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ABSTRACT 

The FragPipe computational proteomics platform is gaining widespread popularity among the 

proteomics research community because of its fast processing speed and user-friendly graphical 

interface. Although FragPipe produces well-formatted output tables that are ready for analysis, 

there is still a need for an easy-to-use and user-friendly downstream statistical analysis and 

visualization tool. FragPipe-Analyst addresses this need by providing an R shiny web server to 

assist FragPipe users in conducting downstream analyses of the resulting quantitative proteomics 

data. It supports major quantification workflows including label-free quantification, tandem mass 

tags, and data-independent acquisition. FragPipe-Analyst offers a range of useful functionalities, 

such as various missing value imputation options, data quality control, unsupervised clustering, 

differential expression (DE) analysis using Limma, and gene ontology and pathway enrichment 

analysis using Enrichr. To support advanced analysis and customized visualizations, we also 

developed FragPipeAnalystR, an R package encompassing all FragPipe-Analyst functionalities 

that is extended to support site-specific analysis of post-translational modifications (PTMs). 

FragPipe-Analyst and FragPipeAnalystR are both open-source and freely available.  

 

 

 

ABBREVIATIONS: PTM, post-translational modification; DDA, data-dependent acquisition; 

DIA, data-independent acquisition; LFQ, label-free quantification; RCC, renal cell carcinoma; 

ccRCC, clear cell renal cell carcinoma; ChRCC, chromophobe renal cell carcinoma. 
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INTRODUCTION 

 

The FragPipe computational platform (https://fragpipe.nesvilab.org/) is increasingly popular in the 

proteomics field for processing proteomics datasets using different quantification strategies, 

including data-dependent acquisition (DDA) label-free quantification (LFQ)1, tandem mass tag 

(TMT)2, and data-independent acquisition (DIA) LFQ3, 4. While FragPipe produces well-formatted 

output tables that are ready for analysis, further downstream statistical analyses and visualizations 

are typically required to interpret the results. Therefore, there is an unmet need for a user-friendly 

downstream statistical analysis and visualization tool that can support advanced bioinformatics 

analyses. Reproducibility remains an unsolved issue in the scientific research community. 

 

In the field of quantitative proteomics, a range of software packages has been developed over time 

to aid scientists in analyzing their data, including DEP5, protti6, Perseus7, LFQ-Analyst8, and 

MSstats9, 10. However, most of them focus on the MaxQuant11 output and often only consider LFQ 

datasets5, 6, 8, 12. Few support TMT and DIA datasets and/or require users to have programming 

proficiency6, 10. Furthermore, the majority of tools only use quantitative data summarized to the 

protein level as the input, even though  peptide-level quantification may offer more accurate 

biological interpretation of the data in certain applications13. 

 

To support the growing body of FragPipe users and the diversity of proteomics data analysis 

workflows offered by FragPipe, we created FragPipe-Analyst, an R Shiny website. FragPipe-

Analyst is based on the previously described LFQ-Analyst8 code, which we extended to support 

the diverse outputs covering all major quantification workflows (LFQ, TMT, and DIA) from the 
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various FragPipe workflows, along with various feature improvements in the analysis and 

visualization steps. FragPipe-Analyst offers a range of useful functionalities, such as multiple 

missing value imputation options, normalization, data quality control, unsupervised clustering, 

differential expression analysis using Limma14, and gene ontology (GO)/pathway enrichment 

analysis using Enrichr15 to bridge the gap between proteomic search results and downstream 

analysis. Moreover, we developed FragPipeAnalystR, an R package encompassing all FragPipe-

Analyst core functionalities and additional site-specific analyses for post-translational 

modification (PTMs) data.  

 

METHODS 

 

Design and Implementation 

The majority of functionalities available in FragPipe-Analyst were described in the LFQ-Analyst 

manuscript8. However, FragPipe-Analyst has been substantially extended to include more 

interactive features and increased flexibility. We also created a standalone R package, 

FragPipeAnalystR, to support a broader community with more advanced features. FragPipe-

Analyst and FragPipe-AnalystR share the same common modular design with the following 

modules: (1) I/O module that handles the input and output files. (2) Data manipulation module 

which has functions for operating the fundamental data structure, including remove/merge samples 

and feature selections. (3) Data filtering module which provides methods for filtering data based 

on missing values. (4) Normalization module that provides several normalization methods. (5) 

Imputation module that provides several imputation methods. (6) Quality control (QC) module, 

which provides functions to generate various visualizations, including principal component 
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analysis (PCA) plots and heatmaps. (7) Differential expression (DE) analysis module, which 

provides functions for performing statistical procedures and result visualization, such as a volcano 

plot. (8) Enrichment analysis module which provides statistical procedures specifically for 

inferring biological insights, such as overrepresentation tests. 

 

In terms of data processing, FragPipe-Analyst and FragPipe-AnalystR first take input files (Table 

1) produced by FragPipe and perform preprocessing steps to remove contaminants (proteins or 

peptides), transform the intensity values into log2 scale (except for spectral count data in LFQ), 

and harmonize them into the Bioconductor ‘SummarizedExperiment’ object. Internally, FragPipe-

Analyst and FragPipe-AnalystR adopt the SummarizedExperiment as the main data structure, and 

the data object is further processed by different modules. Optional missing value filtering, data 

normalization, and missing value imputation can also be applied. 

 

As the first step of data processing in FragPipe-Analyst, input quantification data can be optionally 

filtered to remove entries with too many missing values (controlled by ‘Min percentage of non-

missing values globally’ and ‘Min percentage of non-missing values in at least one condition’). 

When reading DDA LFQ data generated by IonQuant1, the user can specify Intensity, MaxLFQ 

intensity, or Spectral Counts as quantitative measurements. By default, the input data are not 

normalized, as they are assumed to have already been normalized by the FragPipe quantification 

tools. However, the variance-stabilizing normalization option (performed using the R package 

vsn16) is available and may sometimes be beneficial for DDA- and DIA-based LFQ data. In the 

missing value imputation step, a missing not at random method, which uses random draws from a 

Gaussian distribution left-shifted by 1.8 standard deviation with a width of 0.3 (Perseus style 
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imputation) is applied by default for DDA and DIA LFQ data. No imputation is performed for 

TMT data by default. Other imputation options are available, including k-nearest neighbor and 

MLE, as provided by the R package MSnbase17. The resulting table after filtering for missing 

values, data normalization, and missing value imputation is subsequently subjected to differential 

expression analysis and enrichment analysis.  

 

In the differential expression analysis module, feature-wise (protein or peptide) linear models 

combined with empirical Bayesian statistics from Limma14 are used to test for statistically 

significant differences in abundance between conditions. Both p-values and adjusted p-values (by 

default, using the Benjamini-Hochberg method) are computed. For the enrichment analysis, the 

API provided by Enrichr15 is used, and hypergeometric tests are performed to determine the 

overrepresented categories. Enrichment analysis can also be performed using pathway databases 

(KEGG, Hallmark, or Reactome) or Gene Ontology (GO). Notably, we provide options for using 

either the entire proteome or the list of proteins identified in the experiment as the background for 

the enrichment analysis. Additionally, FragPipe-AnalystR supports gene set enrichment analysis 

using clusterProfiler18 as well as file conversion and result visualization for site-specific PTM 

analysis. Visualization from different modules relies mainly on the R packages ggplot219, 

ComplexHeatmap20, and plotly21. The FragPipe-Analyst web interface was implemented as a 

Shiny app, as previously described8. The differential expression and enrichment analysis results 

and images (e.g., PCA, heatmaps, volcano plots) can also be downloaded for subsequent use in 

other computational tools and for publication purposes.  

 

Datasets 
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Several previously published datasets were downloaded and reanalyzed in this study to 

demonstrate FragPipe-Analysts capabilities: (i) an LFQ affinity purification mass spectrometry 

(AP-MS) interactome dataset, (ii) clear cell renal cell carcinoma (ccRCC) TMT global proteome 

and phosphoproteomics datasets, (iii) a ccRCC DIA whole proteome dataset, and (iv) a limited 

proteolysis coupled to mass spectrometry (LiP-MS) DIA dataset. In all cases, raw mass 

spectrometry files were first converted into an open mzML format using the msconvert utility of 

the Proteowizard software suite before further processing. All datasets were analyzed using the 

FragPipe computational platform (v20.0, https://fragpipe.nesvilab.org) using the settings described 

below. 

 

LFQ AP-MS dataset: Raw files were downloaded from the PRIDE database 

(https://www.ebi.ac.uk/pride/) via the ProteomeXchange repository under the PXD019469 

identifier. Seven raw files in total were downloaded (qx000121, qx001223, qx001225, qx001226, 

qx001227, qx001283, and qx001487) corresponding to three replicates of the CCND1 bait 

purification and four negative controls. The built-in FragPipe ‘LFQ-MBR’ workflow was used. 

Briefly, MSFragger22 (v3.8) was used to perform a closed search followed by label-free 

quantification with match-between-runs enabled using IonQuant1 (v1.9.8). In the closed search, 

both the initial precursor and fragment mass tolerances were set to 20 ppm. After mass 

calibration23, narrower tolerances were automatically selected by MSFragger. The enzyme was set 

to strict trypsin, and the maximum allowed missed cleavage was set to 2. Methionine oxidation 

and protein N-terminal acetylation were set as variable modifications, and carbamidomethylation 

of cysteine was set as a fixed variable modification. After the closed search, MSBooster24, 

Percolator25, and Philosopher26 were used to calculate the deep-learning scores, perform rescoring, 
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and estimate the FDR for the peptide to spectrum matches (PSMs). In the label-free quantification 

stage, IonQuant1 was used and default settings were applied. Briefly, the mass tolerance was set 

to 10 ppm and the retention time tolerance was set to 0.4 minute. Match-between-run and MaxLFQ 

intensity calculations were enabled. The “min scans” parameter was set to 3, “min isotopes” was 

set to 2, and “MaxLFQ min ions” was set to 2. In addition to the analysis via FragPipe-Analyst 

presented here, the reprint.int.tsv file generated by FragPipe was submitted to the Resource for 

Evaluation of Protein Interaction Network (https://reprint-apms.org/) website to perform 

SAINTexpress27 analysis with default settings for comparison. 

 

ccRCC TMT dataset: A subset of the samples from the global proteome and phosphoproteome 

dataset (four TMT 10-plexes out of twenty-three 10-plexes in total) was downloaded from 

Proteomic Data Common (PDC, https://pdc.cancer.gov/pdc/) under study PDC000127 and 

PDC000128, respectively. The subset included 36 samples, of which 32 were ccRCC patient 

samples (20 tumors, 12 normal tissues), three were technical replicates of the same QC sample, 

and one sample was determined to be a non-ccRCC tumor and was excluded from the analysis in 

the original study. The FragPipe default ‘TMT10-bridge’ and ‘TMT10-bridge-phospho’ 

workflows were used for global proteome and phosphoproteome data quantification, respectively. 

A common ccRCC pool sample was used as a bridge to quantify across multiple sets. Data were 

processed as described in the original publication28. MS/MS spectra were searched against a 

reviewed H. sapiens subset of the UniProt29 database and common contaminant sequences 

(downloaded on September 8, 2022, UP000005640, 20432 proteins) appended with an equal 

number of decoys. Whole cell lysate MS/MS spectra were searched using a precursor-ion mass 

tolerance of 20 ppm, allowing C12/C13 isotope errors of −1/0/1/2/3. Mass calibration and 
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parameter optimization were performed. Cysteine carbamidomethylation (+57.0215) and lysine 

TMT labeling (+229.1629) were specified as fixed modifications, and methionine oxidation 

(+15.9949), N-terminal protein acetylation (+42.0106), and TMT labeling of peptide N-terminus 

and serine residues were specified as variable modifications. For the analysis of phosphopeptide-

enriched data, the set of variable modifications also included the phosphorylation (+79.9663) of 

serine, threonine, and tyrosine residues. The search was restricted to tryptic peptides, allowing for 

up to two missed cleavage sites. Peptide-to-spectrum matches were further processed using 

Percolator25, converted to pep.xml format, and with the phosphopeptide-enriched dataset, pep.xml 

files were additionally processed using PTMProphet30 to localize the phosphorylation sites. The 

resulting pep.xml files were then processed using ProteinProphet31 and filtered to a 1% false 

discovery rate at the protein and PSM levels using the Philosopher toolkit26 v4.8. TMT 

quantification was extracted from MS/MS spectra using Philosopher, and the PSM output files 

were then further processed using TMT-Integrator v3.2.0, to generate summary reports at the gene, 

peptide, and modification site levels. Protein abundances were log2 transformed and median 

centered. 

  

ccRCC DIA dataset: Raw files from the same set of 32 ccRCC samples as in the ccRCC TMT 

dataset (QC or the non-ccRCC tumor samples were not profiled using DIA) were downloaded 

from the PDC under study PDC000200. The FragPipe built-in ‘DIA_SpecLib_Quant’ workflow 

was used. In brief, MSFragger-DIA4 was used to perform database searching. The initial precursor 

and fragment mass tolerances were set at 20 ppm. After mass calibration, MSFragger-DIA adjusts 

the tolerance adaptively. Strict trypsin was selected as the digestion enzyme and the maximum 

allowed missed cleavage was set to 1. After the MSFragger-DIA search, MSBooster24 was used to 
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calculate the deep-learning-based scores, and Percolator25 was used to perform the rescoring. Then, 

Philosopher was used to estimate the FDR and generate the intermediate report used by EasyPQP3 

to build a spectral library. The library was filtered to obtain a 1% FDR at the protein and peptide 

levels. The DIA-NN42 quantification module was used to perform targeted quantification based on 

the spectral library and the original DIA spectra.  

 

LiP-MS dataset: Raw files were downloaded from PRIDE via the ProteomeXchange repository 

using the PXD035183 identifier as described above. The data was processed using FragPipe 

‘DIA_SpecLib_Quant’ workflow as described above, except enzyme specificity was changed to 

‘semi-tryptic’ option.  

 

RESULTS AND DISCUSSION 

 

Overview of the FragPipe-Analyst 

An overview of FragPipe-Analyst is shown in Figure 1. FragPipe-Analyst was designed for 

experiments containing samples with more than one condition. Each condition should have at least 

two samples. We adopted a typical workflow that consists of sequential normalization, filtering, 

and imputation steps, as previously described5 and focused on quality control and differential 

expression analysis. To use FragPipe-Analyst, users must upload two files: a quantification report 

and an experiment annotation file (experiment_annotation.tsv). Both files are obtained by 

executing FragPipe. The quantification report is the output based on the user’s choice of workflow 

(Table 1). The experimental annotation file contains information about the experimental design. 

It is automatically generated based on the user’s settings in FragPipe and may need to be manually 
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checked and edited prior to its upload to FragPipe-Analyst. After ingesting these two files, 

FragPipe-Analyst combines them into an internal data structure. Further visualizations, including 

the QC and DE results, are then generated automatically. 

 

To illustrate the power and ease of use of FragPipe-Analyst, we describe how it can be used to re-

analyze several previously published datasets, largely reproducing the original findings. 

 

Analysis of a TMT-based ccRCC cancer proteomics data 

We first utilized FragPipe-Analyst to interrogate a global TMT-based proteomics dataset28 

profiling clear cell renal cell carcinoma (ccRCC; the major kidney cancer subtype) patient samples. 

We only selected a subset of the data, four TMT-10 plexes out of 23 plexes in total for the 

demonstration. Note that although the original study was intended to profile ccRCC patients only, 

some samples were found to be of different kidney cancer subtypes such as papillary renal cell 

carcinoma (pRCC) and chromophore renal cell carcinoma. Data were processed using FragPipe4 

under settings closely matching those used in the original study28 (see Methods). After finishing 

data processing in FragPipe and annotating samples, the quantification report and the experiment 

annotation files (abundance_protein_MD.tsv and experimental_annotation.tsv) were uploaded and 

analyzed by FragPipe-Analyst to quickly obtain results ready for interpretation (Figure 2). As 

shown in Figure 2a, a PCA plot implemented in plotly21 shows that all quality control (QC) 

samples from the different TMT-10 plexes formed a tight cluster. This indicates an overall high 

quality of quantification data (low technical variability). A clear separation between tumor (T) and 

normal adjacent tumor (NAT) samples from ccRCC patients was observed, underlining the 

biological differences between these two conditions. When using the dropdown menu to switch 
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the PCA plot to be colored by plex number, which is a useful visualization option to assess batch 

effects (see Supplementary figure S1 and 2 for additional QC plots), a clear batch effect is 

visible, suggesting that one of the plexes is notably different. Indeed, from the original study, we 

know that this is due to several plexes containing only tumor samples (imbalanced design). In the 

original manuscript, the batch effect stemming from unbalanced design was corrected using 

ComBat32. Here, we simply point out that our visualization tools assist users with the detection of 

such batch effects, so that an informed decision can be made regarding the need for batch 

correction. 

  

Correlation heatmaps are useful for QC and detecting outliers. Here, the correlation heatmap 

generated by FragPipe-Analyst (Figure 2b) aligned with our earlier observations from the PCA 

plot in such that tumors, NATs, and QC samples formed their own clusters. Interestingly, three 

tumors (C3N-00832-T, C3N-01220-T, and C3N-01648-T) showed dissimilar patterns. From the 

user’s perspective, knowing that renal cell carcinomas (RCCs) other than ccRCC may 

unintentionally be misclassified at the sample collection stage and included in the cohort, further 

inspection is warranted to confirm the diagnosis. Indeed, one of the three samples (C3N-00832-T) 

was reclassified in the original work as pRCC upon careful examination of genomic data and was 

removed from the subsequent analysis. 

 

By inspecting selected markers of RCC after removing QC samples (Figure 2c), we can confirm 

the upregulation of a typical ccRCC marker, CA9, highlighted in the original manuscript, as well 

as a new ccRCC marker, AHNAK233. Interestingly, the novel pRCC marker PIGR34 is highly 

expressed in the outlier tumor sample (C3N-00832-T), again suggesting that this sample might be 
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a kidney tumor of a different (non-ccRCC) subtype. A similar observation could also be made 

when viewing the FragPipe-Analyst generated heatmap plotted based on differentially expressed 

proteins (Figure 2d).  

 

After excluding the outlier sample (pRCC), the results of the DE analysis based on Limma14 were 

evaluated using a volcano plot (Figure 2e). The comparison between tumors and NATs is similar 

to what previously reported in the original study28, with more proteins showing downregulation 

than upregulation in tumors versus NAT, although we applied a different statistical procedure and 

used only a subset of the entire sample cohort. Moreover, pathway enrichment analysis 

implemented in FragPipe-Analyst showed upregulation of ccRCC-related pathways, including 

interferon alpha response, interferon gamma response, hypoxia, mTORC1 signaling, glycolysis, 

and complement in tumors vs. NATs (Figure 2d). Oxidative phosphorylation is also 

downregulated, as evidenced by the low expression of NDUFV2 (Figure2c; Supplementary 

figure S3). These observations are in good agreement with the original study28. 

 

Analysis of a DIA-based ccRCC cancer proteomics data  

Data-independent acquisition (DIA) has emerged as a widely used technology platform for 

quantitative protein profiling35,36. Several software packages have been created to support high-

throughput DIA data analysis, including DIA-Umpire37, Skyline38, OpenSWATH39, 

EncyclopeDIA40, Spectronaut41, and DIA-NN42. We recently published our new method, 

MSFragger-DIA4. To cater to the growing interest in DIA in the field, we enabled FragPipe-

Analyst to perform downstream analyses on DIA datasets processed using FragPipe (supporting 

both DIA-Umpire and MSFragger-DIA-based workflows). For illustration purposes, we used 
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FragPipe-Analyst to interrogate DIA data acquired from the same ccRCC samples as described 

above28. Using quantification reports produced by DIA-NN42 as part of FragPipe (using the library 

generated by MSFragger-DIA and EasyPQP), we obtained findings highly correlated with those 

based on TMT data (Supplementary figure S4, 5, 6). Concordance was evident both at the 

pathway level and when comparing individual protein fold changes in tumors vs. NATs 

(Supplementary figure S7), albeit with a higher degree of ratio compression43 in TMT data 

compared to DIA. Overall, these analyses validated the results produced by FragPipe coupled to 

FragPipe-Analyst when applied to DIA quantification data.  

 

Analysis of LFQ AP-MS data 

FragPipe-Analyst supports the DDA-based LFQ quantification workflows available in FragPipe, 

such as the LFQ-MBR workflow. For these workflows, the output quantification reports created 

by FragPipe/IonQuant (combined_protein.tsv) contain three quantification measures: Intensity 

(computed as the sum of the top N precursors for each protein), MaxLFQ intensity, and Spectral 

Count. The intensity (calculated using IonQuant1) is set as the default option in FragPipe-Analyst 

and is recommended for a variety of studies, including typical proteome profiling datasets, such as 

the ccRCC study discussed above. However, the choice of quantification method, as well as 

various downstream analysis options, should be assessed on a case-by-case basis, and FragPipe-

Analyst provides a convenient way to perform such analyses. Here, we used FragPipe-Analyst to 

analyze an affinity purification mass spectrometry (AP-MS) dataset performed on a head and neck 

squamous cell carcinoma (HNSCC) cell line by Swaney et al.44.  The original study aimed to reveal 

the changes in protein interactions due to different mutations in HNSCC. Here, we selected a 

subset of data from that study for illustration: the wild-type CCND1 bait in the SCC-25 cell line 
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(three biological replicates) and four negative control runs. Importantly, for experiments where 

drastically different samples are compared (bait vs. negative controls), using Intensity as the 

quantitative measurement is preferred over MaxLFQ. In addition, imputation is important because 

true interactors of the bait are expected to be absent in the negative control runs. Thus, their signal 

is expected to be missing in the control group, and such proteins would not be captured as 

statistically significant without imputation. However, choosing an improper imputation method 

could be detrimental to the results and thus requires careful examination.  

 

FragPipe-Analyst provides multiple imputation methods as well as visual methods to quickly 

assess the effects of imputation (e.g., protein abundance distributions or PCA plots, with and 

without imputation) and normalization (Supplementary figure S8). The default option is Perseus-

style imputation7 for DDA and DIA LFQ data (no imputation is set by default for TMT data). The 

results of the DE analysis based on the imputed AP-MS data are illustrated by the volcano plot 

shown in Figure 3a. It shows the expected interactors, including CDK2, CDK5, CDK6, CDKN1A, 

CDKN1B, and CDKN1C, recapitulating the findings of the original study44. Furthermore, we 

compared the results of FragPipe-Analyst, which uses limma-based differential expression 

analysis, with SAINTExpress27, a well-established tool for AP-MS analysis previously developed 

by our lab (see Supplementary figure S9). We observed good agreement with SAINTexpress, 

except for ubiquitin conjugating enzyme E2 D3 (UBE2D3) and proliferating cell nuclear antigen 

(PCNA). Interestingly, CCND1 was previously reported to be a target of UBE2D345 and to interact 

with PCNA46. As weaker or transient interactors may or may not pass statistical cutoffs depending 

on the specific analysis options, FragPipe-Analyst provides a convenient and complementary way 

for users to explore the data. 
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FragPipe-Analysis also provides users with tools to directly compare protein identifications 

between different conditions , without any imputation using the absence/presence tab. In the 

absence/presence tab, a panel with filtering options is provided to allow users to filter the 

protein/peptide identification table to achieve the desired confidence (Figure 3c). The resulting 

table is shown in the upper right corner of the page, and a comparison between conditions is 

summarized as a Venn diagram or an upset plot at the bottom (Figure 3d). While the Venn diagram 

is tailored for interpreting the overlap between two or three conditions, it may be easier to use 

upset plots when comparing more than three conditions. 

 

Peptide-level Analysis  

Bottom-up proteomics usually involves quantification at the single gene/protein level by 

aggregating multiple peptide quantities into one to streamline interpretation and integration with 

other data types13. However, the complexity of both RNA splicing and protein post-translational 

modifications makes such aggregation overly simplified13. Several computational methods, such 

as PeCorA47, gpGrouper48, COPF49, and SEPepQuant50 have been recently proposed to deal with 

this issue, and some of them have already been built on results generated by FragPipe47, 50. Thus, 

we extended FragPipe-Analyst to support the peptide-level analysis. Aside from aggregating 

quantification measurements at the gene/protein level, there are several proteomics applications 

that require interpretation of the data at the peptide level. One such example is structural 

proteomics analysis using limited proteolysis coupled with mass spectrometry (LiP-MS). In a 

typical LiP-MS experiment, a sequence-unspecific protease, typically proteinase K (PK), is used 

to preferentially cleave flexible and accessible regions of the protein of interest. Since the binding 
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of small molecules usually causes protein structural changes and can change protein activity 

dramatically, PK accessibility changes quantified by LiP-MS represent the readout of small 

molecules’ impact on the protein of interest. In addition to experimental procedures, computational 

tools specializing in LiP-MS have also been developed recently51, 52. Here, we re-analyzed a 

representative LiP-MS dataset of HEK293 cells treated with rapamycin53. The dataset consisted of 

8 samples (two conditions and four biological replicates) analyzed using DIA mass spectrometry. 

Using the DIA_SpecLib_Quant workflow available in FragPipe, we quantified 59,503 peptides 

from 65,654 precursor ions across 8 samples (see Methods). As shown in Figure 4, several 

peptides of the known rapamycin target FKBP1A showed abundance differences in the rapamycin 

treatment group (RPM) compared with the DMSO control. The volcano plot of FragPipe-Analyst 

was designed to show not only the peptides selected in the result table (red), but also other peptides 

mapped to the same protein (blue). A similar peptide-level analysis can be performed using TMT 

data (as illustrated using the TMT ccRCC dataset; see Supplementary figure S10, 11, and 12). 

Moving forward, we plan to further develop FragPipe-Analyst to provide more advanced support 

for peptide-level analysis and data visualization. 

 

Advanced Functionality in FragPipeAnalystR:  Site-Specific PTM Analysis  

Large-scale proteogenomics studies, such as those by the Proteomic Tumor Analysis 

Consortium28,34 usually come with more complex experimental designs and downstream biological 

analysis across multi-omics data. To support more sophisticated and advanced analyses, we 

developed FragPipeAnalystR, an R package for FragPipe downstream analysis. It contains all 

functionalities available in FragPipe-Analyst but is more flexible and customizable for advanced 

users. Site-specific post-translational modification (PTM) analysis is a common task in 
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proteogenomics studies. For example, protein phosphorylation is a common PTM and is important 

for understanding cell signaling regulation54. Another PTM that has received growing attention in 

the proteomic field is glycosylation, which plays a key role in diverse biological processes, such 

as cell-cell communications and immunity55.  

 

Here, we illustrate FragPipeAnalystR using the TMT phosphoproteomics dataset available as part 

of the CPTAC ccRCC study discussed above28. The overall analysis strategy is illustrated in 

Figure 5a.  Given that sustained proliferative signaling is a hallmark of cancers56, 57, it is expected 

that there is a large difference in protein phosphorylation between tumors and NATs, as evident 

from the PCA plot (Figure 5b). Protein phosphorylation abundance measurements are naturally 

correlated with whole protein abundance. To decouple changes in specific site phosphorylation 

levels vs. whole protein abundance changes, we built a regression model to perform normalization 

and take the residual protein phosphorylation to investigate biological differences between ccRCC 

tumors and NATs. Protein phosphorylation still differed substantially between tumors and NATs 

after normalization was applied (Supplementary figure S13). Checking specific phosphorylation 

sites highlighted in the original publication28 (PKM:P14618_Y148), MAPK1:P28482_Y187, and 

EIF4EBP1:Q13541_S65) confirmed their dysregulated phosphorylation in tumors (Figure 5c). 

The site-specific phosphorylation abundance differences between tumor and NAT remained after 

normalization for two of the three sites (MAPK1 and EIF4EBP1). These sites are of interest for 

studying dysregulation of cell signaling, as phosphorylation aberrations in these cases are not 

simply driven by changes in the abundance of the parent protein. 
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Site-specific PTM experiments usually generate long lists of modified sites that contain both 

known and novel modification sites. The interpretation of these data often becomes complicated 

because prior knowledge regarding the biological role of specific PTM events is limited, especially 

at site-level resolution. Enrichment analysis is one of the tools at our disposal for using large-scale 

data to generate testable hypotheses that can be investigated in a more focused manner. FragPipe-

AnalystR can perform several types of enrichment analyses to support such studies. In addition to 

the usual enrichment analysis (i.e., using the accession number of the parent protein for each 

modification site), we implemented features to allow users to perform downstream site-specific 

PTM enrichment analyses via PTM-SEA58 and the Kinase library (https://kinase-

library.phosphosite.org/)59. Results from both PTM-centric analyses showed upregulated 

enrichment of phosphosites associated with the AKT serine/threonine kinase family (Figure 5d, 

e).  Indeed, the roles of AKT family members in RCC have already been reported44, 60. 

 

CONCLUSIONS 

We presented downstream analysis software, FragPipe-Analyst, for the FragPipe user community 

to seamlessly perform downstream analysis after running FragPipe. FragPipe-Analyst supports all 

major quantification workflows (including DDA and DIA LFQ, and TMT) and offers a range of 

functionalities, including enhanced data exploration and peptide-level analysis. In addition to 

FragPipe-Analyst, we also introduced FragPipeAnalystR, an R package with all functionalities of 

FragPipe-Analyst at the core and supporting site-specific PTM enrichment analysis58, 59. We used 

SummarizedExperiment61, which is part of the R/Bioconductor ecosystem62, as the core data 

structure. This will enable us to incorporate other bioconductor bioinformatics packages in the 

future. Future developments will also include more complex tasks such as network analysis, 
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proteogenomics63 and kinase-substrate analysis64. Two public server instances of FragPipe-

Analyst are provided at http://fragpipe-analyst.nesvilab.org and https://fragpipe-analyst.org. 

FragPipe-Analyst and FragPipeAnalystR are open-source and freely available at 

https://github.com/MonashProteomics/FragPipe-Analyst and 

https://github.com/Nesvilab/FragPipeAnalystR, respectively.  A Docker file is also included in the 

FragPipe-Analyst GitHub repository to help users set up their own instances without requiring the 

transfer of data through the Internet. 

 

ASSOCIATED CONTENT 

Supporting Information.  
The following files are available free of charge. 

- Supporting information document (PDF) contains supplementary figures. 

- Quantification report and experimental annotation of the ccRCC TMT global proteomics dataset 

- Example usage of FragPipeAnalystR package (R script, R) 

Supplementary figure S1. PCA plot by batch of ccRCC proteomics dataset collected by TMT. 

Supplementary figure S2. Missing value heatmap of ccRCC proteomics dataset collected by 
TMT. 

Supplementary figure S3. Over representation test result for downregulation part in tumors vs 
NAT comparison of ccRCC proteomics dataset collected by TMT. 

Supplementary figure S4. PCA plot of ccRCC proteomics dataset collected by data-independent 
acquisition (DIA). 

Supplementary figure S5. Correlation heatmap of ccRCC proteomics dataset collected by DIA. 

Supplementary figure S6. Volcano plot (left) and overrepresentation test result (right) of ccRCC 
proteomics dataset collected by DIA. 

Supplementary figure S7. Scatter plot shows comparison of log2 fold changes obtained from 
DIA and TMT experiments when comparing tumors versus NATs. 

Supplementary figure S8. Density plot shows the imputation effect on AP-MS experiments used 
here. 
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Supplementary figure S9. Network visualization of HNSCC AP-MS dataset generated by 
SAINTexpress. 

Supplementary figure S10. PCA plot of peptide-level analysis on ccRCC proteomics dataset. 

Supplementary figure S11. Correlation matrix plot of ccRCC proteomics dataset using peptide-
level quantification result. 

Supplementary figure S12. Volcano plot (left) and overrepresentation test result (right) of 
peptide-level analysis on ccRCC proteomics dataset. 

Supplementary figure S13. PCA plot of ccRCC phosphoproteomics dataset after normalization. 
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Table 1. Input files for FragPipe-Analyst based on quantification workflows used in FragPipe. 

 DDA LFQ TMT DIA LFQ 

Quantification 

Report 

combined_protein.tsv 

or 

combined_peptides.tsv 

abundance/ratio_gene report, 
abundance/ratio_protein report, 
or abundance/ratio_peptide 
report (.tsv) 

protein group matrix 
(.pg_matrix) or 
precursor group 
matrix (.pr_matrix) 

Experiment 
Annotation 

experiment_annotation.tsv 
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Figure 1. Overview of FragPipe-Analyst. LFQ: data-dependent label-free quantification, TMT: 
tandem mass tag, DIA: data-independent acquisition LFQ. 
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Figure 2. Example analysis results of global proteome ccRCC dataset obtained from FragPipe-
Analyst. (a) PCA plot (b) Correlation matrix plot. Asterisks denote samples of dissimilar patterns. 
(c) Boxplot shows selected markers of renal cell carcinomas. Asterisks denote the expression of 
the papillary renal cell carcinoma sample (C3N-00832-T) (d) Heatmap based on differentially 
expressed proteins. Asterisk denotes the sample with dissimilar pattern. (e) Volcano plot (f) Over-
representation test result for upregulated proteins identified in (e) against Hallmark gene set. Only 
proteins with log2 fold change more than 0.7 and adjusted p value lower than 0.05 were considered. 
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Figure 3. (a) Volcano plot comparing effect of CCND1 bait versus control. (b) Upset plot shows 
number of identified proteins across different conditions. (c) Screenshot of the filtering panel of 
the presence/absence tab and the Venn diagram (d) after filtering. 
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Figure 4. Volcano plot showing comparison of peptide intensities between rapamycin treated 
(RPM) and DMSO control. One peptide of FKBP1A (GWEEGVAQMSVGQR) is highlighted in 
red because it’s selected in the result table. Other peptides of FKBP1A are colored in blue. 
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Figure 5. Results for ccRCC site-specific protein phosphorylation analysis using 
FragPipeAnalystR (a) The flow diagram of data processing (b) PCA plot of protein 
phosphorylation sites after normalization. (c) Boxplot shows abundance of selected 
phosphorylation sites PKM (P14618_Y148), MAPK1(P28482_Y187), and EIF4EBP1 
(Q13541_S65) before and after protein abundance normalization. Results of site-specific 
enrichment analysis of PTM-SEA (d) and the Kinase library (e). Both results showed the activation 
of AKT in ccRCC. 
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