Here, we use η = 1 and τ = 0.3.

After each trial, the Q-learning agent was forced to perform three replay
steps (i.e., the distance from the start state of the maze to any goal state).
To do this, it used the prioritization procedure from Mattar and Daw [17].
In order to incentivize replay within a block, after each time-step a weak
forgetting procedure was applied to the agent’s Q-values, multiplying the
whole Q-matrix by a fixed factor cforg = 0.95. The Q-learning agent per-
formed policy updates under a softmax rule over the underlying Q-values
with a separate temperature parameter τpolicy = 0.1 (this is not important
for behaviour due to the action sequence specification described earlier, but
is important for the computation of gain which is dependent on the change
in the agent’s policy due to the update). Finally, we assumed that updates
due to replay had a lower learning rate αreplay = 0.7 than online behaviour.

The GR learning was simulated in a largely similar fashion, with some ex-
tra details due to the additional need to specify a goal distribution for replay
prioritization. The per-arm behavioural value learning was identical to the
Q-learning agent (i.e., softmax choice rule with τ = 0.3 over values learned
with η = 1 Rescorla-Wagner, constant decay of the GR every time-step with
cforg = 0.95). Furthermore, the GR agent also performed policy updates
under a softmax rule with temperature parameter τpolicy = 0.1. However,
in addition to the per-arm behavioural values, the GR agent used Rescorla-
Wagner to learn independent per-arm values in order to derive a replay goal
distribution. We suggest that this process reflects a desire to learn the long-
run statistical properties of where goals appear in the world, and as such
employs a much lower learning rate than its behavioural counterpart. Here,
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we used ηreplay = 0.30 for learning the replay-associated values and a soft-
max rule with τreplay = 0.20 to convert them into probabilities. At the end
of each trial, these replay-associated values themselves underwent forgetting
by a constant factor equal to 0.90.

5.4.3. Modeling the Carey task

In our model of the Carey [35] task, agents were placed in the start-
ing state of a T-maze (see Supp. Fig. A.7 for a state diagram). On every
trial, the goal states associated with each arm both dispensed rewards; the
magnitude of these rewards depended on the session identity, with the arm
corresponding to the restricted reward modality conferring a reward of 1.5
and the other arm conferring a reward of 1. For both Q-learning and GR
agents, na = 10 virtual subjects were simulated, each undergoing ns = 6
sessions of alternating water/food restriction that lasted nt = 200 trials.

As in our simulation of the Gillespie task, our focus is on how these
agents perform replay conditioned on their previous choices, rather than
their moment-by-moment behavioural dynamics. As such, each agent simply
selected an arm to navigate to and was then handed the optimal sequence
of actions to be executed in order to reach that arm’s associated goal state.
During this online behaviour phase, the agent updated its internal Q-value
matrix or GR in accordance with the states, actions, successor states, and
rewards it observed. Both agents chose which arm to navigate to via the
same softmax choice rule outlined in the previous subsection. For these
simulations, we used the parameters η = 1 and τ = 0.5.

After each trial, both the Q-learning and GR agents performed priori-
tized replay as outlined in the previous subsection. The Q-learning agent
underwent forgetting with cforg = 0.75. Its policy updates were performed
under a softmax regime with τpolicy = 0.1. The learning rate for replay was
assumed to be lower than for online behaviour, with αreplay = 0.7. The
GR agent had the same values for these parameters. Furthermore, it had a
replay-value learning rate of ηreplay = 0.1, a softmax parameter τreplay = 0.15
for converting those values into a goal distribution, and no forgetting on the
replay-associated arm values.

5.4.4. Modeling the prediction task

In our implementation of the prediction task, we simulated Q-learning
and GR agents on the maze in Fig. 5 using the state diagram provided in
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Supp. Fig. A.7. All agents began with their respective representation ini-
tialized at zero and performed replay until convergence. Both agents learned
with a learning rate of α = 1, and assumed a highly exploitative softmax
behavioural policy with τ = 0.01. The GR agent was assumed to know the
true goal dynamics process and performed prioritized replay as described in
Section 5.2.3, with an episodic discount factor equal to 0.9.

5.5. Data replotting

Replotting of data from Gillespie et al. [32] and Carey et al. [35] was
performed by annotating the individual data points using WebPlotDigitizer
4.6 and then averaging as necessary.
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Appendix A. Supplement

Figure A.6: Need metric captures important elements of environment topology.
(a) Examples of final need, reproduced from Fig. 2. (b) Betweenness-centrality computed
for the bottleneck chamber (top) and the community graph maze (bottom).

30

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2024. ; https://doi.org/10.1101/2024.02.29.582822doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.29.582822
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure A.7: State diagrams for the simulations in Sections 3.2 and 3.3. (a) State
diagram for our model of Carey et al. [35] (b) State diagram for our model of Gillespie
et al. [32] (c) State diagram for our model of the prediction task in Section 3.3. Numbers
indicate distances (e.g., the left bottleneck state requires four steps to reach g1), which
are implemented through intermediate states (not shown).
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