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Abstract

Spatially resolved transcriptomics (SRT) measures mRNA transcripts at thousands of locations within a tissue slice,
revealing spatial variations in gene expression and distribution of cell types. In recent studies, SRT has been applied
to tissue slices from multiple timepoints during the development of an organism. Alignment of this spatiotemporal
transcriptomics data can provide insights into the gene expression programs governing the growth and differentiation
of cells over space and time. We introduce DeST-OT (Developmental SpatioTemporal Optimal Transport), a method
to align SRT slices from pairs of developmental timepoints using the framework of optimal transport (OT). DeST-OT
uses semi-relaxed optimal transport to precisely model cellular growth, death, and differentiation processes that are
not well-modeled by existing alignment methods. We demonstrate the advantage of DeST-OT on simulated slices.
We further introduce two metrics to quantify the plausibility of a spatiotemporal alignment: a growth distortion
metric which quantifies the discrepancy between the inferred and the true cell type growth rates, and a migration
metric which quantifies the distance traveled between ancestor and descendant cells. DeST-OT outperforms existing
methods on these metrics in the alignment of spatiotemporal transcriptomics data from the development of axolotl brain.
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1 Introduction
Spatially Resolved Transcriptomics (SRT) technologies [37, 33, 28] measure gene expression simultaneously from
thousands of cells or spots from a tissue slice, linking the gene expression measurement to the physical location
within the tissue. These technologies enable exploration of tissue organization by analyzing cells within their native
microenvironment, opening the door to the study of spatial biology [1, 17]. In some cases, SRT is applied to multiple
slices from the same tissue. Joint analysis of multi-slice spatial data helps with the data sparsity problem in individual
slices, enabling downstream analyses such as 3D differential expression or 3D cell-cell communication [23]. Multiple
methods have been developed for alignment of multi-slice SRT data. For example, PASTE [45] integrates multiple
slices from the same tissue and reconstructs the tissue gene expression in 3D, and PASTE2 [24] extends PASTE to
partially overlapping slices. STalign [8] is an image registration method finding a diffeomorphism between the H&E
images of two spatial slices. GPSA [18] uses Gaussian processes to register spatial slices onto a common coordinate
system, while SLAT [44] relies on graph neural networks and adversarial learning.

Another recent exciting application is to apply SRT to tissues taken from multiple timepoints of a developmental
process [5]. Alignment of slices from multiple timepoints can provide insights into the gene expression programs
governing the growth and differentiation of cells over space and time. However, alignment of spatiotemporal transcrip-
tomics data presents unique challenges as there is a complicated interplay between proliferation and apoptotic cell
dynamics in the sculpting of developing tissue [42]. Regions of the tissue may grow or shrink, creating many-to-one
relationships between the spots from consecutive timepoints. Cells also change in gene expression and differentiate into
new cell types during development. Moreover, slices no longer come from the same batch (individual or time-point)
and thus may exhibit batch effects.

The existing methods for temporal alignment of single-cell data or for spatiotemporal alignment suffer from
important limitations. Waddington-OT [34] aligns temporal single cell data for reprogramming datasets, but does
not take spatial information into account. A recent preprint [21] describes moscot, a method that relaxes the OT
formulation in PASTE to use unbalanced optimal transport [36]. moscot allows for cell growth and death using a
curated set of proliferation and apoptosis genes as prior knowledge but optimizes an objective function that encourages
static shape-matching. Other works [18, 44] do not necessarily quantify growth, and often have methodological and
robustness limitations.

We introduce DeST-OT, a method to align spatiotemporal transcriptomics data that consists of SRT slices from
multiple timepoints. DeST-OT proposes a novel semi-relaxed optimal transport framework, leading to unsupervised
discovery of cell growth and apoptosis without relying on existing gene annotations. DeST-OT aligns differentiating
cells along a manifold jointly defined by transcriptomic information and spatial information, leading to both biologically
and physically valid alignments. DeST-OT accounts for spatiotemporal scenarios by modeling three orders of
interactions between cells in a developing tissue, bridging a gap in the standard Fused Gromov-Wasserstein (FGW) OT
objective [38].

We demonstrate the advantages of DeST-OT on both simulated spatiotemporal data and spatiotemporal data from
axolotl brain development. To evaluate the performance of different methods we introduce the growth distortion
metric quantifying the accuracy of the inferred cell growth within a tissue across timepoints, and the migration metric
quantifying the distance that cells migrate during development under an alignment. We show that DeST-OT produces
alignments that are more growth-aware on simulated data. DeST-OT alignments are more biologically realistic in
terms of the growth inferred and the distance cells migrate compared to other methods. DeST-OT infers biologically
valid cell type transitions on a spatiotemporal dataset of axolotl brain providing insights into the growth dynamics of
brain development.

2 Methods
2.1 Formulation

A spatially resolved transcriptomics slice is represented by a tuple S = (X,S). X ∈ Nn×p is the transcript count
matrix where each row xr is the gene expression vector of the corresponding spot, n the number of spots and p the
number of genes measured. S ∈ Rn×2 is the spatial position matrix, where the rows sr encode the (x, y) coordinates of
each spot. Given slices S1 = (X(1),S(1)) and S2 = (X(2),S(2)), measured on the same set of genes at timepoints t1
and t2, the goal is to derive an alignment matrix Π ∈ Rn1×n2

+ , whose entry Πij is positive and gives the probability that
the cell(s) in spot i of S1 are the progenitors of the cell(s) in spot j of S2. The probabilities in the alignment matrix Π
are derived to minimize some cost based on the gene expression at each spot and the spatial locations of aligned spots.

We use the mathematical tool of optimal transport (OT) to solve for Π. OT finds the most efficient way of moving
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mass between two distributions [30], and has previously been applied to single-cell alignment [11, 40] and spatial
transcriptomics alignment [24, 45]. We seek to transport the mass of slice S1 to S2 where the mass is represented as a
distribution over each slice’s spots. In the spatiotemporal setting, the amount of mass transferred between a spot at an
earlier timepoint and a spot at a later one indicates how probable it is that the former spot is the ancestor of the latter.
PASTE [45] uses OT to solve a related problem of static (non-temporal) spatial alignment, in which S1 and S2 are
adjacent slices of the same tissue from the same timepoint, and minimizes the following objective function:

EPASTE(Π) = (1− α)
∑
i, j′

Cij′Πij′ + α
∑

i, j′, k, l′

(
D

(1)
ik −D

(2)
j′l′

)2
Πij′Πkl′ . (1)

This objective function is a convex combination of two terms weighted by a balance parameter α. The first term, which
we call the feature term, encourages matching spots with similar gene expression, and is also called the Wasserstein
term in the OT literature [30]. We use the convention that a prime on an index, e.g. j′, refers to a spot in the second
slice, while the absence of a prime denotes a spot in the first slice. The ij′-th entry of the matrix C ∈ Rn1×n2 is the
distance in expression space between expression vector xi at S1-spot i and expression vector x′

j′ at S2-spot j′. The
second term, which we call the spatial term, encourages matching the intra-slice spatial distance between pairs of
spots in each slice, and is called the Gromov-Wasserstein (GW) term [26, 31]. Matrices D(1) and D(2) are defined
by intra-slice spatial distances Dij = ∥si − sj∥2. The convex combination of the feature term and the spatial term is
called the Fused Gromov-Wasserstein (FGW) objective [38]

PASTE optimizes (1) subject to the following constraints:

min EPASTE(Π)

s.t. Π1n2 = g1, ΠT1n1 = g2, Π ≥ 0
(2)

where g1 ∈ Rn1 ,g2 ∈ Rn2 are uniform probability measures supported on the indices i ∈ {1, . . . , n1} and j′ ∈
{1, . . . , n2}; 1 is a vector of all one’s. These constraints are called balanced optimal transport (OT) (Fig. 1b) because
the alignment matrix satisfies the marginals g1,g2 strictly.

A recent preprint [21] introduced moscot, a modification of PASTE to use unbalanced OT, which is suggested
to be helpful for spatiotemporal alignment. Specifically, moscot removes the equality constraints on the marginals,
Π1n2

= g1, ΠT1n1
= g2 of (2), replacing these with two soft constraints in the form of Kullback-Leibler (KL)

divergences:

min EPASTE(Π) +
ϵτa

1− τa
KL(Π1n2∥g1) +

ϵτb
1− τb

KL(ΠT1n1∥g2)− ϵH(Π)

s.t. Π ≥ 0.
(3)

Here τa, τb ∈ (0, 1) are hyperparameters determining the penalty for the marginals deviating from g1 and g2. H(·) is
the entropy, where H(Π) = −

∑
i,j′ Πij′(log (Πij′)− 1). This entropic regularization accelerates the optimization

of Π [9]. moscot has multiple limitations for spatiotemporal alignment. First, the method is supervised: to
account for cell growth and death, moscot adjusts g1 over the first slice using the expression of a predefined
set of marker genes, limiting its applicability to organisms and tissues with good prior knowledge. Secondly, the
fully unbalanced formulation allows mass to shift around both marginals, limiting the interpretability of the growth
information (Supplement § S1.4). Third, the spatial term is not amenable to tissue expansion because it prefers to align
identical shapes: (D(1)

ik −D
(2)
j′l′)

2Πij′Πkl′ is minimized when the distances inside the square are the same.
DeST-OT uses semi-relaxed optimal transport (Fig. 1a) and optimizes a growth-aware objective function modeling

different levels of interactions between cells, capturing the growth dynamics comprehensively. In the semi-relaxed
optimal transport framework (Fig. 1), we relax only the constraint Π1n2 = g1 in (2), replacing it by a KL divergence
in the objective function, while the other constraint ΠT1n1 = g2 is kept. This ensures all of the spots in the second
slice are mapped to from the first, while spots in the first slice can contribute a different amount of mass depending on
whether they are growing or dying. We set both g1,g2 to assign equal weight 1

n1
to each spot. That is, g1 is the uniform

probability measure over spots in S1, while g2 is a positive measure over spots in S2. We define an interpretable growth
vector ξ that represents a mass-flux across the two timepoints indicating the magnitude of growth and death for each
spot in S1,

ξ = Π1n2
− g1. (4)
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Figure 1: Overview of DeST-OT and semi-relaxed optimal transport (OT). (a) Given a pair of S1 and S2 from timepoints t1 and
t2, respectively, DeST-OT infers an alignment matrix Π and a growth vector ξ = Π1n2 − g1 by solving a semi-relaxed optimal
transport problem with doublet, triplet, quartet objective costs. Green entries in ξ indicate cell growth while red entries indicate
death (b) Balanced OT, which fixes both marginals g1,g2, and unbalanced OT, which varies both marginals.

The growth vector ξ ∈ Rn1 is the change in mass relative to a uniform prior g1 at each spot. The total sum of the
entries of ξ is therefore n2−n1

n1
, fixed in proportion to the total change of mass across slices. For a spot i at time t1,

ξi > 0 means that spot i has > 1 descendant in the second slice, and correspondingly, ξi < 0 implies spot i has < 1
descendant in the second slice. The growth vector ξ is a change in mass over time – to convert this into a growth rate,
one can take J = log(1 + n1ξ)/(t2 − t1) (Supplement § S2). See Supplement § S1.4 and § S3 for further discussion
of the growth vector ξ.

DeST-OT optimizes a growth-aware objective function subject to the semi-relaxed constraints. The objective cost
of DeST-OT for finding an optimal spatiotemporal alignment matrix Π consists of three terms: a doublet term, a
triplet term, and a quartet term. The doublet term,

∑
i, j′ Cij′Πij′ , is the same as the feature term in PASTE, where

C ∈ Rn1×n2 is an inter-slice gene expression distance matrix. The term compares the expression of two spots, one
from each slice, hence we call it the doublet term of our objective.

The quartet term compares spot-pairs, with one pair from each slice. The quartet term is defined as
∑

i, j′, k, l′(M
(1)
ik −

M
(2)
j′l′)

2Πij′Πkl′ , where each matrix M(i) is defined to be the entrywise product of the square matrices C(i) and D(i).
C(i) ∈ Rni×ni is the distance in the expression space between each pair of spots on slice i. D(i) is the intra-slice spatial
distance matrix as in PASTE. The quartet term is equivalent to the spatial (GW) term of both PASTE and moscot
but with matrices M(i) that jointly model transcriptomic and spatial information, and with the semi-relaxed constraint
applied to the gradient (Supplement § S4). We refer to M as merged feature-spatial matrices. While the spatial distance
matrices (D(1),D(2)) are appropriate for static alignment, they encode a rigid geometry that does not account for
spatial deformations accompanying growth. On the contrary, DeST-OT matches a more flexible feature-smoothed
geometry between the two slices, accounting for expansion or shrinkage of tissues during development.

The triplet term models the ancestor-descendant relationship between a single ancestor spot and multiple descendent
spots, an essential relationship in growing tissues that is not well modeled by the other terms. When an ancestor spot
differentiates into multiple descendant spots, these descendant spots should be close to each other in both physical space
and feature space. Correspondingly, multiple ancestors should also be close. We make this notion precise by adding a
triplet term to our objective: Etriplet(Π) =

∑
ij′k′ Πij′Πik′M

(2)2
j′k′ +

∑
ijk′ Πik′Πjk′M

(1)2
ij . The entrywise squares on

the M matrices match the form of the quartet term, upweighting the triplet summands which enforce the similarity
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of descendants and ancestors. Adding these terms to our objective function has a regularizing effect: Π is penalized
for predicting distant descendants j′, k′ of the same spot i in the first slice, or for predicting distant ancestors i, j of
the same spot k′ in the second slice. Distance is interpreted to be both spatial and transcriptomic due to the merged
feature-spatial M matrices.

We call the sum EM of the triplet term and the quartet term the merged feature-spatial term, since both use merged
feature-spatial matrices and encourage alignments to respect developmental dynamics in both physical space and gene
expression space. Specifically, we define

EM(Π) =
1

2


∑
i,j′,k′

Πij′Πik′M
(2)2
j′k′ +

∑
i,j,k′

Πik′Πjk′M
(1)2
ij︸ ︷︷ ︸

triplet

+
∑

i, j′, k, l′

(M
(1)
ik −M

(2)
j′l′)

2Πij′Πkl′︸ ︷︷ ︸
quartet

 . (5)

Combining all of the above, the DeST-OT objective function is:

EDeST−OT = (1− α)
∑
i, j′

Cij′Πij′︸ ︷︷ ︸
doublet

+αEM(Π) (6)

The combination of the doublet, triplet, and quartet terms captures lower to higher order of interactions between spots
in a growing tissue (Fig. 1a). The DeST-OT optimization problem, with entropic regularization and the semi-relaxed
constraints is

min EDeST−OT(Π) + γKL(Π1n2
∥ g1)− ϵH(Π)

s.t. ΠT1n1
= g2, Π ≥ 0

(7)

The balance parameter α balances the contribution of the feature term and the merged feature-spatial term to the
alignment. γ governs the compliance of the semi-relaxed constraint, and ϵ governs the strength of entropic regularization.
We discuss the effect of these hyperparameters in the Results section.

2.2 Optimization Using Sinkhorn

We solve the DeST-OT optimization problem by deriving a variant of the Sinkhorn algorithm, which has become the
canonical way to compute OT alignments due to its speed [9]. One may convert an optimal transport problem with a
general objective into the framework of Sinkhorn by adding an entropy regularization −ϵH(Π) to the objective function.
Following the framework of Sinkhorn, the DeST-OT optimization problem (7) includes an entropy regularization term
and we derive a set of updates from the KKT conditions for the semi-relaxed constraints to solve for Π. In practice, we
take the dual of the semi-relaxed optimization to convert these updates into the log-domain [35], avoiding numerical
overflow. The details of the optimization procedure are discussed in Supplement § S4.

2.3 Assessing alignment quality by cellular growth and migration

The true spatiotemporal alignment is often unknown, making it difficult to evaluate the accuracy of an alignment. We
introduce two metrics to quantify the plausibility of an alignment: the growth distortion metric and the migration metric.
The growth distortion quantifies the difference between the inferred growth and the proportional change of cell types in
the two slices, given cell type labels for each spot in both slices. The migration metric quantifies how far cells “move”
from the first timepoint to the second in a common coordinate framework describing the actual tissue. We say that an
alignment Π is biologically valid when its growth distortion is ≈ 0, and physically valid if the migration distance is low.

2.3.1 A metric of growth distortion

Given an alignment matrix Π, we define the growth distortion metric to quantify how well the growth vector ξ defined
by equation (4) matches the observed change in proportion of given cell type labels over both slices. Formally, we are
given a partition P1 = (P1(p))

P
p=1 of spots in slice 1, where the set P1(p) consists of all spots of cell type p at time t1,

and a partition P2 = (P2(p))
P
p=1 of spots at timepoint t2. The mass m1(p) of cell type p at time t1 is m1(p) = |P1(p)|,

the number of t1-spots with the label p. Likewise, the mass m2(p) of cell type p at time t2 is m2(p) = |P2(p)|. The
change-in-mass for cell type p across these two timepoints is then m2(p)−m1(p). To ensure that the mass change has
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the same scale as the growth vector ξ, we normalize the change-in-mass as m2(p)−m1(p)
n1

since DeST-OT marginals
assign mass 1

n1
to each spot, while the counting measure used to define the mt(p) assigns mass 1 to each spot.

We define the growth distortion metric under two assumptions: first, that there are no cell type transitions between
distinct cell types (we discuss how to relax this assumption shortly). Second, the burden of accomplishing the change in
mass is shared equally across cells of the same type. This second assumption can be viewed as an entropy-maximizing
assumption. Under these two assumptions, the “true” growth γ(p) at any i ∈ P1(p) is

γ(p) =
1

m1(p)

(
m2(p)−m1(p)

n1

)
. (8)

Note that summing these values over all t1-spots yields n2−n1

n1
, the total (normalized) change in mass across the two

slices (Supplement § S5.1). The growth distortion metric Jgrowth of an alignment matrix Π with its associated ξ, relative
to cell type partitions P1 and P2, measures the total distortion between the inferred growth ξ and the true growth γ at
each spot:

Jgrowth =
P∑

p=1

∑
i∈P1(p)

∥ξi − γ(p)∥22. (9)

We generalize the growth distortion metric to the case when cell type transitions are present (but unknown) using a
reverse-time transition matrix T ∈ RP×P . This matrix acts on a vector of cell type masses, redistributing the mass m2

at time t2 to the ancestral cell types at t1 via the update m1 = Tm2. To compute the growth distortion metric for an
alignment matrix Π, we use the following cell type transition matrix T:

Tpq =

(
n1

m2(q)

) ∑
i∈P1(p)

∑
j′∈P2(q)

Πij′ , (10)

and prove in Proposition 2 of Supplement § S5.2 that the above T minimizes Jgrowth for a given Π across all T’s. That
is, when we do not know the true cell type transitions, we compute the growth distortion of an alignment as the lowest
distortion it could possibly achieve under any cell type transition.

2.3.2 A metric of cell migration

We introduce a migration metric Jmigration of an alignment Π between two slices that quantifies the distance cells move
under the alignment. This metric formalizes the intuition that the descendants of a cell tend to be close to their parent,
particularly over short time intervals. Given an alignment Π and function φ : R2 → R2 that places slice S2 into a
common-coordinate frame with slice S1, we define the migration metric as:

Jmigration = E(i,j′)∼Π

[
∥si − φ(sj′)∥22

]
, (11)

namely the average squared distance between spatial coordinate si in slice S1 and transformed second-slice spatial
coordinate φ(sj′) over pairs (i, j′) that are sampled proportionally to Π (column normalizing Π, as in Supplement Eq.
(49)). In the results reported below, we use the function φ(z) = Q(z − h) for an orthogonal transformation Q and
translation vector h ∈ R2 that solve a generalized Procrustes’ problem (Supplement § S6). This describes a rigid-body
transformation relating the coordinate frames of slice S1 and S2.

3 Results
3.1 Evaluation on simulated ST data

We evaluated DeST-OT and moscot on simulated data from one- and two-dimensional tissue slices with eight-
dimensional feature expressions for each spot. For each timepoint, the feature at each spot varies within each cell type.
Details of the simulation of features are in Supplement § S7. Since moscot assumes the marginals used as input to its
OT problem are already adapted to cell proliferation and apoptosis using prior knowledge, we set moscot’s marginal
over t1 to account for changing cell type proportion in each experiment. DeST-OT uses semi-relaxed OT, and thus no
prior knowledge of growth and death was required.

The first simulated dataset consisted of a pair of one-dimensional tissue slices, denoted as timepoint t1 and t2, each
with 101 spots. There were two cell types across both slices. Slice t1 had 30 spots of cell type A and 71 spots of cell type
B; slice t2 had 60 spots of cell type A and 41 spots of cell type B (Fig. 2ab). Therefore, cell type A grew by a factor of
2 from t1 to t2 and cell type B shrunk by roughly the same factor. We ran both DeST-OT and moscot on this pair of
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Figure 2: DeST-OT and moscot alignments on simulated data. a, DeST-OT and b, moscot alignment results for the balance
parameter α ranging from 0.1 (mostly feature term) to 0.9 (mostly spatial terms), on 1D simulated slices. DeST-OT’s alignments
indicate the cell type boundary, and color represents the polar angle made from two of the four non-zero coordinates in each cell type.
c, DeST-OT and d, moscot alignments on 2D simulated slices with standard deviation of the expression noise σ = 0.1, 0.4, 0.8.
Expression features are visualized similarly in 2D. e, The growth distortion metric for DeST-OT and moscot as a function of σ.

one-dimensional slices, varying the balance parameter α in the objective functions from α = 0.1 to α = 0.9, gradually
placing more weight on each method’s spatial term (i.e. the merged feature-spatial term in DeST-OT, and the GW term
in moscot) in the objective. We found that DeST-OT alignments are robust to varying α, always aligning cells to the
correct cell types across timepoints (Fig. 2a). DeST-OT captures the true growth pattern of cells for all values of α
because the merged feature-spatial term of DeST-OT incorporates both transcriptional and spatial information. On the
other hand, moscot has greater difficulty capturing growing and shrinking cell types with larger α, as its spatial term
emphasizes matching the shapes of the two slices as discussed in §2.1 (Fig. 2b). This demonstrates the effectiveness of
DeST-OT’s spatiotemporal objective function, as well as the importance of DeST-OT’s semi-relaxed framework even
when aligning slices with the same number of spots.

We next tested DeST-OT and moscot on a more realistic simulation with two-dimensional slices and feature
expression noise. We generated two elliptical slices at t1 and t2 of the same size (988 spots), again with two cell types
across the slices; cell type A occupies the right regions of the slices in (Fig. 2b), while cell type B is on the left. Slice t1
had 240 spots of cell type A and 748 spots of cell type B; slice t2 had 726 spots of cell type A and 262 spots of cell
type B. Each cell type is characterized by a pair fx,right, fx,left of eight-dimensional feature vectors for the x-direction,
and another pair fy,top, fy,bottom of feature vectors for the y-direction. The feature at a given spot in each cell type is a
convex combination f(x, y) = λxfx,right + (1− λx)fx,left + λyfy,top + (1− λy)fy,bottom of the x-direction feature
vectors the y-direction feature vectors. The coefficients λx, λy are determined by the horizontal and vertical distance to
the spot’s cell type boundary. This creates a consistent gradient of features within each cell type (Supplement § S7).
For (x1, y1) ∈ S(1), (x2, y2) ∈ S(2) we have that if λA

x1
= λA

x2
and λA

y1
= λA

y2
then fA(x1, y1) = fA(x2, y2) and

the two spots should be aligned between timepoints 1 and 2 (likewise for cell type B). We then added zero-centered
Gaussian noise with standard deviation σ independently to each feature dimension, with σ ranging from 0.1 to 0.8 in
increments of 0.1. In addition to supplying moscot with the ground-truth adapted t1-marginal, we also set it to be
fully unbalanced with τa = 0.99, τb = 0.999 as suggested by the tutorial for noisy data.

DeST-OT aligns ancestor cells to descendant cells correctly along the cell type feature gradients across timepoints
(Fig. 2c), capturing cell growth and death. DeST-OT alignments are robust to noise as well, aligning cell types correctly
even with added noise in spot features. While moscot produces straighter alignments (Fig. 2d) we found that it
identifies the ancestors of cell type B at t2 to come from a small, similarly shaped region of cell type A at t1 even with
perfect growth knowledge encoded in the marginal g1. Rather than aligning along a gradient of spatially expanding
features, moscot’s spatial term prefers to align identical shapes, and is not suited to aligning tissue slices which grow
and deform over time. DeST-OT consistently infers more accurate cell development as quantitatively shown by the
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b
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Figure 3: DeST-OT analysis of axolotl brain development. a, Stereo-seq data from axolotl brain sections at embryonic stage 44,
embryonic stage 54, embryonic stage 57, Juvenile stage, and Adult stage, with cell type labels from [43] b, Cell type transition graph
derived from DeST-OT alignments throughout axolotl brain development. The cell types are arranged in a half circle. A cell type is
assigned to a developmental stage if it first appears in that stage. The width of the edges are proportional to the weight of transition.
Self-loops are omitted.

growth distortion metric (Fig. 2e).

3.2 Axolotl brain development

We applied DeST-OT to analyze the developmental dynamics of the telencephalon, a region of the brain, in axolotl
(Ambystoma mexicanum), a species of salamander. Wei et. al. [43] used Stereo-seq [5] to measure gene expression
in the axolotl telencephalon at five development timepoints: three embryonic stages (44, 54, 57), Juvenile stage, and
Adult stage (Fig. 3a). The slices grow in size, and progenitor cell types transition into mature cell types during the
developmental process. We used DeST-OT, moscot, PASTE, STalign, and SLAT to infer an alignment between
each pair of timepoints respectively, and computed the growth distortion and migration metric for each method (Fig. 4).
Since new cell types appear at individual timepoints and the transitions between cell type during development are not
annotated, we computed the growth distortion metric for each method under the cell type transition that minimizes
their growth distortion as described in § 2.3. DeST-OT has the lowest growth distortion among all methods while
maintaining low migration distances, demonstrating the quality of the DeST-OT alignments (Fig. 4). moscot and
STalign achieve a low migration metric by shape-matching but have high growth distortions. SLAT has a low
migration distance on this dataset as well, but cannot estimate cell growth and death accurately either.

We examined the cell type transition matrix T between each pair of adjacent timepoints derived from the DeST-OT
alignment (§ 2.3) and the cell type annotations from [43] (Fig. S1). From these transition matrices, we derive a
weighted directed graph showing all frequent transitions (>20%) (Fig. 3b). Many of the DeST-OT inferred cell type
transitions are consistent with previously reported developmental trajectories. For example, we found that among all
cell types, dEGCs (developmental ependymoglial cells) give rise to the largest number (11) of descendent cell types,
consistent with previous studies which suggest that EGCs are equivalent to neural stem cells in mammals and contribute
to neurogenesis during brain development [19, 20, 3]. Furthermore, immature cell types expressing early developmental
markers disappear from the juvenile stage onward (Fig. 3a), and DeST-OT confirmed that immature cells of each
cell type, such as CMPN or nptxEX, transition into their respective mature cell types. Previous studies suggested a
potential lineage transition from EGCs to neuroblasts (NBLs) [29], and a transition from dEGC to NBL cell types that
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Figure 4: Alignment performance of various methods on the axolotl brain development dataset. a, The growth distortion metric
and migration metric of DeST-OT, moscot, Expr-only, PASTE alignments on all pairs of axolotl brain development timepoints.
b, The growth distortion and migration metric of SLAT and STalign alignments on all pairs of axolotl brain development
timepoints. Not included in the plot in a because of high growth distortion.

appear after stage 44 (dNBL4, dNBL5, tlNBL) is also found by DeST-OT. Finally, dEGCs disappear at stage 57, and
DeST-OT predicts that it transitions mostly into ribEGCs located in the ventricular zone, which is the same spatial
region where dEGCs located before and consistent with the findings in [43]. We observe a directed cycle between
cckIN and MSN, probably because the two cell types are mixed together in the striatum region. There is no directed
edge going into mpIN because it has multiple progenitor cell types and no cell type passes the threshold (20% in this
case) for including an edge giving rise to mpIN (Fig. S1), indicating a diverse origin of mpIN.

We found that the growth patterns of individual cells inferred by DeST-OT are more biologically reasonable than
those inferred by moscot (Fig. 5). For the three embryonic stages, DeST-OT infers that all cells are growing and
identifies differential growth patterns of tissue regions: the outer part of the telencephalon, mostly occupied by immature
cell types, grows faster than the inner part. In contrast, the growth patterns inferred by moscot tend to be sparser,
with a few “representative” cells have a high growth and thus a large number of descendants in the next timepoint,
while most other cells are dying, which is not realistic for embryonic tissues. This is a computational artifact of the
fully unbalanced OT formulation which allows a few “best” cells from the two slices to be aligned, hence does not fit
spatiotemporal data where all descendant spots should be aligned.

4 Discussion
We introduce DeST-OT, a method for aligning spatiotemporal transcriptomics data and for inferring cell proliferation
and apoptosis. Using a semi-relaxed optimal transport framework and an objective cost designed for spatiotemporal data,
DeST-OT finds an alignment between progenitor and descendent cells in developmental spatial transcriptomics data,
infers growth and death rates, and infers cell type transitions during tissue development. To quanitfy the performance of
DeST-OT and other spatiotemporal alignment methods, we introduce the migration metric to quantify the distance
cells travel under a spatiotemporal alignment and the growth distortion metric to quantify how accurately an alignment
infers growth relative to ground-truth cell type annotations. We show on simulated data that DeST-OT outperforms
other methods and infers cell growth and death accurately. We use DeST-OT to study axolotl brain development and
confirm previously reported lineage transitions. DeST-OT alignments can elucidate developmental dynamics and may
lay the ground for the discovery of their molecular basis. We also demonstrate that DeST-OT alignments are more
biologically and physically realistic than competing methods.

Future work includes the evaluation of DeST-OT on other spatiotemporal datasets. There are currently few such
publicly available datasets, but analysis of another unpublished dataset is ongoing and will be included in a future
revision. DeST-OT will be a useful tool for biologists to gain new insights in spatiotemporal processes such as
development and reprogramming, discovering new temporally and spatially dependent biological phenomena.

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 10, 2024. ; https://doi.org/10.1101/2024.03.05.583575doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.05.583575
http://creativecommons.org/licenses/by/4.0/


m
os
co
t

De
ST
-O
T

Stage 44 Stage 54 Stage 57

Figure 5: Growth patterns of axolotl brain. The growth of cells inferred by DeST-OT and moscot on the three embryonic stages
of axolotl brain development. Growth vector ξ is normalized to unit of number of cells.
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Supplement

S1 Formulation
In vanilla optimal transport, and in the original formulation of PASTE [45], one has two constraints on alignment matrix
Π, given by probability measures g1 ∈ Rn1 ,g2 ∈ Rn2 : the row-sum of Π must be g1, and the column-sum of Π must
be g2. Measures g1 and g2 are supported on indices i ∈ {1, . . . , n1} and j′ ∈ {1, . . . , n2}, enumerating the spots of
two slices of spatial transcriptomics data, S1 = (X(1),S(1)) and S1 = (X(2),S(2)). The rows xi ≡ X

(1)
i,· of X(1) and

x′
j′ ≡ X

(2)
j′,· of X(2) are indexed by spots, and each row is the expression vector at the given spot. Likewise, the rows

si ≡ S
(1)
i,· of S(1) and s′j′ ≡ S

(2)
j′,· of S(2) are the spatial coordinates of each spot. We use the convention that a prime on

an index, e.g. j′, refers to a spot in the second slice, while the absence of a prime on an index denotes a spot in the first
slice.

S1.1 Context

In PASTE, a convex combination of standard inter-slice expression cost and a Gromov-Wasserstein cost are used (this
combination referred to as Fused Gromov-Wasserstein (FGW)). The corresponding optimization problem is:

min
Π∈Rn1×n2

+

{
(1− α)

∑
i, j′

Cij′Πij′ + α
∑

i, j′, k, l′

(
D

(1)
ik −D

(2)
j′l′

)2
Πij′Πkl′

}
s.t. Π1n2

= g1 =
1

n1
1n1

, ΠT1n1
= g2 =

1

n2
1n2

, Π ≽ 0

(12)

Above, C ∈ Rn1×n2 is the inter-slice (gene expression) feature-distance matrix Cij′ ≡ C(xi,x
′
j′) whose ij′-th entry

is the distance in expression space between the expression vector xi at spot i in the first slice and the expression vector
x′
j′ at spot j′ in the second slice. Matrices D(1) and D(2) in (12) are intra-slice (spatial) distance matrices. Define the

4-tensor L ≡ L(D(1),D(2)) ∈ Rn1×n2×n1×n2 entry-wise via

Li j′k l′ :=
(
D

(1)
ik −D

(2)
j′l′

)2
(13)

We let ⊗ denote the tensor-matrix multiplication operator, such that for the alignment matrix Π ∈ Rn1×n2

≥0 , L ⊗Π
denotes the n1 × n2 matrix whose ij′-th entry is

∑
k, l′ Li j′k l′Πkl′ . Let ⟨·, ·⟩F denote the Frobenius inner product of

matrices. In this notation, the objective function (12) can be reformulated as follows:

min
Π∈Rn1×n2

+

{
(1− α)

〈
C,Π

〉
F
+ α

〈
L⊗Π,Π

〉
F

}
s.t. Π1n2

= g1 =
1

n1
1n1

, ΠT1n1
= g2 =

1

n2
1n2

, Π ≽ 0

(14)

with L as in (13). The only difference between PASTE2 [24] and the original PASTE is the inclusion of the constraint
1T
n1
Π1n2

= s, which goes along with a relaxation of the two marginal constraints to inequalities:

min (1− α)
〈
C,Π

〉
F
+ α

〈
L⊗Π,Π

〉
F

s.t. Π1n2 ≤ g1 =
1

n1
1n1 , ΠT1n1 ≤ g2 =

1

n2
1n2 , 1T

n1
Π1n2 = s, Π ≽ 0

Note that by considering the dual problem, partial optimal transport, in which there is a constraint s ∈ (0, 1) on
the total mass 1T

n1
Π1n2

transported, can be seen as an instance of unbalanced optimal transport associated to the
total variation φ-divergence (see [36] § 4.2). Unbalanced optimal transport refers to the version of (14) obtained
by deleting the two hard constraints, Π1n2

= g1 and ΠT1n1
= g2, on the marginals of Π, and instead adding to

the cost function in brackets a pair of “soft constraints” in the form of two terms: Dφ(Π1n2 |g1) + Dφ(Π
T1n1 |g2).

Here, φ : (0,∞) → [0,+∞] is a so-called entropy function, namely it is convex, positive, lower-semi-continuous,
and with φ(1) = 0. Let Dφ(·|·) denote the associated φ-divergence, defined for positive measures α, β on some
common space X as Dφ(α|β) =

∫
X φ(dαdβ )dβ, where we have supposed α and β are mutually absolutely continuous,

for instance. When φ(p) = p log p− p+ 1, one recovers the Kullback-Leibler (KL) divergence, which we denote by
Dφ(·|·) = KL(·∥·) in this case.
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S1.2 DeST-OT objective

Our view of an OT objective function as a Hamiltonian, assigning an energy to a given transport plan Π, motivates the
terminology we use for its components below. The first change we address in the formulation of DeST-OT, relative to
PASTE, is the constraints on the optimization together with our calibration of mass on the second slice. Specifically, we
relax the constraint Π1n2 = g1, while preserving the other. This fixes the total mass transported by Π to be the total
mass of the second (usually larger, in the spatiotemporal setting) slice, which is equipped with positive, not necessarily
probability, measure g2 = 1

n1
1n2

. This allows the Π-marginal over the first slice, namely Π1n2
, to be non-uniform,

while fixing its total mass to the value n2

n1
. One is naturally lead to introduce a mass-flux term,

ξ = Π1n2
− g1, (15)

as this object becomes non-zero as soon as we relax the first marginal constraint. In section S1.4, we discuss the value
of ξ. The non-uniformity in Π1n2

reflects that not all spots in the first slice are necessarily contributing the same
amount to spots in the second slice – different cell types may have different growth rates.

The second change we address concerns the matrices used by the Gromov-Wasserstein (GW) term EGW(Π) =

⟨L⊗Π,Π⟩. This term favors Π matrices which are nearly isometries between the two slices, as whenever D(1)
ik = D

(2)
j′l′ ,

the corresponding summand of the GW term EGW(Π) vanishes. For a more general pair of intra-slice cost matrices,
(symmetric, non-negative matrices) M(1) ∈ Rn1×n1 and M(2) ∈ Rn2×n2 , we generalize (13), defining the 4-tensor
LM ≡ LM(M(1),M(2)) ∈ Rn1×n2×n1×n2 entry-wise via

LM
i j′k l′ :=

(
M

(1)
ik −M

(2)
j′l′

)2
, (16)

and we define the analogous GW energy (using M(i) in place of the D(i)). We also refer to it as a quartet energy, as
each summand defining it corresponds to two pairs points:

EM
GW(Π) ≡ EM

quartet(Π) = ⟨LM ⊗Π,Π⟩. (17)

We define the matrices M(i) from a pair of expression distance matrices for the first and second slice, C(1) ∈
Rn1×n1 , C(2) ∈ Rn2×n2 . These intra-slice feature matrices C(i) are distinct from their inter-slice counterpart
C ∈ Rn1×n2

+ which contains the distance in (expression) feature space from spots in slice 1 and slice 2, and is therefore
not a symmetric, square matrix in general. We specifically choose M(i) to be the Hadamard product of matrices C(i)

and D(i), so that entry-wise, one defines M(1)
ik = C

(1)
ik D

(1)
ik and M

(2)
j′l′ = C

(2)
j′l′D

(2)
j′l′ . We refer to the M(i) as merged

feature-spatial matrices.
To EM

GW, we add a symmetric pair of terms EM
triplet(1)

and EM
triplet(2)

of the form

EM
triplet(1)(Π) = Tr

[
ΠV(2)ΠT

]
=
∑
i,j′,k′

Πij′Πik′V
(2)
j′k′ ,

EM
triplet(2)(Π) = Tr

[
ΠTV(1)Π

]
=
∑
i, j, k′

Πik′Πjk′V
(1)
ij

(18)

When V(2) = (M(2))2, i.e. entry-wise squaring of the merged feature-spatial matrix, which is why the superscript
indicates the same dependence on the M-matrices as the GW term. Note that EM

triplet(1)
is identical to the terms in the

sum defining EM
GW which have i = k, which is why we name it for the first slice instead using the index of the merged

feature-spatial matrix involved in the definition. This energy EM
triplet(1)

favors Π which predict a localized (in space,
and in gene expression space) set of possible ancestors for each spot in the second slice.

Likewise, when V(1) = (M(1))2, energy EM
triplet(2)

is identical to the terms in the sum defining EM
GW for which

j′ = ℓ′, and so is named for the second slice. Transport plans Π with low EM
triplet(2)

-energy are more likely to predict
that descendants of a given spot in the first slice are close (spatially, and in feature-distance) in the second slice. Together,
EM
triplet(1)

and EM
triplet(2)

encourage spot-wise continuity in Π, without penalizing Π for spatial distortions intrinsic to
tissue growth, or for change in expression characteristic of development. We refer to the sum of these terms as the
triplet energy between triplets of points, Etriplet:

EM
triplet(Π) = EM

triplet(1)
(Π) + EM

triplet(2)
(Π) (19)

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 10, 2024. ; https://doi.org/10.1101/2024.03.05.583575doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.05.583575
http://creativecommons.org/licenses/by/4.0/


Combining these changes, and adding in a term of entropy regularization, the formulation 1 used by DeST-OT is:

min (1− α)
〈
C,Π

〉
F︸ ︷︷ ︸

Edoublet(Π)

+
α

2

(
EM
triplet(Π) + EM

quartet(Π)

)
+ γKL(Π1n2

∥ g1)− ϵH(Π)

s.t. ΠT1n1 = g2 =
1

n1
1n2 , g1 =

1

n1
1n1 , Π ≽ 0

(20)

with LM defined in (16), and the notation LM ⊗Π as defined just below (13). The choices of V(1) = ((M(1))2 and
V(2) = ((M(2))2 as above enable us to write the sum of our triplet and quartet energies in (20) as〈

L̃M ⊗Π,Π
〉
=
∑
ij′kl′

(1 + δik + δj′l′)
(
M

(1)
ik −M

(2)
j′l′

)2
Πij′Πkl′ (21)

where δik is 1 if and only if i = k and is 0 otherwise. The 4-tensor L̃M is defined implicitly by the above display, and
the objective function used by DeST-OT can now expressed concisely as follows, though (20) is the expression we use
in practice for computing gradients:

(1− α)
〈
C,Π

〉
F
+

α

2

〈
L̃M ⊗Π,Π

〉
F︸ ︷︷ ︸

EM(Π)

+γKL(Π1n2 ∥ g1)− ϵH(Π) (22)

As indicated by the underbrace in (22), we define the merged feature-spatial energy, denoted EM(Π) to be the sum of
EM
quartet(Π) and EM

triplet(Π), to have a more descriptive way of referring to the left-hand side of (21).

S1.3 Connection to energy-based models

Owing to the presence of multiple energetic conditions, including within-slice energies and matching energies, we make
a connection between the optimal transport problem we have defined and an energy-based model. For some energy
function Eθ(x) ≥ 0, and for some variable we are optimizing x(≜ Π in our case), one may define a Gibbs-Boltzmann
distribution Pθ(x) given by:

Pθ(x) =
1

Zθ
e−Eθ(x),

where θ comes from the SRT data, θ = (C,C(1),C(2),X(1),X(2)). The normalizing constant (or partition function)
Zθ is given by Zθ =

∫
x
e−Eθ(x)dx, which is generally intractable to compute. For such an energy-based model, in

order to find an optimal value for x, one may optimize the the log-likelihood of the model given by ∇x logPθ(x),
where:

∇x logPθ(x) = ∇x

(
−Eθ(x)−

∫
x

e−Eθ(x)dx

)
= −∇xEθ(x)

which holds as the partition function is clearly a constant with respect to x. For the Wasserstein energy ⟨C,x⟩, if
Eθ(x) = −⟨C,x⟩F represents our energy function, we are simply solving a standard optimal-transport problem. If
Eθ(x) = −((1− α)⟨C,x⟩F + α⟨LD ⊗Π,Π⟩F ), then we are solving an FGW optimal-transport problem, and so on.
While the connection to energy-functions is trivially evident, the value of introducing the connection is seen in the
product-of-experts formulation of energy-based models, where one may have multiple Gibbs-Boltzmann distributions
P

(1)
θ , P

(2)
θ , ..., P

(N)
θ , each carrying some “expert” information, where the distribution representing the combination of

the features of all of the distributions is called a product-of-experts [16], given by:

Pθ(x) =
1

Z
(1:N)
θ

N∏
i=1

P
(i)
θ (x) =

1

Z
(1:N)
θ

N∏
i=1

1

Z
(i)
θ

e−E(i)
θ (x) ∝x e−

∑N
i=1 E(i)

θ (x)

Where the energy-function of the final Gibbs-Boltzmann distribution is given by the sum of the individual energies:

Eθ(x) = E(1)
θ (x) + ...+ E(i)

θ (x) + ...+ E(N)
θ (x)

1All matrices involved are subject to a consistent data-dependent normalization by matrix norms which ensure the terms of the gradient are scaled
analogously, such that α = 0.5 roughly means both terms contribute equal weight for interpretability and robustness of the hyper-parameter defaults
to different datasets.
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As such, we augment the optimal-transport formulation by framing it as a product-of-experts, constructing a total-energy
which we optimize with respect to Π that carries the standard Wasserstein (doublet) energy ⟨C,Π⟩F , the quartet energy
⟨LM ⊗Π,Π⟩F defined through the merged feature-spatial matrices, and two triplet energies which are also defined
from these matrices: Tr

[
ΠM(2)ΠT

]
and Tr

[
ΠTM(1)Π

]
. Denoting the optimal-transport entropic-term density PH,

we minimize the following product-of-experts Gibbs-Boltzmann distribution with respect to Π:

Pθ(Π) =
1

Zθ
PH(Π)× e−Eexpression(Π) × e−EGW(Π) × e

−E
triplet(1)

(Π) × e
−E

triplet(2)
(Π)

=
1

Zθ
PH(Π)× exp

{
⟨C,Π⟩F + ⟨LM ⊗Π,Π⟩F +Tr

[
ΠTM(1)Π

]
+Tr

[
ΠM(2)ΠT

]}
Which offers the interpretation that taking the sum of the energy terms in our optimal-transport problem is equivalent to
optimizing a product of the Boltzmann-distributions over our variable Π, where this product represents a product-of-
experts in which each “expert” distribution refines the matrix Π to be more biologically and spatially realistic with
respect to the transcriptomic and spatial geometry of the first and second slices. Alternatively viewing each term as
representing pairwise motifs (Wasserstein, or doublet term), ternary motifs (triplet term), and quaternary motifs (GW,
or quartet term), these experts capture features ranging from lower to higher order.

S1.4 On the mass-flux term, semi-relaxed OT

The semi-relaxed approach has been explicitly discussed in [41, 12, 6, 4, 32, 7]. Blondel et al. [4] formulate a version
of our problem in their Definition 3 (“semi-relaxed smooth primal”), fixing their second marginal as we do, but without
using entropic regularization in order to produce sparse transport plans. These authors point out that the mixed relaxed
distance introduced by Benamou in [2] is a version of semi-relaxed OT, fixing the first marginal instead of a second,
and using an ℓ2-penalty in place of a KL penalty. Interestingly, this penalty is applied directly to the analogue of ξ in
this setting. A recent paper of Dong et al. [12] uses semi-relaxed transport for domain adaptation, aligning imaging
data of different modalities. These authors use a Wasserstein loss, fixing the first marginal and in addition constraining
the total mass transported. Vincent-Cuaz et al. [41] apply the semi-relaxed framework to graph matching, fixing the
first marginal, and using a GW loss function. For matching two graphs, they find that fixing the first marginal while
relaxing the second better preserves the structure of the first graph under the transport plan, versus the balanced regime.
These authors [41] note that semi-relaxed OT (in the absence of entropy regularization) produces sparser transport plans
than vanilla optimal transport. This sparsity also motivated the earlier work of [32] on color transfer; maps that are “too”
multi-valued (i.e. not sparse enough) can inappropriately mix colors being transferred and create spatial irregularities.
These authors also fix the first marginal, using a sparse transport plan to assign colors from the second image to the
pixel of the first, while preserving its geometry. On the theoretical side, Chizat et al. [7] introduce the notion of a
semi-coupling to connect the (PDE) dynamic and static pictures of semi-relaxed OT. Lastly, we mention two studies of
Frank-Wolfe [13] and Sinkhorn [14] in the semi-relaxed setting.

We now discuss some properties of the mass-flux term ξ built from Π and advantages our formulation give us. Let
us start by examining the objects analogous to ξ in the fully-unbalanced case. When both marginal constraints are
relaxed, both of the vectors ξ1 = Π1n2 − g1 and ξ2 = ΠT1n1 − g2 may be non-zero. Towards relating vectors ξ1 and
ξ2, we take the inner product of these expressions with 1ni to obtain:

1T
n1
ξ1 = 1T

n1
Π1n2 − 1T

n1
g1 and 1T

n2
ξ2 = 1T

n2
ΠT1n1 − 1n2g2,

We solve each of these for the total mass transported, namely 1T
n1
Π1n2 ≡ 1T

n2
ΠT1n1 . After relating the two

expressions through the total mass transported and re-arranging terms, one has

1T
n1
ξ1 − 1T

n2
ξ2 = 1T

n2
g2 − 1T

n1
g1

≡ n2 − n1

n1
,

with the last line following from our choice of normalization on the uniform measures g1 = 1
n1

1n1 and g2 = 1
n1

1n2 .
In the semi-relaxed context of DeST-OT, ξ ≡ ξ1, and vector ξ2 is zero, in which case, one has

1T
n1
ξ =

n2 − n1

n1
.
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Thus, the semi-relaxed formulation allows us to describe all growth and death implicit in transport plan Π by a
single vector ξ, instead of a pair of vectors (ξ1, ξ2) of different dimensionality. Moreover, the hard constraint of the
semi-relaxed formulation makes this single vector ξ interpretable in a way that the pair (ξ1, ξ2) is not. Observe that the
second marginal g2 is fixed, with units assigning mass 1

n1
to each spot. Though the first marginal of Π is no longer

fixed, ξ is by definition an additive perturbation of g1 which uses the same units as g2, also assigning mass 1
n1

to each
spot. ξ also uses these units, giving expression g1 + ξ physical meaning.

Rescaled vector q1 = n1(Π1n2
) has in its i-th element the amount of mass transported from spot i, in units of

numbers of spots. These numbers are fractional, as Π is implicitly estimating these values in a sense averaged over
t2 − t1, with respect to a stochastic process similar to the one described in [6]. Because the rescaled target measure
n1g2 shares these counting-measure units, we can reasonably interpret q1 ≡ q1(Π) as the vector of the expected
number of descendants of each spot in the first slice, as predicted by Π. This is clear, as we have:

E∼S1,S2
[
∑
j∈S2

1[i → j]] =
∑
j∈S2

E∼S1,S2
[1[i → j]] =

∑
j∈S2

Πi,j ≜ q1,i/n1

Where multiplying by n1 scales q1 to have the units of counting measure over spots. We lose this interpretation in the
fully-unbalanced regime: when the target measure is not constrained to be uniform, the amount of mass transported from
spot i may not reflect an expected number of descendants, as this value will depend on the mass of each descendant.

From the definitions of ξ and q1, we have

n1ξ = q1 − 1n1
,

and n1ξ has the following intuitive interpretation: at spot i,

n1ξi = Expected number of branches/descendants contributed from spot i

S2 Growth rate conversion
The conversion of the growth vector (mass-flux) ξ to a growth rate can be done simply. We use the growth process
described in [22], where one considers the PDE modeling a transcriptomic trajectory as a density evolving in time:

∂ρ

∂t
= −∇ · (ρF) + σ2

2
∆ρ+ Jρ

With −∇ · (ρF) a continuity equation drift term, σ2

2 ∆ρ a diffusion term, and Jρ a term representing growth and
branching, which are all modeled using successive optimal transport steps. We convert our mass-flux term from the
optimal transport to a growth using the principle of [22], where operator-splitting the branching component above from
the drift-diffusion gives us a continuous-time growth update as:

∂tρ = Jρ

Thus we simply need to consider the solution to the ordinary differential equation ρ̇ = Jρ for J between times t1, t2:

ρ(t2) = eJ(t2−t1)ρ(t1)

For ρ(t1) and ρ(t2) a prior and posterior density over the spots in the first slice. By the semi-relaxed optimal transport
formulation, we simply compare against a simple uniform prior density ρ(t1) =

1
n1

which we start with. Thus one
concludes the connection to a growth rate, on a per-spot basis in the first slice, is given as:

J =
log (ρ(t2)n1)

t2 − t1
=

log (n1ξ + 1)

t2 − t1

Which establishes a simple monotonic connection between our growth vector ξ and a proper growth rate in time. In the
notation of [22], τ = t2 − t1, and one has J = τ−1(pb − pd), establishing a connection between the growth rate and
birth-death parameters pb, pd, and τ . Conventionally, cell division and death are modeled as follows: each cell has
an exponential clock of rate τ−1. When a cell’s clock rings, it dies with probability pd, or splits into two cells with
probability pb = 1 − pd. As such, our growth rates have a natural connection to the parameters of this birth-death
process.

17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 10, 2024. ; https://doi.org/10.1101/2024.03.05.583575doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.05.583575
http://creativecommons.org/licenses/by/4.0/


S3 Connection to the continuity equation and interpretation of growth vector
Suppose we denote x(tk) = x ∼ µ, x(tk+1) = y ∼ ν as samples of our slices S1 and S2, and consider the pairwise-
alignment problem in the equivalent Monge-formulation (the discrete analogue of µ being g1, and ν being g2). The
Monge-problem is formulated as:

inf
T:T#µ=ν

∫
Rd

∥T(x)− x∥2dµ(x)

Where it can be shown that an equivalent form exists in which the transport-map can be expressed as the integral of
some vector field F(x, t), weighted by a time-dependent density ρ(x, t) and where the optimization is performed over a
vector-field of least-norm:

W2
2 (µ, ν) = inf

(ρ,F)
T

∫
Rd

∫ T

0

ρ(x, t)∥F(x, t)∥22dxdt

s.t. ρ(·, tk) = µ

ρ(·, tk+1) = ν

(23)

Where the vector field is optimized subject to the continuity equation: ∂tρ = −∇ · (ρF(x, t)) [39]. In the semi-relaxed
case, one may either assume mass-conservation or generalize the vanilla continuity equation by assuming the presence
of a source or sink term σ (i.e. σ = Jρ for J a growth rate as defined in S2) which allows mass to be introduced into
the system in the form ∂tρ = −∇ · (ρF(x, t)) + Jρ. As such, ξ represents the integral of a divergence in the case of
mass-conservation (i.e. local mass-redistribution), or a spatial divergence added to a source/sink term in the case where
the total mass is increased or decreased in the system. To be precise, we have that in the balanced case:

ξ(x) =

∫ t2

t1

(
∂ρ

∂t

)
dt =

∫ t2

t1

−∇ · (ρF(x, t)) dt

And general semi-relaxed case:

ξ(x) =

∫ t2

t1

(
∂ρ

∂t

)
dt =

∫ t2

t1

(−∇ · ρF(x, t) + σ ) dt

S3.1 Interpretation of ξ

Supposing we call the spatial volume encompassed by our tissue slice at time t, Vt. Each element of ξ, ξk, represents
the approximate value of ∇ · (ρ(xk, yk)F(x, t)(xk, yk)) in some box [xk −∆, xk +∆]× [yk −∆, yk +∆] centered
at (xk, yk) ∈ Vt. Generally speaking the volume Vt is assumed to be connected such that, for Nt dots at time t, the
volume is Vt = ∪Nt

k=1[xk −∆, xk +∆]× [yk −∆, yk +∆].
We assume a cell type assignment is some function from a matrix of distance-based dissimilarities and feature-values

to a partition P of the data ϕ(D,C) = P . Where P = {Pk}Kk=1 represents a decomposition of our dots into disjoint
sets representing respective cell types. Following from this, we define the volume of a cell type k at time t, Vt,k, as
Vt,k = ∪(xi,yi)∈Pk

[xi −∆, xi +∆]× [yi −∆, yi +∆]. Clearly, Vt = ∪K
k=1Vt,k.

Definition 1. Tissue-slice growth. The term 1T ξ =
∑

x

∑
y

∫ t2
t1

−∇ · (ρ(x, y)F(x, t)(x, y)) represents the discretized
volume integral ∫ t2

t1

∫∫
Vt

−∇ · (ρ(x, y)F(x, t)(x, y)) dVt = −
∫ t2

t1

∮
∂Vt=St

(ρF(x, t)) · n̂dSt

for ∆ = 1/2. By the divergence theorem, one identifies the sum of the divergences in the volume Vt as the mass-flux
across the boundary ∂Vt. Thus, the growth of a tissue slice contained within in a volume at time t, Vt, is defined as the
mass-flux across this boundary integrated from t1 to t2.

For a balanced optimal transport this is identically zero for any boundary as ξ = 0:

1T
n1
ξ = 1T

n1
(Π1n2 − g1) = 1T

n1
0n1 = 0
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For a semi-relaxed optimal transport with marginals that sum to the same value, such as the uniform marginals
ΠT1n1 = g2 = 1

n2
1n2 and marginal g1 = 1

n1
1n1 , one may have local growth or death as ξ is not necessarily the

zero-vector, but globally mass is conserved:

1T
n1
ξ =

(
ΠT1n1

)T
1n2

− 1T
n1
g1 = gT

2 1n2
− 1T

n2
g1 = 0

In the case of a semi-relaxed optimal transport, if we allow for this source or sink term where

1T ξ =

∫ t2

t1

∮
∂Vt=St

(−ρF(x, t) + σ ) · n̂dSt

we generalize the above definition by asserting global mass gain or loss is possible. In particular, we can set the
unbalanced marginals to reflect the normalized change in volume (or change in mass) as:

1T
n1
ξ = gT

2 1n2 − 1T
n1
g1 = η (24)

Where η ∈ R could be chosen to reflect something known–such as a total change of mass or volume between the two
slices. We also note that the interpretation of ξ can also be used to measure local growth of a tissue within some fixed
boundary, as described in the corollary below.

Corollary 1 (Cell type growth). Given a partition P of tissue into separate cell types, and defining the vector zp by

(zp)k =

{
1 if (xk, yk) ∈ Pp

0 otherwise

The term zTp ξ represents the volume integral∫ t2

t1

∫∫
Vt,p

−∇ · (ρ(x, y)F(x, t)(x, y)) dVt,p = −
∫ t2

t1

∮
∂Vt,p=St,p

(ρF(x, t)) · n̂dSt,p

and represents the mass-flux out of the boundary of cell type p, ∂Vt,p, integrated from t1 to t2.

S3.2 Defining an Unbalanced Optimal Transport problem to match an a priori known total mass-flux

We seek a balancing condition which fixes the mass-flux η from our optimal transport 24 to some interpretable and
meaningful value. By our previous decomposition of the volume of a bar-coded grid of spots into boxes of equal volume
∆2, or analogously a small hexagonal volume for Visium, and our assumption that the mass-density is constant for each
spot, we have that the normalized mass-flux above must equate to:

=

∫
S2

ρM (x2)dV (x2)−
∫
S1

ρM (x1)dV (x1)∫
S1

ρM (x1)dV (x1)
=

∫
S2

dV (x2)−
∫
S1

dV (x1)∫
S1

dV (x1)
≜

1

|vol (S1) |

∫ t2

t1

(
∂volS
∂t

)
dt,

as we assume that the mass-density ρM (x) = C is constant for any spot on the grid.
For ∆2 a per-spot volume, we see that the volume-normalization lets this technology-specific factor cancel and the

sum of the growth ξ is related to the change-in-spots directly as

1T
n1
ξ =

|vol (S2) | − |vol (S1) |
|vol (S1) |

=
∆2(n2 − n1)

∆2n1
=

n2 − n1

n1

Which requires that the unbalanced condition have g2 = 1
n1

1n2 as the constraint measure. This makes sense, as
1T
n1
g1 = 1T

n1
1n1

1
n1

= 1 and 1T
n2
g2 = 1T

n2
1n2

1
n1

= n2

n1
, which has the interpretation that the density in the first slice

sums to 1, and the density of the second is proportional to the ratio of the number of spots of the second slice to the first.
With n2

n1
> 1 implying mass is generated as the second volume exceeds the first, n2

n1
< 1 implying mass is lost as the

second volume is smaller than the first, and n2

n1
= 1 implying mass-conservation.
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S4 Semi-relaxed Sinkhorn
Calculating the gradient with respect to Π

In order to run Sinkhorn, we require an initial condition on Π and an analytical expression for the gradient of our primal
objective with respect to Π. In particular, the following represents a primal feasible Π:

Π0 =
1

n1n2
1n1

1T
n2

≽ 0,

ΠT
0 1n1 =

1

n1n2
1n2

1T
n1
1n1

= g2

Recall that the energy function E : Π 7→ E(Π) of interest in our current formulation is

E(Π) = (1− α)
〈
C,Π

〉
F︸ ︷︷ ︸

Eexpression(Π)

+
α(1− β)

2

〈
LΨ ⊗Π,Π

〉
F︸ ︷︷ ︸

EΨ
GW(Π)

+
αβ

2
Tr
[
ΠΨ(2)ΠT

]
︸ ︷︷ ︸

EΨ(2)

triplet(1)
(Π)

+
αβ

2
Tr
[
ΠTΨ(1)Π

]
︸ ︷︷ ︸

EΨ(1)

triplet(2)
(Π)

+ γKL(Π1n2
∥ g1)− ϵH(Π)

(25)

We calculate the gradient of f as follows. The gradient of the expression term Eexpression(Π) is straightforward to
compute:

∇ΠEexpression(Π) = (1− α)C

Next, we consider the gradient of the distance-regularization term Erow corresponding to the rows of Π:

DEΨ(2)

triplet(1)(Π) ◦ [V] =
αβ

2
Tr
[
D
(
ΠΨ(2)ΠT

)
◦ [V]

]
=

αβ

2
Tr
[
VΨ(2)ΠT +ΠΨ(2)VT

]
=

αβ

2

〈
Π
(
Ψ(2) + (Ψ(2))T

)
,V
〉
F

= αβ
〈
ΠΨ(2),V

〉
F

So, we have that:

∇ΠEΨ(2)

triplet(1)(Π) = αβΠΨ(2)

The gradient of the distance regularization term corresponding to the columns of Π is similarly given as:

∇ΠEΨ(1)

triplet(2)(Π) = αβΨ(1)Π

We now compute the gradient of fKL. Let proj∆n1−1
=
(
In1

− 1
n1

1n1
1T
n1

)
denote the projection onto the probability-

simplex ∆n1−1

DfKL(Π) ◦ [V] = γDKL(Π1n2∥g1) ◦ [V]

= γ
(
proj∆n1−1

(log (Π1n2
)− log (g1))

)T
V1n2

= γ Tr

(
1n2

(
proj∆n1−1

(log (Π1n2)− log (g1))
)T

V

)
With, and the log applied element-wise above. So:

∇ΠfKL(Π) = γ

(
In1 −

1

n1
1n11

T
n1

)
(log (Π1n2)− log (g1))1

T
n2
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Lastly, we compute the semi-relaxed gradient for fFGW(Π):

⟨LΨ ⊗Π,Π
〉
F
=

∑
i,k,j′,l′

(
Ψ

(1)
ik −Ψ

(2)
j′l′

)2
Πij′Πkl′

=
∑

i,k,j′,l′

(
Ψ

(1)
ik

)2
Πij′Πkl′ − 2

∑
i,k,j′,l′

Ψ
(1)
ik Ψ

(2)
j′l′Πij′Πkl′ +

∑
j′,l′

(
Ψ

(2)
j′l′

)2(∑
i

Πij′

(∑
k

Πkl′

))
Owing to our semi-relaxed marginalization constraints, it holds that

∑
k Πkl′ = 1

n1
and

∑
i Πij′ = 1

n1
, such that

the rightmost term is a constant and disappears when we take the gradient with respect to Π. As such, the above is
proportional to:

∝
∑

i,k,j′,l′

(
Ψ

(1)
ik

)2
Πij′Πkl′ − 2

∑
i,k,j′,l′

Ψ
(1)
ik Ψ

(2)
j′l′Πij′Πkl′

Converting this to matrix form, we have:

= 1T
n2
ΠT

(
Ψ(1)

)2
Π1n2 − 2Tr

[
ΠTΨ(1)ΠΨ(2)

]
We consider each term independently. For the rightmost we consider the Fréchet derivative in the direction V:

D
(
−2Tr

[
ΠTΨ(1)ΠΨ(2)

])
◦ [V] = −2Tr

[
VTΨ(1)ΠΨ(2) +ΠTΨ(1)VΨ(2)

]
= −4⟨V,Ψ(1)ΠΨ(2)⟩F

For the leftmost term, we have:

D

(
1T
n2
ΠT

(
Ψ(1)

)2
Π1n2

)
◦ [V] = 1T

n2
ΠT

(
Ψ(1)

)2
V1n2 + 1T

n2
VT

(
Ψ(1)

)2
Π1n2

= Tr

[
VT

(
Ψ(1)

)2
Π1n21

T
n2

]
+Tr

[
1n21

T
n2
ΠT

(
Ψ(1)

)2
V

]
= 2⟨V,

(
Ψ(1)

)2
Π1n21

T
n2
⟩F

We can therefore identify the final gradient of our semi-relaxed GW term as:

∇ΠfFGW(Π) =
α(1− β)

2

(
2
(
Ψ(1)

)2
Π1n21

T
n2

− 4Ψ(1)ΠΨ(2)

)
= α(1−β)

((
Ψ(1)

)2
Π1n21

T
n2

− 2Ψ(1)ΠΨ(2)

)
With the squaring operation applied element-wise through Ψ(1).

S4.1 Dual formulation of semi-relaxed Sinkhorn

For our optimal-transport problem, we have both a primal objective E(Π) we seek to minimize, as well as a single
constraint that ΠT1n1

= g2 which restricts the set of primal-feasible Π. The Karush-Kuhn-Tucker (KKT) conditions
introduce a set of dual variables for each constraint, and a Lagrangian which lower bounds the primal objective. The
conditions, which involve first order constraints, dual constraints, and complementary slackness constraints, offer a
set of conditions which must be satisfied by an optimal solution to the primal problem. As such, we introduce the
dual-variable µ, and establish the Lagrangian L to maximize as a lower-bound to the primal objective:

L (Π,µ) = (1− α)
〈
C,Π

〉
F
+

α

2

{
(1− β)

〈
LΨ ⊗Π,Π

〉
F
+ β

(
Tr
[
ΠΨ(2)ΠT

]
+Tr

[
ΠTΨ(1)Π

])}
+ γKL(Π1n||g1) +−ϵH(Π) + µT

(
ΠT1n − g2

)
(26)

Collecting the non-entropic terms in the gradient of the above expression, we define the matrix C∗ to be:

C∗ ≜ (1− α)C+ α
(
Ψ(1)Π+ΠΨ(2)

)
+ α(1− β)

((
Ψ(1)

)2
Π1n21

T
n2

− 2Ψ(1)ΠΨ(2)

)
The KKT conditions imply the following first-order condition holds when we consider the gradient of our Lagrangian
with respect to the variable being optimized, Π:

∇ΠL (Π,µ) = C∗ + γ

(
log(Π1n)− log(g1)

)
1T
n + ϵ logΠ+ 1n′µT = 0 (27)
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We also have the following primal constraint for our singular equality condition on the second marginal:

ΠT1n′ − g2 = 0 (28)

The dual constraints, which are implicitly accounted for in the entropy term of Sinkhorn which lifts the matrix Π
through exponentiation such that Π ≽ 0 always holds, for technical correctness include a dual variable Ω ≽ 0 and a
term in the Lagrangian of the form −⟨Ω,Π⟩F . The two dual constraints would formally be given as:

µ ∈ Rn (29)

Ω ≽ 0 (30)

And a complementary slackness condition enforced elementwise through the matrix Π, where one either has the active
constraint where Πij > 0 and Ωij = 0, or a slack, or inactive, constraint with Ωij > 0 for the (omitted) component of
the Lagrangian given as −⟨Ω,Π⟩F . Thus the slackness condition would be written as:

Ω⊙Π = 0 (31)

Looking more closely at the first-order conditions, one finds:

(C∗)i,j + γ

(
log
(
ΠT

i,.1n

)
− log(g1,i)

)
+ ϵ logΠi,j + µj = 0

Implying a similar solution-form to Sinkhorn involving an exponentiation with the Gibbs kernel, wherein one has
Ki,j = e−ϵ−1C∗

i,j and:

Πi,j = e
− γ

γ+ϵ log

(
ΠT

i,.1n

g1,i

)(γ+ϵ)/ϵ

Ki,je
−ϵ−1µj

From Sinkhorn, we know there exist unique vectors u, v such that Π = diag (u)Kdiag (v) and see:

Π = diag
(
e

−γ
ϵ log (Π1n/g1)

)
Kdiag

(
e−ϵ−1µ

)
≜ diag (u)Kdiag (v)

We consider what the update rule should be, given this identification, by establishing:

u = e
−γ
ϵ log (Π1n/g1) =

(
Π1n

g1

)−γ/ϵ

=

(
diag (u)Kdiag (v)1n

g1

)−γ/ϵ

=

(
u⊙Kv

g1

)−γ/ϵ

= u−γ/ϵ ⊙
(
Kv

g1

)−γ/ϵ

Noting the Hadamard multiplication, this directly implies an update rule for u in the form:

u =

((
Kv

g1

)−γ/ϵ) ϵ
γ+ϵ

=

(
g1

Kv

) γ
γ+ϵ

This may analogously be identified from the general form of unbalanced optimal transport, wherein one uses an
anisotropic proximal step weighting two divergences on the marginals g1. In particular, for a generalized optimal
transport problem of the form:

inf
Π
⟨C,Π⟩F + λ1Dφ1

(Π1n2
|g1) + λ2Dφ2

(ΠT1n1
|g2) + ϵH(Π)

for φ1, φ2 convex, positive lower-semi-continuous divergences. For these, one takes a proximal step for each marginal
where u, v are updated as:

u = argminu′ KL(u′||u) + λ1

ϵ
Dφ1

(u′||g1)

v = argminv′ KL(v′||v) + λ2

ϵ
Dφ2

(v′||g2)
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This has the following closed-form updates for unbalanced Sinkhorn where we consider the case that Dφ1 , Dφ2 are
taken to be KL-divergences:

u(l+1) =

(
g1

Kv(l)

) λ1
λ1+ϵ

v(l+1) =

(
g2

KTu(l+1)

) λ2
λ2+ϵ

While we demonstrated that the semi-relaxed update follows directly from the KKT conditions, one can easily
recover the semi-relaxed update in the limit of λ2 → ∞ in the unbalanced case. The marginal update then becomes

v(l+1) = limλ2→∞

(
g2

KTu(l+1)

) λ2
λ2+ϵ

= g2

KTu(l+1) , where one recovers the marginal constraint on g2 and our semi-

relaxed update rule.

S4.2 Converting semi-relaxed Sinkhorn to log-domain for stability

Consider a general form of entropy-regularized, fully unbalanced Wasserstein optimal transport: given measures
g1 ∈ Rn1

+ , g2 ∈ Rn2
+ , and given a candidate transport plan Π ∈ Rn1×n2

+ , let the functional Π 7→ Pϵ(Π) be given by

Pϵ(Π) = ⟨C,Π⟩F +Dφ1(Π1n2 |g1) + Dφ1(Π
T1n1 |g2) + ϵH(Π) (32)

where φ1, φ2 are convex, positive lower-semi-continuous, and with φi(1) = 0. The terms Dφi
are the associated

φ-divergences. Depending on the choice of the φi, one can recover either the fully unbalanced constraints of moscot,
or the semi-relaxed setting of DeST-OT. Specifically, moscot corresponds to taking φ1 = φ2 ≡ p 7→ p log p− p+ 1,
in which case both φ-divergences are the KL divergence. On the other hand, DeST-OT corresponds to taking
φ1 ≡ p 7→ p log p− p+ 1, while the single hard constraint corresponds to choosing φ2 = ι{1}, where

ι{1}(p) =

{
0 p = 1

+∞ otherwise.

Thus, (32) corresponds to a version of the moscot objective (3) with the GW term ⟨L⊗Π,Π⟩ omitted, or a version
of the DeST-OT objective (22) without our modified GW term ⟨L̃M ⊗Π,Π⟩. In both cases, the hyperparameters
attached to different terms have been suppressed.

We define OTϵ(g1,g2) = inf
Π∈Rn1×n2

+
Pϵ(Π), and we appeal to the dual formulation of (32), which we state as a

proposition.

Proposition 1 ([36], Proposition 2). One has

OTϵ(g1,g2) = sup
f∈Rn1

+ ,g∈Rn2
+

Dϵ(f ,g),

where for such f ∈ Rn1
+ ,g ∈ Rn2

+ , we define the dual objective to Pϵ (32)

Dϵ(f ,µ) = −⟨φ∗
1(−f),g1⟩F − ⟨φ∗

2(−µ),g2⟩F − ϵef/ϵ ⊙ e−C/ϵ ⊙ eµ/ϵ,

where (φ∗
1, φ

∗
2) are the Legendre transforms of (φ1, φ2), namely φ∗

i (q) = supp≥0 pq − φi(p)

The optimal primal plan Π⋆ is obtained from the optimal pair (f⋆,µ⋆) of dual variables as

Π⋆ = diag(ef
⋆/ϵ)e−C/ϵdiag(eµ

⋆/ϵ) = diag (u)e−C/ϵ diag (v)

Thus, connecting the dual variables of the generalized Sinkhorn objective for arbitrary φ-divergences to our primal
variables u, v, we are able to express closed-form updates for the dual variables instead. The Sinkhorn iterations for the
semi-relaxed case, in terms of the dual variables f ,g are given as:

f (l+1) = ϵ logu(l) = ϵ log
( g1

Kv

) γ
γ+ϵ

=
γ

γ + ϵ

(
ϵ log g1 − ϵ log

(
Keµ

(l)/ϵ
))

(33)
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µ(l+1) = ϵ log g2 − ϵ log
(
KT ef

(l+1)/ϵ
)

(34)

Owing to the presence of the exponential of each dual variable on the right-hand side of 33 and 34, these cannot
be evaluated directly for small values of the entropy-regularization ϵ. When ϵ → 0 we would recover an exact, non
entropically-regularized optimal transport – however, this would cause the term inside of the logarithm to exceed
numerical precision. For the purpose of introducing the log-domain Sinkhorn algorithm, we make the following
definitions. For 1ni

∈ Rni
+ and ϵ > 0, the Softmin operators Smingi

ϵ are defined for any vectors f ∈ Rn1 and µ ∈ Rn2

by:

Smin
1n1
ϵ (f) = −ϵ log

(〈
e−f/ϵ,1n1

〉)
and Smin

1n2
ϵ (µ) = −ϵ log

(〈
e−µ/ϵ,1n2

〉)
Rewriting 34 34 we see:

f
(l+1)
i =

γ

γ + ϵ

(
ϵ log g1i − ϵ log

(
⟨e−Ci,./ϵ, eµ

(l)/ϵ⟩
))

=
γ

γ + ϵ

(
ϵ log g1i + Smin

1n1
ϵ (Cij − µj)j

)
And:

µ
(l+1)
j = ϵ log g2 − ϵ log

(
⟨e−C.,j/ϵ, ef

(l+1)/ϵ⟩
)
= ϵ log g2j + Smin

1n1
ϵ (Cij − fi)i

One can simply evaluate the softmin Smin
1n1
ϵ using the log-sum-exp trick, which we broadcast across dimensions for

an efficient and stable log-domain update.

S5 Metrics of growth
Let S1 = (S1,X1) and S2 = (S2,X2) be a pair of spatiotemporal tissue slices, corresponding to timepoints t1
and t2. For a collection of cell types shared across both slices, enumerated as {1, . . . , P}, suppose we are given
cell type partitions P1 = {P1(p)}Pp=1 and P2 = {P2(p)}Pp=1 for each slice. The mass of cell type p at time t1 is
m1(p) = |P1(p)|, and the mass of cell type p at time t2 is likewise m2(p) = |Pt(p)|. The mass-flux of cell type p over
these two timepoints is then given by m2(p)−m1(p). Below, we define a metric quantifying how well the cell type
mass-flux inferred by an optimal transport method matches the empirical mass-flux of a cell type. If such a method
outputs a pair (Π, ξ) of an alignment matrix and a growth vector, we measure the distortion between ξ and the true
mass flux. We discuss the assumptions that go into this metric, and how it can be generalized.

S5.1 A metric of growth: individual cell level

To measure the accuracy of the growth rates across cell types and spots within the cell type, we define the true growth
rate at time t1 of cell type p as:

γ1(p) =
1

m1(p)

(
m2(p)−m1(p)

n1

)
(35)

In calling this a true growth rate, we are making two assumptions: first, that there are no cell type transitions between
distinct cell types – in the next subsection we discuss how to relax this. The second assumption made is that the
burden of accomplishing the change in mass is shared equally across cells of the same type, which can be viewed as an
entropy-maximizing assumption.

The normalization factor 1
n1

makes these growth-rates consistent with the slice one mass-normalized values of the
marginals g1, g2 and ensures consistency across experiments. We quantify the total distortion between the true growth
factors for each cell type and those derived from optimal transport as:

Jgrowth =
P∑

p=1

∑
i∈P1(p)

∥ξi − γ1(p)∥22 (36)

This assesses the total divergence between the optimal-transport growth rates and the true, empirical growth rates under
a fixed cell type labeling. The sum of the growth-rates across spots within a tissue slice equals the total growth rate of
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the slice:

P∑
p=1

∑
i∈P1(p)

γ1(p) =
1

n1

P∑
p=1

∑
i∈P(p)

1

(
m2(p)−m1(p)

m1(p)

)

=
1

n1

P∑
p=1

(m2(p)−m1(p) )

=
n2 − n1

n1
.

S5.2 Generalizing the growth-metric to cell type transitions

The definition of growth given in the section above assumes that cells of type p transition and grow to their own cell
type, and computes the distortion relative to this assumption. While this is valuable as a baseline metric when no cell
type transitions are available, we generalize this notion when we have a density matrix of cell-to-cell reverse-time
transitions T ∈ RP×P

≥0 across P cell types. Supposing we have a vector m2 ∈ RP
≥0 of cell type masses at time t2, and

likewise m1 at time t1, we modify m1(p) in the definition above to include transitions. The section above implicitly
assumes that the matrix is diagonal (in particular, it is the P ×P identity matrix T = 1P ). Under ground truth transition
matrix T, the mass of cell type p from time at time t1 is described in terms of m2 as follows:

m1(p) = ⟨Tp,·,m2⟩ (37)

Which is to say, m1 can be described in terms of m2 via the matrix-multiplication

m1 = Tm2 (38)

and the mass-flux out of cell type p remains as defined in the previous sections with the only adjustment being that
the new m1(p)’s account for cell type transitions. As before, we assume the cell type partitions across each slice are
consistent with these cell type mass vectors.

Now, consider an alignment matrix Π ∈ Rn1×n2 , and let {p → q} denote the following set:

{p → q} =
⋃

i∈P1(p)
j′∈P2(q)

{(i, j′)} ,

understood as the event that cell type p of the first slice is mapped to cell type q in the second slice. In making this
definition, we show how any alignment matrix Π induces a reverse-time transition matrix: indeed, Π is a positive
measure on such pairs, so one can naturally form a coarse-grained P × P matrix from Π using the events {p → q}:
first, define

RP×P
≥0 ∋ Π, Πpq := Π(p → q)

Whatever T we construct from Π should be a transition matrix, row-normalized such that 1P = T1P . This is achieved
by tilting each row p of measure Π with the factor n1/m2(q):

T⋆
pq =

(
n1

m2(q)

)
Πpq. (39)

Now, consider the distortion metric defined in (36). Instead of viewing Jgrowth as a function of ξ only, as was done in
the previous section, we now regard it as a function of both ξ and γ1 ≡ (γ1(p))

P
p=1. Just as ξ arises from Π, vector

γ1 is defined from T through (37) and (35). Given the output (Π, ξ) of an OT method, the next proposition gives the
optimal pair (T,γ1) for this output according to the growth distortion metric (36).

Proposition 2. Given cell type partitions P1 and P2 of two SRT slices, let m1 and m2 be a pair of cell type mass
vectors consistent with these partitions, and related by a transition matrix T through (38). Fix an alignment matrix Π
with ΠT1n1 = 1

n1
1n2 and consider its associated growth vector ξ ≡ ξ(Π). Then, for γ1 ≡ γ1(T), one has

T⋆ = argmin(T,γ1(T) ) Jgrowth(ξ,γ1),

with T⋆ defined from Π in (39).
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Proof. When ξ is fixed, the minimizer of 36, in terms of γ1, is given in each entry by the cell type sample mean of ξ:

γ⋆
1(p) =

1

m1(p)

∑
i∈P1(p)

ξi

Thus, we evaluate the right-hand side to find:

1

m1(p)

∑
i∈P1(p)

ξi =
1

m1(p)

∑
i∈P1(p)

(
ΠT

i,·1n1
− 1

n1

)
(40)

=
1

m1(p)

∑
i∈P1(p)

ΠT
i,·1n1

− 1

n1
(41)

=
1

n1

m2(p)

m1(p)
− 1

n1
(42)

Therefore, we have that:

1

m1(p)

∑
i∈P1(p)

ΠT
i,·1n1 =

1

n1

m2(p)

m1(p)

And we decompose the following sum according to the cell types p may transition to in the next slice:

n1

∑
i∈P1(p)

ΠT
i,·1n1

=
P∑

q=1

n1Πpq (43)

=
P∑

q=1

m2(q) ·
n1

m2(q)
Πpq (44)

≡ T⋆
p,.m2, (45)

which shows that the optimal γ⋆
1 arises from the claimed optimal transition matrix T⋆ defined in (39) We complete

the proof by checking that each row of T sums to one. For notational convenience let z2(q) denote the vector in Rn2

whose j′-th component has a 1 if and only if j′ ∈ P2(q), and is 0 otherwise; likewise, let z1(p) be the vector in Rn1

which is a one-hot encoding of cell type p over the first slice.

P∑
p=1

Tpq =
n1

m2(q)

P∑
p=1

Π(p → q) (46)

=
n1

m2(q)

P∑
p=1

z1(p)
TΠz2(q) (47)

=
n1

m2(q)
1T
n1
Πz2(q) (48)

The last step is to use the single hard constraint in our semi-relaxed formulation, along with our choice of mass
calibration for the second slice: ΠT1n1 = 1

n1
1n2 . Continuing from the above display, one has

n1

m2(q)

(
ΠT1n1

)T
z2(q) =

n1

m2(q)

1

n1
1T
n2
z2(q) = 1.

By definition, all entries of T are necessarily positive. Therefore these row-sum conditions show us this is indeed a
reverse-time transition matrix, and the proof is finished.

S5.3 Interpretation of per-cell growth distortion Jgrowth

For the setting of γ1(p) in the previous section, rather than matching the cell type mass-fluxes assuming cell types
transitioning to themselves, we find the optimal matrix T of cell types transitioning from t1 to t2, calculate the adjusted
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mass contributed to m2 from cell type p at t1 as m1(p) = Tp,·m2, and calculate the expected distortion in the mass-flux.
As noted in 2, the minimizer of Jgrowth over γ1 is simply the sample mean of the per-cell type mass-flux, given as:

γ1(p) =
1

m1(p)

∑
i∈P1(p)

ξi.

Therefore an alternative interpretation to one in which we match the mass-flux of the optimal transition matrix is that
we are measuring the sum of the variances of each mass-flux variable within each cell type:

P∑
(cell types) p=1

Var (ξi | i ∈ P1(p))

In a tissue or cell type, the assumption that growth is relatively homogeneous or smoothly varying, as opposed to
coming from a very small, sparse, set of cells, has been observed in morphogen studies where within tissues like the
imaginal wing disk in drosophila one observes uniform cell divisions and growth [15] [25] [27]. As such, measuring
the within-cell type variance of the growth-factors is biologically reasonable and captures whether growth patterns are
very sparse (i.e. when aligned via an unbalanced routine which assigns a few “representative” cells as those which
grow), or whether growth patterns are relatively consistent.

S6 Procrustes-like problems and a cell migration metric
S6.1 Quantifying a metric of naive rigid-body migration

Suppose we are given the solution to either the generalized Procrustes’ problem for an orthogonal transformation
Q ∈ O(n) or the generalized Wahba’s problem for a rotation Q ∈ SO(n) along with a general translation vector
h ∈ Rn as described in S6.3. This then describes a simple rigid-body transformation which relates the coordinate
frames of slice 1 and 2, S1 ≈ S̃2 = {Q

(
s′j′ − h

)
: s′j′ ∈ S2}. Supposing the true transformation relating the two

frames is indeed a rigid-body transformation, one may directly quantify the cost of an alignment with respect to the
matrix Π given Q,h. We introduce this as our naive rigid-body migration metric, given as:

n1∑
i=1

(
ΠT

i,·1n2

)−1

 n2∑
j′=1

Πij′∥si −Q
(
s′j′ − h

)
∥22

 (49)

Where we take the difference between the spatial points si and s′j′ in our pair of slices (X(1),S(1)) and (X(2),S(2)).
This difference is computed under the posterior implied by Π, and as we compare matrices Π which may be balanced,
unbalanced, or semi-relaxed, we normalize by a factor of ΠT

i,.1n2
so that any posterior in 49 is normalized to a

distribution consistently. We call this metric naive, as it is clear this transformation has determinant 1, and neither
allows for volume expansion (growth) or volume shrinkage (death). Moreover, the true transformation underlying tissue
development might involve some arbitrary (e.g. diffeomorphic) transformation, such that the rigid-body assumption
is more generally inappropriate. As such, it is not necessarily the case that lower loss under this metric is universally
better. However, one can say that if the alignment tends to incur exceptionally high loss under this metric, without any
geometric consistency, the alignment may be spatially unrealistic. In other words, it might be aligning the sub-level
set of points with similar features Ωx′

j′
= {si ∈ S1 : ∥si − s′j′∥22 ≤ (const.)} without accounting for the geometry of

either slice.

S6.2 Invariance of the method to rigid-body transformations, or group action by members of SE(2)

Let us call each spatial point in the first slice si ∈ R2, and each point in the second slice s′j′ ∈ R2. Suppose we want the
second slice to be in the same coordinate basis as the first slice, but we do not know Q ∈ SE(2),h ∈ R2, representing
the rigid-body transformation of the data s̃j′ = Q(s′j′ −h) which moves us into the correct, shared coordinate-frame. A
reasonable question to ask is whether our objective returns an alignment matrix Π which is unique, independent of the
specific Q, h that relate the two coordinate frames. From the general objective in 20, it is clear that our objective only
depends on the points in the first and second slices si, s′j′ through the distance matrices D(1) and D(2). Considering
that si is in the correct basis, let us restrict our attention to s′j′ and D(2). It is simple to check that:

[D(2)]i′j′ = ∥s′i′ − s′j′∥2 = ∥Qs′i′ −Qs′j′∥2 = ∥s̃i′ − s̃j′∥2
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Which implies that our objective does not depend on the spatial location or rotation of the second slice relative to the
first. Uniqueness therefore only depends on the convexity of the objective, which could in principle be achieved by
using the projection of D(1), D(2) onto the vector space of positive-semi definite matrices S+

n or kernelization.
The next reasonable question is whether one can recover the correct Q, h given the alignment matrix Π. Problems

of this form include the Orthogonal Procrustes problem (where Q is simply an orthogonal matrix), and Wahba’s problem
(where Q ∈ SO(2) explicitly), which are both well studied and have existing solution methods. Thus, the final problem
needed to align the coordinate frame can be given (in Procrustes’ form) as:

min
Q∈R2×2,h∈R2

∑
i,j′

Πij′∥si −Q(s′j′ − h)∥22

s.t. QTQ = 12

(50)

Or, in Wahba’s problem form:
min

Q∈SO(2),h∈R2

∑
i,j′

Πij′∥si −Q(s′j′ − h)∥22 (51)

We offer both the Procrustes’ and Wahba’s form, with the latter having the restriction that Q ∈ SO(2) requires
detQ = 1, which is to say we seek an explicit (orientation-preserving) rotation rather than a general orthogonal
transformation (which may be a rotation composed with a reflection). In either case, the problem of finding a correct
alignment is something that emerges after the outputs of DeST-OT, which is itself completely independent of the
coordinate frame the first and second slice are set in and is invariant to linear translation and rotation, unlike works
involving Gaussian processes such as [18].

S6.3 Review of the Solution to Wahba’s problem

First, we consider an appropriate transformation of the coordinates to eliminate the dependence on the translation, for
this light generalization of Wahba’s problem to a joint-distribution across both slices [10]. In particular, consider the
change of variables given by:

h = −QT scm + s′cm + ν

For scm, s′cm representing the center of mass of slice 1 and slice 2, and ν an undetermined constant. In particular,

scm =
(
1T
n1
Π1n2

)−1
n1∑
i=1

n2∑
j′=1

Πij′si, s′cm =
(
1T
n1
Π1n2

)−1
n1∑
i=1

n2∑
j′=1

Πij′s
′
j′ (52)

Substituting this into the primal objective:∑
i,j′

Πij′∥si −Q(s′j′ − h)∥22 =
∑
i,j′

Πij′∥si −Q(x′
j′ − (−QT scm + s′cm + ν))∥22

= ∥ν∥22(1T
n1
Π1n2

) +
∑
i,j′

Πij′∥(si − scm)−Q(s′j′ − s′cm)∥22

+ νT

∑
i,j′

Πij′si − (1T
n1
Π1n2

)scm

+

∑
i,j′

Πij′s
′
j′ − (1T

n1
Π1n2

)s′cm


By definition of the center of mass-coordinates, the above equates to the following, with the minimization over r

now over ν:
min

Q∈SO(2),ν∈R2
∥ν∥22(1T

n1
Π1n2

) +
∑
i,j′

∥(si − scm)−Q(s′j′ − s′cm)∥22 (53)

Where the independence of the left and right primal objectives yields that the minimizer is simply ν⋆ = 0. After the
optimization for the rotation, the optimal translation is simply: h⋆ = −(Q⋆)T scm + s′cm. Thus, one may simply focus
on the problem:

min
Q∈SO(2)

∑
i,j′

Πij′∥(si − scm)−Q(s′j′ − s′cm)∥22 (54)
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The presence of the joint distribution keeps this from being set in the standard form which Wahba’s problem is presented
and solved in. We give a simple equivalent form, introducing the center-shifted coordinate matrices across spatial
locations in the slices:

S(1)
cm =

(
s1 − scm ... sn1

− scm
)

S(2)
cm =

(
s′1′ − s′cm ... s′n′

2
− s′cm

)
And consider the equivalent objective, with vec denoting the vectorization operation which column-stacks a matrix,
Π1/2 denoting the element-wise square-root of the entries of Π, and ⊙ denoting the elementwise, or Hadamard,
product:

min
Q∈SO(2)

∥∥∥(12 vec
(
(Π1/2)T

)
⊙
(
S(1)
cm ⊗ 1T

n2

))
−Q

(
12 vec

(
(Π1/2)T

)
⊙
(
1T
n′ ⊗ S(2)

cm

))∥∥∥2
F

(55)

We rename the matrices to be concise as G(1), G(2):

min
Q∈SO(2)

∥G(1) −QG(2)∥2F (56)

The simple solution [10] can be given using an SVD of G(1)(G(2))T = UΣVT . Where the final orthogonal
transformation would be given as Q = UVT . If one adds the restriction that det

(
UVT

)
= 1 for a rotation, one

would find Q as:
Q = U diag

(
1 det

(
UVT

))
VT .

S7 Generate feature (expression) vectors for simulated data
S7.1 Generate feature vectors for simulated 1D slices

Our simplest experiment considers a pair of one-dimensional tissue slices with the same number of spots (51 total).
Writing N in place of 25 for clarity, the spatial coordinates of the first and second slices are given by identical matrices,
namely S(1) ≡ S(2) =

[
−N −(N − 1) . . . −1 0 1 . . . (N − 1) N

]
, understood as a column vector.

Synthetic features are constructed by first assigning one of two cell type labels (“A” or “B”) to each spot, and then
assigning numerical features based on cell type. As in 2.3.1, cell types partition each domain, we write these as P1 and
P2, where:

P1(A) = {−N,−N + 1, . . . w1 − 1, w1}, P1(B) = {w1 + 1, . . . , N}}
P2(A) = {−N,−N + 1, . . . w2 − 1, w2}, P2(B) = {w2 + 1, . . . , N}, }

setting w1 = −10 and w2 = 5 in the experiment to be the “pivots” marking a change in cell type.
We generate eight-dimensional feature by sampling random vectors v1,v2,v3,v4 independently and uniformly

from the unit sphere of R4. Let 0 ∈ R4 be the zero vector, and let ◦ denote concatenation of vectors. We set ṽ1 := v1◦0,
ṽ2 := v2 ◦0, ṽ3 := 0 ◦v3 and ṽ4 := 0 ◦v4. Over cell type A, we generate features by linearly interpolating feature ṽ1

at spot −N with feature ṽ2 at spot w1 or w2, depending on the slice. Over cell type B, we generate features by linearly
interpolating feature ṽ3 at either w1 or w2, with feature ṽ4 at spot N . Thus, each cell type is characterized by a feature
gradient in four dimensions, and the features at distinct cell types are orthogonal by design.

S7.2 Generate feature vectors for simulated 2D slices

We generalize the above by defining a two-dimensional model of tissue slices. Let E denote the centered, circular
ellipse of radius r = 25:

E =

{
s ≡ (x, y) ∈ R2 :

x2

r2
+

y2

r2
≤ 1

}
Let T be the subset of the integer square lattice Z2 consisting of all integer pairs whose sum is odd: T = {(x, y) ∈
Z2 : (x+ y) mod 2 = 1}. Then T is a triangular lattice, mimicking the spatial organization of SRT data output by the
Visium platform. Let S(1) = S(2) = S denote the stack of spatial coordinates associated to the set E ∩ T.
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As above, we use a simple spatial condition to partition each slice into two pieces. Here, we set two “pivot” lines,
given by y = w1 and y = w2. The cell type partitions P1,P2 over the two slices are defined as follows:

P1(A) = {s ≡ (x, y) ∈ E ∩ T : y > w1}, P1(B) = {s ≡ (x, y) ∈ E ∩ T : y ≤ w1}
P2(A) = {s ≡ (x, y) ∈ E ∩ T : y > w2}, P2(B) = {s ≡ (x, y) ∈ E ∩ T : y ≤ w2}

for w1, w2 = ±10.
We assign features in a similar manner to the one-dimensional case. Previously we assigned features to the boundary

of cell type segments and linearly interpolated between these.
In this slightly more general setting, let Ri(A) and Ri(B) denote (smallest) bounding rectangles for sets Pi(A) and

Pi(B) for slices i = 1, 2.
We assign the first four unit vectors in the standard basis (ej)8j=1 of R8 to cell type A, and the last four to cell type

B. The top and bottom sides of Ri(A) are assigned to features e1 and e3, while the left and right sides of the rectangle
are assigned to features e2 and e4. We make similar assignments for Ri(B) using the last four basis vectors. At each
spot s, lying in some bounding rectangle R for its cell type, the feature assigned to s is a convex combination of the
features decorating the top and bottom sides of R, plus the features decorating the left and right sides of R. In particular,
for R = [xmin, xmax]× [ymin, ymax] and (x, y) ∈ R, the coefficients λx, λy are defined as:

λx =
x− xmin

xmax − xmin
, λy =

y − ymin

ymax − ymin

Thus, for a given cell type we have two gradients along the x and y direction which are scaled equivalently between
the two slices S(1) and S(2) which we seek to align. The final feature vector within cell type A is therefore given as

fA(x, y) = λxfx,L + (1− λx)fx,R + λyfy,T + (1− λy)fy,B

and repeat this for cell type B as

gB(x, y) = λxgx,L + (1− λx)gx,R + λygy,T + (1− λy)gy,B

choosing features which are mutually-orthogonal–for simplicity 8-dimensional unit vectors e1:8. Between S(1) and
S(2) these features are consistent, and λx, λy ∈ [0, 1] gives the proportion of each feature depending on how far the
(x, y) coordinate is along the axis of each ellipse within a given cell type. I.e. for (x1, y1) ∈ S(1), (x2, y2) ∈ S(2) we
have that if λA

x1
= λA

x2
and λA

y1
= λA

y2
then fA(x1, y1) = fA(x2, y2) and the two features should be aligned between

timepoints 1 and 2 (likewise for cell type B). As the features are chosen to be orthogonal, this alignment is unique. To
model noise, we assume that the data we observe at each point (x, y) is distributed as ∼ N (fA(x, y), σ

2
18) for cell

type A and ∼ N (gB(x, y), σ
2
18) for cell type B for varying levels of σ.

S8 Benchmarking methods
PASTE [45] By design, PASTE cannot align spatiotemporal data and does not infer cell growth and death because it
uses balanced OT. For the purpose of benchmarking experiments in this work, we relax PASTE’s balanced constraints
so that we optimize the unbalanced version of the PASTE objective. For the alignment matrix Π computed by relaxed
PASTE, we then take the difference between the row sums of Π and the uniform distribution g1 (Eq. (4)) as PASTE’s
inferred growth ξ.

moscot [21] We use moscot.problems.spatiotemporal.SpatioTemporalProblem for solving spa-
tiotemporal alignment problems in this work using moscot. For the alignment matrix Π computed by moscot,
we take the difference between the row sums of Π and the uniform distribution g1 as moscot’s inferred growth
ξ. For benchmarking experiments related to growth rates instead of growth (§??), we use the numbers returned
by SpatioTemporalProblem.posterior_growth_rates as moscot’s inferred growth rates over spots in
timepoint t1.

SLAT [44] We use scSLAT.model.run_SLAT of the scSLAT package for computing an embedding for each
spot in each timepoint. We then use scSLAT.model.spatial_match to compute an alignment between spots
across the two timpoints. We construct a matrix Π such that Πij′ = 1 if spot i in timepoint 1 is the best spot aligned to
spot j′ in timepoint 2. We then divide Π by the number of spots at timpoint 1 to convert it into a semi-relaxed transport
matrix. We take the difference between the row sums of Π and the uniform distribution g1 as SLAT’s inferred growth ξ.
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St.44-St.54 St.54-St.57 St.57-Juv. Juv.-Adult

Figure S1: Cell type transition matrix at each pair of timepoints during axolotl brain development Rows are cell types at the
previous timepoint. Columns are cell types at the next timepoint. Matrices are column normalized.

STalign [8] We first “rasterize” the spatial positions of our input data into two greyscale images. This effectively
convolves a scatterplot of the spatial data with two-dimensional Gaussian noise, to produce an image approximating
each tissue slice. We then ran STalign’s LDDMM on the pair of images, outputting a diffeomorphism φ (which maps the
first slice to the second) and its inverse φ−1 (mapping the second slice to the first). We then use φ−1 to construct a
transport plan Π as follows: for spot j′ in the second slice, we apply φ−1 to sj′ , and select si in the first slice which is
closest to φ−1(sj′). Then we set Πij′ = 1, and repeat this procedure for each spot in the second slice, filling out each
column of Π. The transport plan is thus a deterministic map from the spots of the second slice into those of the first.
We then divide Π by the number of spots at timpoint 1 to convert it into a semi-relaxed transport matrix. We take the
difference between the row sums of Π and the uniform distribution g1 as STalign’s inferred growth ξ.
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